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Lepton Flavour Violation: a conceptual challenge

The Dim-4 SM provides an accidental flavour symmetry:
e it holds in QCD and EM interactions;
e in the quark sector, it's broken by EW interactions.
The lepton sector strictly conserves the flavour.

At the same time, we have remarkable phenomenological
evidences of FV in the neutrino sector, but. ..

... No evidence of the following phenomenological realisations:

° l}jfﬁ’7+lzi where h’izeauvT’
o Uy = LTI where hyi,j k=e,uT,
o 7= I;IF where h,i=e, T,

o H—IFIf where hyi=e,pu,T.
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What the experiments “measured”
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MUONIC AND TAUONIC LFV TRANSITIONS - A SELECTION

BR(1x — 3e)< 1.0 x 102 at the 90% C.L.
SINDRUM Collaboration, Nucl. Phys. B 299 (1988) 1;

BR(i — v+ e)< 5.7 x 1072 at the 90% C.L.
MEG Collaboration, Phys. Rev. Lett. 110 (2013) 201801;

BR(Z — e+ u)< 7.5 x 1077 at the 95% C.L.
ATLAS Collaboration, Phys. Rev. D 90 (2014) 072010;

BR(r — 3e)< 2.1 x 10~ ° at the 90% C.L.
BELL Collaboration, Phys. Lett. B 687 (2010) 139-143;

BR(r — v + p)< 4.4 x 10~% at the 90% C.L.
BaBar Collaboration, Phys. Rev. Lett. 104 (2010) 021802;

BR(Z — 7+ p)< 1.2 x 10~ at the 95% C.L.
DELPHI Collaboration, Z. Phys. C 73 (1997) 243-251;

BR(H — 7 + u)< 1.8 x 10~ 2 at the 90% C.L.
ATLAS/CMS Collaboration, arXiv:1508.03372/arXiv:1502.07400.
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Synergy among Low and High Energy Experiments

An extensive long-term programme is undergoing to push the
experimental limits both at low and high energy scales.

e Low energy (from m,, to my):
e Muon: limit on p — e conversion (SINDRUM Il), . — e+
(MEG), u — 3e (SINDRUM), iz — e + 2y (LAMPF), etc.
e Tau-lepton: 7 — e/p + v (BaBar, Belle), 7 — 1;1;1;, with
i,j,k = e, u (BaBar, Belle and LHCb).

e High energy (from the EW scale to LHC run 2)
e Neutral current mediated: Z — [;l; with 4, j = e, u, 7
(ALEPH, DELPHI, L3, OPAL, UA1).
e Higgs mediated: H — 7u (ATLAS&CMS).
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A bottom-up approach: dim-n effective theory

Assumptions: SM is merely an effective theory, valid up to
some scale A. It can be extended to a field theory that satisfy
the following requirements:

e its gauge group should contain SU(3)c x SU(2)r, x U(1)y;
e all the SM degrees of freedom must be incorporated;
e at low energies (i.e. when A — o0), it should reduce to SM.

Assuming that such reduction proceeds via decoupling of New
Physics (NP), the Appelquist-Carazzone theorem allows us to
write such theory in the form:

1 (5)(5)
LzLSM+AZk:C’k QY + ZC Q¥ +o A3
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Dimension 5 operator

Only one dimension 5 operator is allowed by gauge symmetry:
Quv = ejremne’ @™ (I5) CLY = (2'1,)TC(&'l,).
After the EW symmetry breaking, it can generate neutrino

masses and mixing (no other operator can do the job).

Its contribution to LFV has been studied since the late 70s:

e in the context of higher dimensional effective realisations;
S. T. Petcov, Sov. J. Nucl. Phys. 25 (1977) 340 [Yad. Fiz. 25 (1977) 641]

e in connection with the “see-saw” mechanism.
P. Minkowski, Phys. Lett. B 67, 421 (1977)

It will not be considered in the current discussion.
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Dimension 6 operators

2-leptons
:

_ 7 v I I, =
- (lpU er)’T SOW,uz/v Ql%) — (lp’Yulr)(qS’YHQt)
Qe = (lpo'“Ver)chuw Ql(s) _ (l_p’YuTIlr)((js’YMqut)
<_> _ —
QY| = (#'iDu @)y 1) Qew = (epwer)(tfsv“ut)
(3) g S Qea = (Epyuer)(dsy*de)
Qui | = (1D @)l y"th) Qu = (Gyule) iy w)
I d = (Iyyul)(dsy"d
= ("D, ) (E"er) Qu =l (dn'd)
f oV Qge = (GpYuar)(€s7"er)
B (SO (p)( peTQO) Qledq = (lf,er)(dsqt)
4-leptons Ql(;;u = (Ber)ejn(Giue)
w| = Govl) Tyl Qicu | = Bower)en(@o u)
e (Epyuer) (s er)

They all provide LFV...

= (lyulr)(&s7"er)

EEE
I
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Dim-6 operators: [, — [;~ at the tree level

Only one dim-6 term can produce l> — [;~ at the tree level:
B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, JHEP 1010 (2010) 085

Working in the physical basis, we consider:

Qe — Qe’yCW — Qezsw,
Qew — _Qe’ySW — Qezew,

where sy = sin(fy) and ey = cos(fy) are the sine and cosine
of the weak mixing angle. The term

pr

Ce Ce 7 v
Loy = A—;Qw +h.c. = A; (l,o"er)oF,, +h.c.,

where F),, is the electromagnetic field-strength tensor, is then
the only term in the D-6 Lagrangian that induces a ls — Iy
transition at tree level.
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Dim-6 operators: H — [;l; at the tree level

Only one dim-6 term provides H — [;l; at the tree level:

Qep = (070) (lpere),

that sums to the SM Yukawa sector:

v
Lps + Lecp :E <_ypr 2A2 Cp > €per

1 D .
+ﬁ (—ypT 2A2C’p )eperh—i— \[AQCQD eperh




Other LFV processes such as Z — [;l; or [; — 3l; are
phenomenologically present at the tree-level if the
following operators appear in the Lagrangian:

2-leptons 4-leptons

Qew = ([pUﬂyer)TIQDW/{V; Qu = (fpvulr)(fsvult)
QeB (l,o"er) B, Qee = (Epyuer)(Esy’er)

<> _ _
QY = (#'iDue)ln"1,) Qe = (ule)(@ner)
@ — (ol DI o)V (LT
le = (¢ y@)(pT’V r)

<>
Qcpe = (@TiDu ‘P)(éP'Y“eT)
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Dim-6 operators: u(7) — e(u/e)y at one loop

For good eyes, even a point-like interaction. . .

... looks like a wild place to explore!
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FeynRules

The generation of Feynman Rules was automatised by means
of the FeynRules package.
Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921 [hep-ph]]

At the end of the day, it was rather simple as we had great
technical assistance (thanks to C. Duhr and C. Degrande).

The philosophy is straightforward:
e write your operator in a Mathematica notebook,
e press a button,
e print out your Feynman Rules.

Plus, it can also produce a FeynArts/FormCalc model file.
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Interaction and branching ratio

Dim-6 operators contribute to the coefficients Crr, and Crr of
the photon-mediated FV interaction:

|
VN — on‘“ (CTL wr, + CTR WR) (p“/)l/ :

Being the partial width of the process u — ey

. 4(|CrL? + |Crrl?) m),
Fuﬁ\e'y 16 Ty, |M‘ with |M|2 = A4

then the branching ratio is

3

T e my,
BR(p — ey) = £ =
r, A4F

(ICrLl* + |Crr)?) -

By calculating the dim-6 contributions to C'r;, and Crr one
obtain the connection between effective coefficients and BR.
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Dim-6 effective contributions to Cr;, and Crp
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Operator Cry, or Crr(lz +— 1)
2 rSW
Qe ¢, Y2mwsw
e
2 2
emy miy ms
Qr | —Con 2 (3= o+ on [ ]+ 12— ops[7])
& e (1+ sfy)
Qi B 7
(3) (3) €M1 ('3 — 25” )
Qi ot 4872
ems (3 — 23‘24,)
Qe Coo— g
m2
mwsw
Cop——r— ( 4m? + 4m3 + 3m? 1o + 3m2 1o
Qcyp W48ﬂ:n§{7rz< a1 2 1 8[77 } 51 g{ J)
" e (3) \ 21ue m2
Qb ~gr o (Clip) o {v
Operator Crr, Crr
Qu 2 (meCEet 4 m, €2 4, CFTTL (MGl + mu G+ m, ™)
e 1672 eCle LuCe brlle 167 Ta-2 lc "nle T le

Conclusion
oo
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No correlation: limits from some muonic transition
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Coefficient

MEG (1 — ey)
BR<5.7-10713

ATLAS (Z — ep)

BR<75-1077

SINDRUM (p — 3e)
BR<1.0-10712

Cly(mz)
ay
c
Coe

Cte

Cpeen

Cgmu

cermm

ceep
ee

ceep
Cll

L 10-10_A2%
2.5-10 GV

L 10—10_A2
2.4-10 GevP

2.4-10710_A2

[GeV]?

L 10-8_A2
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—-8__A?
5.5-10 Gov]?

—8__A?
5.5-10 eV
L10-8_A2
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L 10-8_A2
551078 hom

—8__A?
2.8-10 5

—6__A2
6.1-10 v

u}

Conclusion
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No correlation: limits from some tauonic transition
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Coefficient

BaBar (7 — uy)
BR<44-10°8

LEP (Z = )

BR<12-107°

BELL (7 — 3p)
BR<21-107%

ATLAS&CMS (H — )
BR<185-102

cil
C[};CCT
(gng
Cl;éTTT
cEbT

T
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. —7__A2
10 [G‘-eV]2

A2

—7
-10 [GeV]?

—7_A?

1.6-10 Gevi?

. 10-6 _A?
10 [GEVF

.10-6_A2
2.3-10 Gevl?

A2

-7
2.2-10 GV

L1107 A2
2.2-10 Gev]?

A2

—7
22107

A2

-7
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6.1-107 722

[GeV]?

L 10-5_A2
1.1-10 GovE

Conclusion
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Effective coefficients and energy scale

The result of Cr at one loop can schematically be written as
mn_ v 2 (1 2 (1) .
Cr’ = _ﬁ (Cew <1+e cé}) + ; e“c; CZ) .
1£ey

In general, the coefficients CSJ and cf.l) contain UV singularities,
i.e. a renormalisation of C., is required.

Such procedure makes the scale dependence explicit via the
anomalous dimensions of the coefficient.

At the end of the day, the renormalised effective coefficients
and the Crr, and Crg are running quantities.
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A scale dependent limit

MEG sets a limit on ;» — ey at the A = m,, scale; we combine it
with the information on the interacting current to obtain:

VICTL (M) + [Crr(V)[?
A2

<4.3-107"[GeV] .
AKLA

In this formula there are two scale dependencies:

A: this is the scale > A gy at which the theory is defined,
according to the decoupling theorem.

A: this is the scale at which the coefficient is probed by the
experiment.

Next step: let’s connect low and high energy scales.
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From A =m, 10 A = Agw
In the assumption that C. is the dominant coefficient in the

energy range m, < A < mz ~ mg, its running below the EW
scale is QED driven:

aC, 4

2 OCe 2 2

167 6log7)\ ~e (10 + 3 E eq()\)> Coer-
q

Applying this to the limit on C%§(m,,) and CeY (m,,), one obtains:

\/|csf<mz>r2+ CHDE _ g gm0 A
2 [GeV]

This is the limit that must be used to determine the constraints
on the remaining effective coefficients at the scale A.
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Renormalisation Group Equations

If one consider only the gauge contributions and the top-Yukawa coupling, the evolution
of the coefficient C., is described by a coupled SoDE:

9 Cg’i 47¢2 e? 9e? cw SwW
1672 ~ + - +3Y2 )| O | +6e2 | = — 2 )| C¥s
2 t Y eZ

3 45W SW cw

dlog A 4ciy,

+16evy ¢

pett |
8 2cy | 3lsw e 3ew  Ssw (3)
810g)\ 3 Sw cw Sw cw
47¢2  151e? 1le?
- - 32 )| Crs |,
+ < 3 123, 123, +aY ) g4

me Te Yt e eXy CW SW
’ w %% ) 5
Jlog A < s 3c €

2e 3e 3Y2 89% (3) e? 5 3 1)
<9C‘2/V7£+ 3 + 3>C;Lett +§ T+T C;Lett’

9 Cf»le)tt 30e?  18e? 3) 112 | 15Y2 )
1672 —rr ~ ( >+ — > Cuett + <f 5+ to_ 8g%> Cuett R
Ciy Sty 3cqy 2

RGE Conclusion
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Evolution and bounds from low energy

~ 0 —
A remarkable set of e
different constraints g B
on coefficients -2
defined at the .3
decoupling scale A! 4
. . -5
Behaviour is not c
completely linear: 6 o)
solutions are not 7 mc.
analytically simple. .8 Wc. .
-9 - C:e"(/\)
Bounds on C(1 3| w
pett * -10 L N P
3 4 5 6 7 8

Log,,(AMGeV)
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Effects of correlation in the RGE analysis

A=10° GeV A=10° GeV

Log,(C.7)
3
Logo(Ciiee)

-5 -4.5 -4 -3.5 -3 -3 -2.5 -2 -1.5 -1
1
Logw(cﬂen) Log,6(Cyierd)

Cancellations can represent a delicate issue:
naturalness is not a strong argument in effective scenarios!

Conclusion
0o
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Limits for coefficients defined at the A scale (1)

If no correlation is assumed, one obtains the following limits:

3-P Cocfficient|[at A = 10* GeV]at A = 10° GeVl]at A = 107 GeV
cly 2.7-10710 2.9-107° 3.1-1072
cty 2.5-107% L0-107* 7.1-107!
s, 3.6-1079 141077 081072
il 19107 2.5.1073 n/a
., 4.8-1077 1.9-1073 n/a
Clbhe 2.6-1074 3.3-1071 n/a

TABLE 5: Limits on the Wilson coefficients defined at the scale A = A for three choices of

A=10%,10°,107 GeV.

Limits from MEG are applied at a fixed scale A = m.
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Limits for coefficients defined at the A scale (2)

If no correlation is assumed, one obtains the following limits:

T — ey
3-P Coefficient|[at A = 10> GeV |at A = 10? GeV|at A = 10° GeV
cLe 2.5-1076 2.6-107* 2.8-1072
cry 2.3-107* 1.3-102 9.5-1071
c®, 34-10°° 1.9-10°3 1.4-10°1
CL:EL 1.8-1072 5.0-1071 n/a
c8), 46-1073 251071 n/a
), ~24 n/a n/a

TABLE 6: Limits on the Wilson coefficients defined at the scale A = A for three choices of

A =10%,10%10° GeV.

Limits from BaBar are applied at a fixed scale A\ = m.
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Limits for coefficients defined at the A scale (3)

If no correlation is assumed, one obtains the following limits:

T — py
3-P Coefficient |at A = 10% GeV |at A = 10* GeV|at A = 10° GeV
c¥ 3.0-1076 3.1-1074 3.2.1072
crh 2.8-1071 1.5-1072 ~1.1
o, 4.0-1075 22.1073 1.6-10
9, 211072 59101 n/a
C,(-i)pc 5.4-1073 3.0-1071 n/a
C.E,l,)c,' ~ 2.8 n/a n/a

TABLE 8: Limits on the Wilson coefficients defined at the scale A = A for three choices of
A =10%10%10° GeV.

Limits from BaBar are applied at a fixed scale A = m.
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Conclusion

v/ The motivation to study a dim-5 and dim-6 effective field
theory containing LFV couplings was presented.

\/ A systematic approach for the study of LFV observables
was presented, and the benchmark process p — ey was
analysed at tree level and one loop.

\/ For some relevant low and high energy processes,
quantitative limits on dim-6 effective coefficients were
provided in a scenario where no correlation among
operators is assumed.

v/ The interpretation of LE constraints in terms of HE
complementary limits was analysed by means of
renormalisation group equations.
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