

LFV decays in theories with Dim-6 operators

(based on arXiv:1408.3565, in collaboration with Adrian Signer)

Giovanni Marco Pruna

Paul Scherrer Institut Villigen, CH

FCCP Workshop, Anacapri, 12 September 2015

▲□▶▲□▶▲□▶▲□▶ □ のQ@

lotivation	Bottom-up	Calculation	RGE	Conclusion
00	0000000	00000	00000000	00

Lepton Flavour Violation: a conceptual challenge

The Dim-4 SM provides an accidental flavour symmetry:

- it holds in QCD and EM interactions;
- in the quark sector, it's broken by EW interactions.

The lepton sector strictly conserves the flavour.

At the same time, we have remarkable phenomenological evidences of FV in the neutrino sector, but...

... No evidence of the following phenomenological realisations:

(日) (日) (日) (日) (日) (日) (日)

 $\begin{array}{lll} \bullet \ l_h^\pm \to \gamma + l_i^\pm & \text{where} & h, i = e, \mu, \tau, \\ \bullet \ l_h^\pm \to l_i^\pm l_j^\pm l_k^\mp & \text{where} & h, i, j, k = e, \mu, \tau, \\ \bullet \ Z \to l_h^\pm l_i^\mp & \text{where} & h, i = e, \mu, \tau, \\ \bullet \ H \to l_h^\pm l_i^\mp & \text{where} & h, i = e, \mu, \tau. \end{array}$

• BR($H \to \tau + \mu$)< 1.8 × 10⁻² at the 90% C.L. ATLAS/CMS Collaboration, arXiv:1508.03372/arXiv:1502.07400.
 Motivation
 Bottom-up
 Calculation
 RGE
 Conclusion

 000
 0000000
 0000000
 00000000
 000

Synergy among Low and High Energy Experiments

An extensive long-term programme is undergoing to push the experimental limits both at low and high energy scales.

- Low energy (from m_{μ} to m_b):
 - Muon: limit on $\mu \rightarrow e$ conversion (SINDRUM II), $\mu \rightarrow e + \gamma$ (MEG), $\mu \rightarrow 3e$ (SINDRUM), $\mu \rightarrow e + 2\gamma$ (LAMPF), etc.
 - Tau-lepton: $\tau \to e/\mu + \gamma$ (BaBar, Belle), $\tau \to l_i l_j l_k$ with $i, j, k = e, \mu$ (BaBar, Belle and LHCb).
- High energy (from the EW scale to LHC run 2)
 - Neutral current mediated: $Z \rightarrow l_i l_j$ with $i, j = e, \mu, \tau$ (ALEPH, DELPHI, L3, OPAL, UA1).
 - Higgs mediated: $H \rightarrow \tau \mu$ (ATLAS&CMS).

Motivation	Bottom-up	Calculation	RGE	Conclusion
000	•000000	00000	00000000	00

A bottom-up approach: dim-n effective theory

Assumptions: SM is merely an effective theory, valid up to some scale Λ . It can be extended to a field theory that satisfy the following requirements:

- its gauge group should contain $SU(3)_C \times SU(2)_L \times U(1)_Y$;
- all the SM degrees of freedom must be incorporated;
- at low energies (i.e. when $\Lambda \to \infty$), it should reduce to SM.

Assuming that such reduction proceeds via decoupling of New Physics (NP), the Appelquist-Carazzone theorem allows us to write such theory in the form:

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda} \sum_{k} C_{k}^{(5)} Q_{k}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} Q_{k}^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^{3}}\right).$$

(日) (日) (日) (日) (日) (日) (日)

vation

Bottom-up

Calculation

RGE

Conclusion

Dimension 5 operator

Only one dimension 5 operator is allowed by gauge symmetry:

$$Q_{\nu\nu} = \varepsilon_{jk} \varepsilon_{mn} \varphi^j \varphi^m (l_p^k)^T C l_r^n \equiv (\widetilde{\varphi}^{\dagger} l_p)^T C (\widetilde{\varphi}^{\dagger} l_r).$$

After the EW symmetry breaking, it can generate neutrino masses and mixing (no other operator can do the job).

Its contribution to LFV has been studied since the late 70s:

- in the context of higher dimensional effective realisations;
 S. T. Petcov, Sov. J. Nucl. Phys. 25 (1977) 340 [Yad. Fiz. 25 (1977) 641]
- in connection with the "see-saw" mechanism. P. Minkowski, Phys. Lett. B **67**, 421 (1977)

It will not be considered in the current discussion.

Motivation

Calculation 00000 RGE 00000000 Conclusion

Dimension 6 operators

Q_{eW}	
Q_{eB}	
$Q^{(1)}_{arphi l}$	
$Q^{(3)}_{arphi l}$	
$Q_{arphi e}$	
$Q_{e\varphi}$	

2-leptons

$$= (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\tau^{I}\varphi W^{I}_{\mu\nu};$$

$$= (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\varphi B_{\mu\nu}.$$

$$= (\varphi^{\dagger}iD_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$$

$$= (\varphi^{\dagger}iD_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$$

$$= (\varphi^{\dagger}iD_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$$

$$= (\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$$

4-leptons

$$= (\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$$
$$= (\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$$

$$= (\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$$

4-fermions $Q_{la}^{(1)} = (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$ $Q_{lq}^{(3)} = (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ $Q_{eu} = (\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$ $Q_{ed} = (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$ $Q_{lu} = (\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$ $Q_{ld} = (\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$ $Q_{qe} = (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$ $Q_{ledg} = (\bar{l}_n^j e_r)(\bar{d}_s q_t^j)$ $Q_{leau}^{(1)}$ $= (\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$ $Q_{lequ}^{(3)}$ $= (\bar{l}_{n}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$

They all provide LFV...

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

bitivation Bottom-up Calculation RGE Conclusion

Dim-6 operators: $l_2 \rightarrow l_1 \gamma$ at the tree level

Only one dim-6 term can produce $l_2 \rightarrow l_1 \gamma$ at the tree level: B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, JHEP **1010** (2010) 085

Working in the physical basis, we consider:

$$\begin{aligned} Q_{eB} &\to Q_{e\gamma} c_W - Q_{eZ} s_W, \\ Q_{eW} &\to -Q_{e\gamma} s_W - Q_{eZ} c_W, \end{aligned}$$

where $s_W = \sin(\theta_W)$ and $c_W = \cos(\theta_W)$ are the sine and cosine of the weak mixing angle. The term

$$\mathcal{L}_{e\gamma} \equiv \frac{C_{e\gamma}}{\Lambda^2} Q_{e\gamma} + \text{h.c.} = \frac{C_{e\gamma}^{pr}}{\Lambda^2} (\bar{l}_p \sigma^{\mu\nu} e_r) \varphi F_{\mu\nu} + \text{h.c.},$$

where $F_{\mu\nu}$ is the electromagnetic field-strength tensor, is then the only term in the D-6 Lagrangian that induces a $l_2 \rightarrow l_1 \gamma$ transition at tree level.

Motivation	Bottom-up	Calculation	RGE	Conclusion
000	0000000	00000	00000000	00

Dim-6 operators: $H \rightarrow l_i l_j$ at the tree level

Only one dim-6 term provides $H \rightarrow l_i l_j$ at the tree level:

 $Q_{e\varphi} = (\varphi^{\dagger}\varphi)(\bar{l}_p e_r \varphi),$

that sums to the SM Yukawa sector:

$$\begin{aligned} \mathcal{L}_{\mathrm{D4}} + \mathcal{L}_{e\varphi} &= \frac{v}{\sqrt{2}} \left(-y_{pr} + \frac{v^2}{2\Lambda^2} C_{e\varphi}^{pr} \right) \bar{e}_p e_r \\ &+ \frac{1}{\sqrt{2}} \left(-y_{pr} + \frac{v^2}{2\Lambda^2} C_{e\varphi}^{pr} \right) \bar{e}_p e_r h + \boxed{\frac{v^2}{\sqrt{2}\Lambda^2} C_{e\varphi}^{pr}} \bar{e}_p e_r h \\ &+ \frac{i}{\sqrt{2}} \left(-y_{pr} + \frac{v^2}{2\Lambda^2} C_{e\varphi}^{pr} \right) \bar{e}_p e_r \widehat{Z} \\ &+ i \left(-y_{pr} + \frac{v^2}{2\Lambda^2} C_{e\varphi}^{pr} \right) \bar{e}_p \nu_r \widehat{W}^+ + [\dots] \,. \end{aligned}$$

Motivation	Bottom-up	Calculation	RGE	Conclusion
000	0000000	00000	00000000	00

Other operators that are relevant at the tree level

Other LFV processes such as $Z \rightarrow l_i l_j$ or $l_j \rightarrow 3l_i$ are phenomenologically present at the tree-level if the following operators appear in the Lagrangian:

4-leptons

$$Q_{ll} = (\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$$
$$Q_{ee} = (\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$$

$$Q_{le} = (\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$$

(日) (日) (日) (日) (日) (日) (日)

Motivation	Bottom-up	Calculation	RGE	Conclusion
000	000000	00000	00000000	00

Dim-6 operators: $\mu(\tau) \rightarrow e(\mu/e)\gamma$ at one loop

For good eyes, even a point-like interaction...

... looks like a wild place to explore!

Bottom-up

Calculation •0000 RGE 000000000 Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

FeynRules

The generation of Feynman Rules was automatised by means of the FeynRules package.

Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921 [hep-ph]]

At the end of the day, it was rather simple as we had great technical assistance (thanks to C. Duhr and C. Degrande).

The philosophy is straightforward:

- write your operator in a Mathematica notebook,
- press a button,
- print out your Feynman Rules.

Plus, it can also produce a FeynArts/FormCalc model file.

Bottom-up	Calculation	RGE	Conclusion
0000000	0000	00000000	00

Interaction and branching ratio

Dim-6 operators contribute to the coefficients C_{TL} and C_{TR} of the photon-mediated FV interaction:

$$V^{\mu} = \frac{1}{\Lambda^2} i \sigma^{\mu\nu} \left(C_{TL} \,\omega_L + C_{TR} \,\omega_R \right) \left(p_{\gamma} \right)_{\nu}.$$

Being the partial width of the process $\mu \rightarrow e \gamma$

$$\Gamma_{\mu \to e\gamma} = \frac{1}{16\pi m_{\mu}} |\mathcal{M}|^2, \quad \text{with} \quad |\mathcal{M}|^2 = \frac{4\left(|C_{TL}|^2 + |C_{TR}|^2\right) m_{\mu}^4}{\Lambda^4},$$

then the branching ratio is

$$BR(\mu \to e\gamma) = \frac{\Gamma_{\mu \to e\gamma}}{\Gamma_{\mu}} = \frac{m_{\mu}^3}{4\pi\Lambda^4\Gamma_{\mu}} \left(|C_{TL}|^2 + |C_{TR}|^2 \right).$$

By calculating the dim-6 contributions to C_{TL} and C_{TR} one obtain the connection between effective coefficients and BR.

Motivation	Bottom-up	Calculation	RGE	Conclusion
000	000000	00000	00000000	00

Dim-6 effective contributions to C_{TL} and C_{TR}

Operator	C_{TL} or C_{TR}	$(l_2 \longleftrightarrow l_1)$
$Q_{e\gamma}$	$-C_{e\gamma}\frac{\sqrt{2}}{2}$	$\frac{m_W s_W}{e}$
Q_{eZ}	$-C_{eZ} \frac{em_Z}{16\sqrt{2}\pi^2} \left(3 - 6c_W^2 + 4c_W^2\log^2 n \right)$	$\left[\frac{m_W^2}{m_Z^2}\right] + (12c_W^2 - 6)\log\left[\frac{m_Z^2}{\lambda^2}\right] \bigg)$
$Q^{(1)}_{arphi l}$	$-C^{(1)}_{arphi l} rac{em_1}{2}$	$\frac{\left(1+s_W^2\right)}{24\pi^2}$
$Q^{(3)}_{\varphi l}$	$C^{(3)}_{arphi l} rac{em_1}{4}$	$\frac{3-2s_W^2}{18\pi^2}$
$Q_{\varphi e}$	$C_{arphi e} rac{em_2}{4}$	$\frac{3-2s_W^2}{8\pi^2}$
$Q_{e\varphi}$	$C_{e\varphi} \frac{m_W s_W}{48\sqrt{2}m_H^2 \pi^2} \left(4m_1^2 + 4m_2^2 + 3m_1^2 + 3m_2^2 + $	$m_1^2 \log \left[\frac{m_1^2}{m_H^2}\right] + 3m_2^2 \log \left[\frac{m_2^2}{m_H^2}\right] \bigg)$
$Q_{lequ}^{(3)}$	$-\frac{e}{2\pi^2}\sum_u m_u \left(C_{le}^{(3)}\right)$	$\left u_{qu} \right ^{21uu} \log \left[\frac{m_u^2}{\lambda^2} \right]$
Operator	C_{TL}	C_{TR}
Q_{le}	$\frac{e}{16\pi^2} \left(m_e C_{le}^{2ee1} + m_\mu C_{le}^{2\mu\mu1} + m_\tau C_{le}^{2\tau\tau1} \right)$	$\frac{e}{16\pi^2}(m_eC_{le}^{1ee2}+m_{\mu}C_{le}^{1\mu\mu2}+m_{\tau}C_{le}^{1\tau\tau2})$

lotivation	Bottom-up	Calculation	RGE	Conclusion
000	0000000	00000	00000000	00

No correlation: limits from some muonic transition

Coefficient	$\begin{array}{l} \text{MEG} \ (\mu \rightarrow e \gamma) \\ \\ BR \leq 5.7 \cdot 10^{-13} \end{array}$	ATLAS $(Z \to e\mu)$ $BR \le 7.5 \cdot 10^{-7}$	SINDRUM $(\mu \rightarrow 3e)$ BR $\leq 1.0 \cdot 10^{-12}$
$C^{\mu e}_{eZ}(m_Z)$	$1.4\cdot 10^{-13} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	$5.5\cdot10^{-8}\frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	$2.8\cdot 10^{-8} \frac{\Lambda^2}{[{\rm GeV}]^2}$
$C^{(1)}_{\varphi l}$	$2.5 \cdot 10^{-10} \frac{\Lambda^2}{[\text{GeV}]^2}$	$5.5\cdot 10^{-8} \frac{\Lambda^2}{[{\rm GeV}]^2}$	$2.5\cdot 10^{-11} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$
$C^{(3)}_{\varphi l}$	$2.4 \cdot 10^{-10} \frac{\Lambda^2}{[{\rm GeV}]^2}$	$5.5\cdot10^{-8} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$	$2.5\cdot 10^{-11} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$
$C_{\varphi e}$	$2.4\cdot 10^{-10} \frac{\Lambda^2}{[{\rm GeV}]^2}$	$5.5\cdot10^{-8} \frac{\Lambda^2}{[{\rm GeV}]^2}$	$2.6\cdot 10^{-11} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$
$C^{\mu e}_{e \varphi}$	$2.7\cdot 10^{-8} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$		$6.1\cdot 10^{-6} \frac{\Lambda^2}{[{\rm GeV}]^2}$
$C_{le}^{eee\mu}$	$4.2\cdot 10^{-8} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$		$2.2\cdot 10^{-11} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$
$C_{le}^{e\mu\mu\mu}$	$2.0\cdot 10^{-10} \tfrac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$		
$C_{le}^{e\tau\tau\mu}$	$1.2\cdot 10^{-11} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$		
$C_{ee}^{eee\mu}$			$7.7\cdot 10^{-12} \frac{\Lambda^2}{[{\rm GeV}]^2}$
$C^{eee\mu}_{ll}$			$7.7\cdot 10^{-12} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Motivation 000		Bottom-up	Calculat 0000●	tion	RGE 00000000	Conclusio 00
No	o corre	elation: lir	nits from	n some ta	auonic transiti	on
	Coefficient	BaBar $(\tau \to \mu \gamma)$ BR $\leq 4.4 \cdot 10^{-8}$	LEP $(Z \to \tau \mu)$ BR $\leq 1.2 \cdot 10^{-5}$	BELL $(\tau \to 3\mu)$ BR $\leq 2.1 \cdot 10^{-8}$	ATLAS&CMS $(H \to \tau \mu)$ BR $\leq 1.85 \cdot 10^{-2}$	
	$C_{eZ}^{\tau\mu}(m_Z)$	$1.5\cdot 10^{-9} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	$2.2\cdot 10^{-7} \frac{\Lambda^2}{\left[\text{GeV}\right]^2}$	$6.1\cdot 10^{-7} \frac{\Lambda^2}{\left[\text{GeV}\right]^2}$		-
	$C^{(1)}_{\varphi l}$	$1.6\cdot 10^{-7} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$	$2.2\cdot 10^{-7} \tfrac{\Lambda^2}{[\text{GeV}]^2}$	$9.0\cdot 10^{-9} \frac{\Lambda^2}{\left[{\rm GeV}\right]^2}$		
	$C^{(3)}_{\varphi l}$	$1.6\cdot 10^{-7} \tfrac{\Lambda^2}{[{\rm GeV}]^2}$	$2.2\cdot 10^{-7} \frac{\Lambda^2}{[\text{GeV}]^2}$	$9.0\cdot 10^{-9} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$		
	$C_{\varphi e}$	$1.6\cdot 10^{-7} \tfrac{\Lambda^2}{[\mathrm{GeV}]^2}$	$2.2\cdot 10^{-7} \tfrac{\Lambda^2}{[\text{GeV}]^2}$	$9.5\cdot10^{-9} \frac{\Lambda^2}{[{\rm GeV}]^2}$		
	$C_{e\varphi}^{\tau\mu}$	$1.9\cdot 10^{-6} \frac{\Lambda^2}{[{\rm GeV}]^2}$		$1.1 \cdot 10^{-5} \frac{\Lambda^2}{[\text{GeV}]^2}$	$1.3\cdot 10^{-7} \frac{\Lambda^2}{\left[{\rm GeV}\right]^2}$	
	$C_{le}^{\mu ee \tau}$	$4.7\cdot 10^{-4} \frac{\Lambda^2}{\left[\mathrm{GeV}\right]^2}$				
	$C_{le}^{\mu\mu\mu\tau}$	$2.3 \cdot 10^{-6} \frac{\Lambda^2}{[\text{GeV}]^2}$		$8.0\cdot10^{-9}\frac{\Lambda^2}{[\text{GeV}]^2}$		
	$C_{le}^{\mu\tau\tau\tau}$	$1.3 \cdot 10^{-7} \frac{\Lambda^2}{[\text{GeV}]^2}$				
	$C_{ee}^{\mu\mu\mu\tau}$			$\frac{2.8 \cdot 10^{-9} \frac{\Lambda^2}{[\text{GeV}]^2}}{2.8 \cdot 10^{-9} \frac{\Lambda^2}{[\text{GeV}]^2}}$		
	$C_{ll}^{\mu\mu\mu\tau}$			$2.8 \cdot 10^{-9} \frac{\Lambda^2}{[\text{GeV}]^2}$		

<u>-</u>≣ • ગ્વભ

tivation Bottom-up Calculation RGE Conc o 0000000 000000 00 00 00

Effective coefficients and energy scale

The result of C_T at one loop can schematically be written as

$$C_T^{(1)} = -\frac{v}{\sqrt{2}} \left(C_{e\gamma} \left(1 + e^2 c_{e\gamma}^{(1)} \right) + \sum_{i \neq e\gamma} e^2 c_i^{(1)} C_i \right).$$

In general, the coefficients $c_{e\gamma}^{(1)}$ and $c_i^{(1)}$ contain UV singularities, *i.e.* a renormalisation of $C_{e\gamma}$ is required.

Such procedure makes the scale dependence explicit via the *anomalous dimensions* of the coefficient.

At the end of the day, the renormalised effective coefficients and the C_{TL} and C_{TR} are running quantities.

Calculation

RGE 000000000 Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A scale dependent limit

MEG sets a limit on $\mu \rightarrow e\gamma$ at the $\lambda = m_{\mu}$ scale; we combine it with the information on the interacting current to obtain:

$$\frac{\sqrt{|C_{TL}(\lambda)|^2 + |C_{TR}(\lambda)|^2}}{\Lambda^2} \bigg|_{\lambda \ll \Lambda} \le 4.3 \cdot 10^{-14} \, [\text{GeV}]^{-1} \, .$$

In this formula there are two scale dependencies:

- A: this is the scale $\gg \Lambda_{EW}$ at which the theory is defined, according to the decoupling theorem.
- λ : this is the scale at which the coefficient is probed by the experiment.

Next step: let's connect low and high energy scales.

From
$$\lambda = m_{\mu}$$
 to $\lambda = \Lambda_{EW}$

In the assumption that $C_{e\gamma}$ is the dominant coefficient in the energy range $m_{\mu} < \lambda < m_Z \sim m_H$, its running below the EW scale is QED driven:

$$16\pi^2 \frac{\partial C_{e\gamma}}{\partial \log \lambda} \simeq e^2 \left(10 + \frac{4}{3} \sum_q e_q^2(\lambda) \right) C_{e\gamma}.$$

Applying this to the limit on $C_{e\gamma}^{\mu e}(m_{\mu})$ and $C_{e\gamma}^{e\mu}(m_{\mu})$, one obtains:

$$\sqrt{\frac{|C_{e\gamma}^{\mu e}(m_Z)|^2 + |C_{e\gamma}^{e\mu}(m_Z)|^2}{2}} < 1.8 \cdot 10^{-16} \frac{\Lambda^2}{[\text{GeV}]^2}.$$

This is the limit that must be used to determine the constraints on the remaining effective coefficients at the scale Λ .

Motivation 000 Calculation 00000 RGE 000000000 Conclusion

Renormalisation Group Equations

If one consider only the gauge contributions and the top-Yukawa coupling, the evolution of the coefficient $C_{e\gamma}$ is described by a coupled SoDE:

$$\begin{split} 16\pi^2 \frac{\partial}{\partial \log \lambda} & \simeq \left(\frac{47e^2}{3} + \frac{e^2}{4c_W^2} - \frac{9e^2}{4s_W^2} + 3Y_t^2\right) \boxed{C_{e\gamma}^{\mu e}} + 6e^2 \left(\frac{c_W}{s_W} - \frac{s_W}{c_W}\right) \boxed{C_{eZ}^{\mu e}} \\ &+ 16eY_t \boxed{C_{\mu ett}^{(3)}}, \\ 16\pi^2 \frac{\partial}{\partial \log \lambda} & \simeq -\frac{2e^2}{3} \left(\frac{2c_W}{s_W} + \frac{31s_W}{c_W}\right) \boxed{C_{e\gamma}^{\mu e}} + 2e \left(\frac{3c_W}{s_W} - \frac{5s_W}{c_W}\right) Y_t \boxed{C_{\mu ett}^{(3)}} \\ &+ \left(-\frac{47e^2}{3} + \frac{151e^2}{12c_W^2} - \frac{11e^2}{12s_W^2} + 3Y_t^2\right) \boxed{C_{eZ}^{\mu e}}, \\ 16\pi^2 \frac{\partial}{\partial \log \lambda} & \simeq \frac{7eY_t}{3} \boxed{C_{e\gamma}^{\mu e}} + \frac{eY_t}{2} \left(\frac{3c_W}{s_W} - \frac{5s_W}{3c_W}\right) \boxed{C_{eZ}^{\mu e}} + \\ &+ \left(\frac{2e^2}{9c_W^2} - \frac{3e^2}{s_W^2} + \frac{3Y_t^2}{2} + \frac{8g_S^2}{3}\right) \boxed{C_{\mu ett}^{(3)}} + \frac{e^2}{8} \left(\frac{5}{c_W^2} + \frac{3}{s_W^2}\right) \boxed{C_{\mu ett}^{(1)}}, \\ 16\pi^2 \frac{\partial}{\partial \log \lambda} & \simeq \left(\frac{30e^2}{c_W^2} + \frac{18e^2}{s_W^2}\right) \boxed{C_{\mu ett}^{(3)}} + \left(-\frac{11e^2}{3c_W^2} + \frac{15Y_t^2}{2} - 8g_S^2\right) \boxed{C_{\mu ett}^{(1)}}. \end{split}$$

Evolution and bounds from low energy

A remarkable set of different constraints on coefficients defined at the decoupling scale Λ !

Behaviour is not completely linear: solutions are not analytically simple.

Bounds on $C_{\mu ett}^{(1,3)}$!

Effects of correlation in the RGE analysis

Cancellations can represent a delicate issue: naturalness is not a strong argument in effective scenarios!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Motivation	Bottom-up	Calculation	RGE	Conclusion
000	000000	00000	000000000	00

Limits for coefficients defined at the Λ scale (1)

If no correlation is assumed, one obtains the following limits:

3-P Coefficient	at $\Lambda = 10^3 \text{ GeV}$	at $\Lambda = 10^5 \text{ GeV}$	at $\Lambda = 10^7 \text{ GeV}$
$C_{e\gamma}^{\mu e}$	$2.7 \cdot 10^{-10}$	$2.9\cdot 10^{-6}$	$3.1\cdot 10^{-2}$
$C^{\mu e}_{eZ}$	$2.5\cdot 10^{-8}$	$1.0\cdot 10^{-4}$	$7.1\cdot 10^{-1}$
$C^{(3)}_{\mu ett}$	$3.6 \cdot 10^{-9}$	$1.4\cdot 10^{-5}$	$9.8\cdot 10^{-2}$
$C^{(1)}_{\mu ett}$	$1.9\cdot 10^{-6}$	$2.5\cdot 10^{-3}$	n/a
$C^{(3)}_{\mu ecc}$	$4.8 \cdot 10^{-7}$	$1.9\cdot 10^{-3}$	n/a
$C^{(1)}_{\mu ecc}$	$2.6\cdot 10^{-4}$	$3.3\cdot 10^{-1}$	n/a

TABLE 5: Limits on the Wilson coefficients defined at the scale $\lambda = \Lambda$ for three choices of $\Lambda = 10^3, 10^5, 10^7$ GeV.

Limits from MEG are applied at a fixed scale $\lambda = m_Z$.

(ロ) (同) (三) (三) (三) (○) (○)

Motivation	Bottom-up	Calculation	RGE	Conclusion
000	000000	00000	000000000	00

Limits for coefficients defined at the Λ scale (2)

If no correlation is assumed, one obtains the following limits:

$ au o e\gamma$			
3-P Coefficient	at $\Lambda=10^3~{\rm GeV}$	at $\Lambda = 10^4 {\rm ~GeV}$	at $\Lambda = 10^5 {\rm ~GeV}$
$C_{e\gamma}^{\tau e}$	$2.5\cdot 10^{-6}$	$2.6\cdot 10^{-4}$	$2.8\cdot 10^{-2}$
$C_{eZ}^{ au e}$	$2.3\cdot 10^{-4}$	$1.3\cdot 10^{-2}$	$9.5\cdot 10^{-1}$
$C_{ au ett}^{(3)}$	$3.4\cdot 10^{-5}$	$1.9\cdot 10^{-3}$	$1.4\cdot 10^{-1}$
$C_{ au ett}^{(1)}$	$1.8\cdot 10^{-2}$	$5.0\cdot 10^{-1}$	n/a
$C^{(3)}_{ au ecc}$	$4.6\cdot 10^{-3}$	$2.5\cdot 10^{-1}$	n/a
$C_{ au ecc}^{(1)}$	~ 2.4	n/a	n/a

TABLE 6: Limits on the Wilson coefficients defined at the scale $\lambda = \Lambda$ for three choices of $\Lambda = 10^3, 10^4, 10^5$ GeV.

Limits from BaBar are applied at a fixed scale $\lambda = m_Z$.

Motivation	Bottom-up	Calculation	RGE	Conclusion
000	000000	00000	00000000	00

Limits for coefficients defined at the Λ scale (3)

If no correlation is assumed, one obtains the following limits:

$ au o \mu\gamma$			
3-P Coefficient	at $\Lambda=10^3~{\rm GeV}$	at $\Lambda = 10^4 {\rm ~GeV}$	at $\Lambda=10^5~{\rm GeV}$
$C_{e\gamma}^{\tau\mu}$	$3.0\cdot 10^{-6}$	$3.1\cdot 10^{-4}$	$3.2\cdot 10^{-2}$
$C_{eZ}^{\tau\mu}$	$2.8\cdot 10^{-4}$	$1.5\cdot 10^{-2}$	~ 1.1
$C_{\tau\mu tt}^{(3)}$	$4.0\cdot 10^{-5}$	$2.2\cdot 10^{-3}$	$1.6\cdot 10^{-1}$
$C_{\tau\mu tt}^{(1)}$	$2.1\cdot 10^{-2}$	$5.9\cdot 10^{-1}$	n/a
$C_{\tau\mu cc}^{(3)}$	$5.4\cdot 10^{-3}$	$3.0\cdot 10^{-1}$	n/a
$C_{\tau\mu cc}^{(1)}$	~ 2.8	n/a	n/a

TABLE 8: Limits on the Wilson coefficients defined at the scale $\lambda = \Lambda$ for three choices of $\Lambda = 10^3, 10^4, 10^5$ GeV.

Limits from BaBar are applied at a fixed scale $\lambda = m_Z$.

Calculation

RGE 00000000 Conclusion

Conclusion

- The motivation to study a dim-5 and dim-6 effective field theory containing LFV couplings was presented.
- \checkmark A systematic approach for the study of LFV observables was presented, and the benchmark process $\mu \rightarrow e\gamma$ was analysed at tree level and one loop.
- ✓ For some relevant low and high energy processes, quantitative limits on dim-6 effective coefficients were provided in a scenario where no correlation among operators is assumed.
- The interpretation of LE constraints in terms of HE complementary limits was analysed by means of renormalisation group equations.

Motivation 000 Bottom-up

Calculation

RGE

Conclusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Acknowledgements

Adrian Signer (co-author)

A. Crivellin and J. Rosiek (collaborators)

R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott (pvt communications)