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Abstract. Physics beyond the Standard Model has so far eluded our experimental probes. Nevertheless, a
number of interesting anomalies have accumulated that can be taken as hints towards new physics: BaBar,
Belle, and LHCb have found deviations of approximately 3.8σ in B → Dτν and B → D∗τν; the anomalous
magnetic moment of the muon differs by about 3σ from the theoretic prediction; the branching ratio for τ→ µνν

is about 2σ above the Standard Model expectation; and CMS and ATLAS found hints for a non-zero decay rate
of h → µτ at 2.6σ. Here we consider these processes within a lepton-specific two-Higgs doublet model with
additional non-standard Yukawa couplings and show how (and which of) these excesses can be accommodated.

1 Introduction

This talk is based on Ref. [1], where a more detailed dis-
cussion can be found. Tests of flavor universality or fla-
vor violation serve as a useful tool to search for physics
beyond the Standard Model (SM), seeing as the SM pre-
dictions are precisely known. Some experiments have re-
ported on deviations from the SM, which we list below.

• Lepton universality in semileptonic B decays,
parametrized by the ratio

R(D(∗)) ≡
BR(B→ D(∗)τν)
BR(B→ D(∗)`ν)

, ` = e, µ , (1)

has been studied by BaBar, Belle and LHCb. Combining
their experimental values yields

R(D)exp = 0.388 ± 0.047 , R(D∗)exp = 0.321 ± 0.021 .

Together, these values deviate by more than 3σ from the
SM prediction [2–4]

R(D)SM = 0.297 ± 0.017 , R(D∗)SM = 0.252 ± 0.003 .

One possible new-physics explanation comes in the
form of a charged scalar [5–7].

• The muon’s anomalous magnetic moment aµ ≡ (g −
2)µ/2, as measured by the Brookhaven experiment
E821 [8], deviates by 2.7σ from its SM value,

aexp
µ − aSM

µ = (236 ± 87) × 10−11 . (2)
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It is not yet clear if this discrepancy is due to new
physics or rather underestimated hadronic uncertainties;
there are ongoing efforts to reduce the model depen-
dence in the hadronic light-by-light estimate based on
dispersion relations [9–12] or lattice QCD [13–16]. A
possible interpretation in terms of new physics has been
found in two-Higgs-doublet models (2HDM) [17, 18],
in particular the lepton-specific 2HDM [19–22].

• For τ → µνν, the dominant uncertainty in the SM pre-
diction for the branching ratio comes from the τ lifetime.
Using the PDG [23] values for τ lifetime and branching
ratios

Bµ ≡ BR(τ→ µνν)exp = (17.41 ± 0.04)% ,

Be ≡ BR(τ→ eνν)exp = (17.83 ± 0.04)% , (3)

we can determine the deviations from the SM prediction
∆` ≡ B`/BSM

`
− 1 [24] as

∆PDG
µ = (0.69 ± 0.29)% , ∆e = (0.28 ± 0.28)% . (4)

There is a deviation of about 2.4σ for the muon final
state, whereas the electron channel is compatible with
the SM prediction, hinting at lepton non-universality.
Charged scalars of a 2HDM will modify the rate [24–
26].

• Going from lepton non-universality to outright lepton
flavor violation, we are drawn to the recent CMS excess
of 2.4σ in h→ µτ [27]:

BR(h→ µτ) =
(
0.84+0.39

−0.37

)
% . (5)

A similar search at ATLAS [28] finds BR(h → µτ) =

(0.77 ± 0.62) %, which slightly bumps the significance
to about 2.6σ. Possible explanations naturally require
an extended scalar sector [18, 29–35].
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Each anomaly individually can be accommodated in
SM extensions by scalars, e.g. 2HDMs. The goal of our
study is to see if all four anomalies can be explained si-
multaneously with a fairly minimal model.

2 Modified 2HDM-X

We will study a lepton-specific 2HDM (2HDM-X), de-
fined by the Yukawa couplings in the Lagrangian

LY = −QLYuΦ̃2uR − QLYdΦ2dR − LLY`Φ1eR + h.c. , (6)

with additional couplings that break the type-X structure

∆LY = −QLξ
uΦ̃1uR − QLξ

dΦ1dR − LLξ
`Φ2eR + h.c. (7)

The scalar interactions with fermions after electroweak
breaking can be written as

L ⊃ ν̄iΓ
H+ LR
νi` j

PR` jH+

+ ūi

(
ΓH+ RL

uid j
PL + ΓH+ LR

uid j
PR

)
d jH+

+
∑

H0
k =h,A,H

∑
f =u,d,`

(
f̄i Γ

H0
k LR

fi f j
PR f j H0

k

)
+ h.c., (8)

where the couplings – in the limit of large tan β of interest
here – are given by

ΓhLR
qiq j
' −

1
√

2

(mqi

v
δi j cosα − εq

i j sinα
)
, (9)

ΓHLR
qiq j
' −

1
√

2

(mqi

v
δi j sinα + ε

q
i j cosα

)
, (10)

ΓALR
did j
' −i

1
√

2
εd

i j , (11)

ΓALR
uiu j
' i

1
√

2
εu

i j , (12)

ΓH+LR
uid j

' Vi j′ε
d
j′ j , (13)

ΓH+RL
uid j

' −εu∗
j′iV j′ j , (14)

ΓhLR
` f `i
'

sinα tan β
√

2

(m`i

v
δ f i − ε

`
f i

)
, (15)

ΓHLR
` f `i
' −

cosα tan β
√

2

(m`i

v
δ f i − ε

`
f i

)
, (16)

ΓALR
` f `i
' −i

tan β
√

2

(m`i

v
δ f i − ε

`
f i

)
, (17)

ΓH+LR
ν f `i

' tan β
(m`i

v
δ f i − ε

`
f i

)
. (18)

V denotes the Cabibbo–Kobayashi–Maskawa mixing ma-
trix, v ' 174 GeV the vacuum expectation value, and the ε
matrices parametrize the deviation from the type-X struc-
ture (ε f and ξ f are related by fermion rotations). On phe-
nomenological grounds, we take εd = 0 and both εu and ε`

of the form

εu,` =

0 0 0
0 0 0
0 × ×

 , (19)

where × denotes a non-zero entry, allowing for lepton fla-
vor violation in the µ–τ sector.
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Figure 1. Allowed regions for z and δg from ∆µ (yellow), ∆e

(blue), and the Michel parameter η (red); see text for definitions.
Darker (lighter) regions are at the 2σ (3σ) level, using PDG val-
ues [1].

3 Phenomenology

In this section we address the constraints on our model and
its potential to resolve the experimental anomalies outlined
above.

3.1 Tau decays τ→ `νν

Decays of the tau are modified at tree-level by the charged
scalar H+ (including a change in the Michel parameter
η) [24–26] and at loop-level through a modified Wτν cou-
pling gWτν → gWτν(1 + δg) [21, 24, 25]:

∆e ' 2δg , (20)

∆µ ' 2δg +
z2

4
− 2z

mµ

mτ
, (21)

η = −
2z

4 + z2 , (22)

with the 2HDM couplings [21]

z ≡
v2

m2
H+

ΓLR H+

νττ
ΓLR H+?
νµµ

, (23)

δg =
tan2 β

32π2

∣∣∣∣∣mτ

v
− ε`33

∣∣∣∣∣2 F  m2
A

m2
H+

 + F
 m2

H

m2
H+

 . (24)

The experimentally allowed regions are shown in Fig. 1. In
the SM we have δg = z = 0, which is disfavored by τ →
µνν at more than 2σ (with PDG values). In the 2HDM-X
one has δg ≤ 0 and z > 0, which makes ∆µ even worse
and puts pressure on the 2HDM-X and 2HDM-II (which
has the same lepton couplings). In our modified 2HDM-
X, we can however flip the sign of the tau coupling via
ε`33 > mτ/v and obtain z < 0, alleviating the tension in
τ→ µνν decays.
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Figure 2. Allowed regions in the mA-mH plane from (g − 2)µ,
τ → µγ and h → µτ for tan(β) = 50 and ε`33 = 2mτ/v. For
h → µτ blue corresponds to cos(α − β) = 0.1 and light blue to
cos(α − β) = 0.2. The allowed region for ∆aµ is maximal in the
sense that we have allowed for the three possibilities ε`32 , 0,
ε`32 = ε`23 , 0 and ε`32 = −ε`23 , 0 as the latter ones can give
mτ/mµ enhanced one-loop contributions [1].

3.2 Magnetic moment aµ and h→ µτ

It has been shown that a light pseudoscalar in the 2HDM-
X with large tan β can resolve the ∆aµ anomaly via its
contribution in a Barr–Zee diagram [36], see for example
Refs. [19–21]. As seen above, we need to flip the sign of
the tau coupling to the new scalars in order to alleviate the
τ → µνν discrepancy. Because of this, it is the non-SM-
like CP-even scalar that can resolve the ∆aµ anomaly in
our model (and not the pseudoscalar). The pseudoscalar
then needs to be heavier than the scalar in order not to
cancel the contribution to ∆aµ (see Fig 2).

The same Barr–Zee diagrams that give the desired ∆aµ
also lead to τ → µγ decays in case ε`32 , 0 (as required
for h → µτ). If we want to explain h → µτ, the τ → µγ
rate needs to be tuned to small values using mH ' mA,
which necessarily also suppresses the contribution to ∆aµ
(see Fig 2). As a result, it is possible within our modified
2HDM-X to resolve the anomalies in τ→ µνν and ∆aµ or
to resolve τ → µνν and h → µτ, but not both at the same
time, at least without introducing more parameters.

3.3 Tauonic B decays

The relevant effective Hamiltonian for the semileptonic B
decays in our model is

H = Ccb
SMc̄γµPLb τ̄γµPLντ +

∑
X=L,R

Ccb
X c̄PXb τ̄PLντ , (25)
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Figure 3. Allowed regions in the Ccb

L –Ccb
R plane fromR(D) (blue)

and R(D∗) (yellow) for real values of Ccb
L,R. The lighter regions

correspond to 2σ experimental uncertainties while the darker re-
gions are correspond to 1σ [1].

with SM Wilson coefficient Ccb
SM = 4GFVcb/

√
2 and the

charged-scalar contribution

Ccb
L '

tan β
m2

H+

εu∗
32

(mτ

v
− ε`∗33

)
, Ccb

R ' 0 . (26)

These Wilson coefficients affect the two ratios R(D(∗)) in
the following way [4, 37, 38],

R(D)
R(D)SM

= 1 + 1.5<
Ccb

R + Ccb
L

Ccb
SM

 + 1.0

∣∣∣∣∣∣Ccb
R + Ccb

L

Ccb
SM

∣∣∣∣∣∣
2

,

(27)

R(D∗)
R(D∗)SM

= 1 + 0.12<
Ccb

R −Ccb
L

Ccb
SM

 + 0.05

∣∣∣∣∣∣Ccb
R −Ccb

L

Ccb
SM

∣∣∣∣∣∣
2

,

(28)

leading to the allowed regions of Fig. 3. As can be seen,
our new-physics model from Eq. (26) has the right struc-
ture to easily resolve the anomaly, e.g. with real Ccb

L '

−1.2 |Ccb
SM|.

1

4 Conclusions

We addressed the measured anomalies in R(D(∗)) (3.8σ),
aµ (∼ 3σ), τ → µνν (2.4σ), and h → µτ (2.6σ) within
a simple two-Higgs-doublet model. The Yukawa struc-
ture of our model is close to the lepton-specific 2HDM

1Efficiency corrections to R(D) due to the BaBar detector [2] are im-
portant in the case of large contributions from Ccb

R,L, i.e. if one wants to
explain R(D) with destructive interference with the SM contribution. As
shown in Ref. [39], these corrections can be effectively taken into account
by multiplying the quadratic term in Ccb

R,L of Eq. (27) by an approximate
factor of 1.5 (not included in Eq. (27)).
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Figure 4. Allowed regions in the tan β–v/mτε
`
33 plane from

R(D(∗)) and τ → µνν at the 2σ level. The yellow region is al-
lowed by τ → µνν using the HFAG result for mH = 30 GeV and
mA = 200 GeV, while the (darker) blue one is the allowed region
using the PDG result. The red, orange, green, and magenta bands
correspond to the allowed regions by R(D(∗)) for different values
of εu

32. The gray region is excluded by Z → ττ and τ→ eνν. For
mH ' mA, the allowed regions from τ → µνν would be slightly
larger [1].

(type X), but with some additional Yukawa couplings in-
volving third-generation fermions that give rise to the b–c
(necessary for R(D(∗))) and µ–τ transitions (relevant for
h → µτ) as well as corrections to ττ couplings (important
for τ→ µνν).

The charged scalar H+ influences R(D(∗)) and τ →
µνν and can resolve both deviations simultaneously (see
Fig. 4), as long as the sign of the tau coupling is flipped,
meaning ε`33 > mτ/v. Because of this, a light scalar (not
pseudoscalar) is needed to resolve the ∆aµ anomaly, which
then induces the top decay t → Hc [1]. h → µτ can
only be explained if we give up on ∆aµ, otherwise the rate
τ→ µγ would be too large.

It remains to be seen which of these anomalies stand
the test of time and which are simply statistical fluctua-
tions. The fact that some of them can be explained rather
naturally within a fairly minimal model gives however
hope that we are on the verge of something interesting.
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