HLBL CONTRIBUTION TO a_{μ} : ENJL, CHIRAL QUARK MODELS AND CHIRAL LAGRANGIANS

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future
bijnens@thep.lu.se
http://www.thep.lu.se/~bijnens
http://www.thep.lu.se/~bijnens/chpt.html

Flavour changing and conserving processes, Anacapri 10-12 September 2015

Lund
UNIVERSITY

Overview

(1) Introduction
(2) General properties
(3) ENJL
(4) π^{0}-exchange
(5) Quark-loop
(6) Scalar
(7) a_{1}-exchange
(8) π-loop: new stuff is here
(9) Summary
(10) Future

Johan Bijnens

Introduction
General properties

ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

Lund
UNIVERSITY

Literature

Old stuff: JB, E. Pallante, J. Prades

- "Comment on the pion pole part of the light-by-light contribution to the muon g-2," Nucl. Phys. B 626 (2002) 410 [arXiv:hep-ph/0112255].
- "Analysis of the Hadronic Light-by-Light Contributions to the Muon $g-2, "$ Nucl. Phys. B 474 (1996) 379 [arXiv:hep-ph/9511388].
- "Hadronic light by light contributions to the muon g-2 in the large N_{c} limit," Phys. Rev. Lett. 75 (1995) 1447 [Erratum-ibid. 75 (1995) 3781] [arXiv:hep-ph/9505251].
New stuff:
- JB, Mehran Zahiri Abyaneh, Johan Relefors HLbL pion loop contribution arXiv:1208.3548, arXiv:1208.2554, arXiv:1308.2575 and to be published

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Muon $g-2$: HO hadronic

- Two main types of contributions

HO HVP

HLbL

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary $a_{\mu}^{\mathrm{HLbL}}=10.5(2.6) \times 10^{-10}$

- Note that the sum is very small: but not an indication of the error

HLbL talks

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a1-exchange
π-loop
Summary
Future

Lund
UNIVERSITY

HLbL: the main object to calculate

- Muon line and photons: well known
- The blob: fill in with hadrons/QCD
- Trouble: low and high energy very mixed
- Double counting needs to be avoided: hadron exchanges versus quarks

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange

A separation proposal: a start

E. de Rafael, "Hadronic contributions to the muon g-2 and low-energy QCD,"

Phys. Lett. B322 (1994) 239-246. [hep-ph/9311316].

- Use ChPT p counting and large N_{c}
- p^{4}, order 1: pion-loop
- p^{8}, order N_{c} : quark-loop and heavier meson exchanges
- p^{6}, order N_{c} : pion exchange

Does not fully solve the problem only short-distance part of quark-loop is really p^{8} but it's a start

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-1oop

A separation proposal: a start

E. de Rafael, "Hadronic contributions to the muon g-2 and low-energy QCD," Phys. Lett. B322 (1994) 239-246. [hep-ph/9311316].

- Use ChPT p counting and large N_{c}
- p^{4}, order 1: pion-loop
- p^{8}, order N_{c} : quark-loop and heavier meson exchanges
- p^{6}, order N_{c} : pion exchange

Implemented by two groups in the 1990s:

- Hayakawa, Kinoshita, Sanda: meson models, pion loop using hidden local symmetry, quark-loop with VMD, calculation in Minkowski space
- JB, Pallante, Prades: Try using as much as possible a consistent model-approach, ENJL, calculation in Euclidean space

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-100p
Scalar
a_{1}-exchange
π-loop
Summary
Future

UNIVERSITY $7 / 53$

General properties

Actually we really need $\left.\frac{\delta \Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right)}{\delta p_{3 \lambda}}\right|_{p_{3}=0}$

```
HLbL for \(a_{\mu}\) : ENJL, CQM and \(\chi \mathcal{L}\)
```

Johan Bijnens

Introduction
General properties

ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

LUND
UNIVERSITY

General properties

$\Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right):$

- In general 138 Lorentz structures (but only 28 contribute to $g-2$)
- Using $q_{\rho} \Pi^{\rho \nu \alpha \beta}=p_{1 \nu} \Pi^{\rho \nu \alpha \beta}=p_{2 \alpha} \Pi^{\rho \nu \alpha \beta}=p_{3 \beta} \Pi^{\rho \nu \alpha \beta}=0$ 43 gauge invariant structures
- Bose symmetry relates some of them
- All depend on p_{1}^{2}, p_{2}^{2} and q^{2}, but before derivative and $p_{3} \rightarrow 0$ also $p_{3}^{2}, p_{1} \cdot p_{2}, p_{1} \cdot p_{3}$
- Actually 2 less but singular basis Fischer et al.
- Compare HVP: one function, one variable
- General calculation from experiment: how difficult: Procura, Vanderhaeghen
- In four photon measurement: lepton contribution

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General properties

ENJL

General properties

$\int \frac{\mathrm{d}^{4} p_{1}}{(2 \pi)^{4}} \int \frac{\mathrm{~d}^{4} p_{2}}{(2 \pi)^{4}} \quad$ plus loops inside the hadronic part

- 8 dimensional integral, three trivial,
- 5 remain: $p_{1}^{2}, p_{2}^{2}, p_{1} \cdot p_{2}, p_{1} \cdot p_{\mu}, p_{2} \cdot p_{\mu}$
- Rotate to Euclidean space:
- Easier separation of long and short-distance
- Artefacts (confinement) in models smeared out.
- More recent: can do two more using Gegenbauer techniques Knecht-Nyffeler, Jegerlehner-Nyffeler,JB-Zahiri-Abyaneh-Relefors
- P_{1}^{2}, P_{2}^{2} and Q^{2} remain
- study $a_{\mu}^{\mathrm{X}}=\int d l_{P_{1}} d l_{P_{2}} a_{\mu}^{\mathrm{XLL}}=\int d l_{P_{1}} d l_{P_{2}} d l_{Q} a_{\mu}^{\mathrm{XLLQ}}$ $I_{P}=\ln (P / \mathrm{GeV})$, to see where the contributions are
- Study the dependence on the cut-off for the photons

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General properties

ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop

LUND
UNIVERSITY

General properties

$\int \frac{\mathrm{d}^{4} p_{1}}{(2 \pi)^{4}} \int \frac{\mathrm{~d}^{4} p_{2}}{(2 \pi)^{4}} \quad$ plus loops inside the hadronic part

- 8 dimensional integral, three trivial,
- 5 remain: $p_{1}^{2}, p_{2}^{2}, p_{1} \cdot p_{2}, p_{1} \cdot p_{\mu}, p_{2} \cdot p_{\mu}$
- Rotate to Euclidean space:
- Easier separation of long and short-distance
- Artefacts (confinement) in models smeared out.
- More recent: can do two more using Gegenbauer techniques Knecht-Nyffeler, Jegerlehner-Nyffeler,JB-Zahiri-Abyaneh-Relefors
- P_{1}^{2}, P_{2}^{2} and Q^{2} remain
- study $a_{\mu}^{\mathrm{X}}=\int d l_{P_{1}} d l_{P_{2}} a_{\mu}^{\mathrm{XLL}}=\int d l_{P_{1}} d l_{P_{2}} d l_{Q} a_{\mu}^{\mathrm{XLLQ}}$ $I_{P}=\ln (P / \mathrm{GeV})$, to see where the contributions are
- Study the dependence on the cut-off for the photons

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General properties

ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop

ENJL: our main model

$$
\begin{aligned}
\mathcal{L}_{\mathrm{ENJL}}= & \bar{q}^{\alpha}\left\{i \gamma^{\mu}\left(\partial_{\mu}-i v_{\mu}-i a_{\mu} \gamma_{5}\right)-\left(\mathcal{M}+s-i p \gamma_{5}\right)\right\} q^{\alpha} \\
& +2 g_{s}\left(\bar{q}_{R}^{\alpha} q_{L}^{\beta}\right)\left(\bar{q}_{L}^{\beta} q_{R}^{\alpha}\right) \\
& -g_{V}\left[\left(\bar{q}_{L}^{\alpha} \gamma^{\mu} q_{L}^{\beta}\right)\left(\bar{q}_{L}^{\beta} \gamma_{\mu} q_{L}^{\alpha}\right)+\left(\bar{q}_{R}^{\alpha} \gamma^{\mu} q_{R}^{\beta}\right)\left(\bar{q}_{R}^{\beta} \gamma_{\mu} q_{R}^{\alpha}\right)\right]
\end{aligned}
$$

- $\bar{q} \equiv(\bar{u}, \bar{d}, \bar{s})$
- v_{μ}, a_{μ}, s, p : external vector, axial-vector, scalar and pseudoscalar matrix sources
- \mathcal{M} is the quark-mass matrix.
- $g_{V} \equiv \frac{8 \pi^{2} G_{V}(\Lambda)}{N_{c} \Lambda^{2}}, \quad g_{S} \equiv \frac{4 \pi^{2} G_{S}(\Lambda)}{N_{c} \Lambda^{2}}$.
- G_{V}, G_{S} are dimensionless and valid up to Λ
- No confinement but has good pion, vector meson and OK axial vector-meson phenomenology

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General
properties
ENJL
π^{0}-exchange
Quark-loop

ENJL: our main model

- (this) ENJL JB, Bruno, de Rafael, Nucl. Phys. B390 (1993) 501 [hep-ph/9206236]; JB, Phys. Rep. 265 (1996) 369 [hep-ph/9502335] (review)
- Gap equation: chiral symmetry spontaneously broken

- Generates poles, i.e. mesons via bubble resummation

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

LUND

ENJL: our main model

- Can be thought of as a very simple rainbow and ladder approximation in the DSE equation with constant kernels for the one-gluon exchange
- Parameters fit via F_{π}, L_{i}^{r}, vector meson properties,...
- $G_{S}=1.216, G_{V}=1.263, \Lambda=1.16 \mathrm{GeV}$
- has $M_{Q}=263 \mathrm{MeV}$
- Has a number of decent matchings to short-distance, e.g. $\Pi_{V}-\Pi_{A}$ but fails in others.
- Generates always VMD in external legs (but with a twist)
- Hook together general processes by one-loop vertices and bubble-chain propagators

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Separation of contributions

(a)

(b)

- Quark loop with external bubble-chains
- \approx Quark-loop with VMD
- Also internal bubble chain
- \approx meson exchange
- Note that vertices have structure
- Off-shell effect in model included

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop

Lund
UNIVERSITY

π^{0} exchange

- " $\pi^{0 "}=1 /\left(p^{2}-m_{\pi}^{2}\right)$
- The blobs need to be modelled, and in e.g. ENJL contain corrections also to the $1 /\left(p^{2}-m_{\pi}^{2}\right)$
- Pointlike has a logarithmic divergence
- Numbers π^{0}, but also η, η^{\prime}

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
${ }^{2}$ - exchange
π-loop
Summary
Future

LUND
UNIVERSITY

π^{0} exchange

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

	$a_{\mu} \times 10^{10}$				
Cutoff (GeV)	Point-like	ENJL-VMD	Pointlike VMD	Transverse VMD	CELLO- VMD
0.5	$4.92(2)$	$3.29(2)$	$3.46(2)$	$3.60(3)$	$3.53(2)$
0.7	$7.68(4)$	$4.24(4)$	$4.49(3)$	$4.73(4)$	$4.57(4)$
1.0	$11.15(7)$	$4.90(5)$	$5.18(3)$	$5.61(6)$	$5.29(5)$
2.0	$21.3(2)$	$5.63(8)$	$5.62(5)$	$6.39(9)$	$5.89(8)$
4.0	$32.7(5)$	$6.22(17)$	$5.58(5)$	$6.59(16)$	$6.02(10)$

Introduction
General
properties
ENJL
π^{0}-exchange

BPP: All in reasonable agreement $a_{\mu}^{\pi^{0}}=5.9 \times 10^{-10}$

π^{0} exchange

- BPP:
- Nonlocal quark model:
A. E. Dorokhov, W. Broniowski, Phys.Rev.D78 (2008)073011. [0805.0760]
- DSE model:

$$
a_{\mu}^{\pi^{0}}=5.75 \times 10^{-10}
$$

Goecke, Fischer and Williams, Phys.Rev.D83(2011)094006[1012.3886]

- LMD+V:

$$
a_{\mu}^{\pi^{0}}=(5.8-6.3) \times 10^{-10}
$$

M. Knecht, A. Nyffeler, Phys. Rev. D65(2002)073034, [hep-ph/0111058]

- Formfactor inspired by AdS/QCD: $\quad a_{\mu}^{\pi^{0}}=6.54 \times 10^{-10}$ Cappiello, Cata and D'Ambrosio, Phys.Rev.D83(2011)093006 [1009.1161]
- Chiral Quark Model:

$$
a_{\mu}^{\pi^{0}}=6.8 \times 10^{-10}
$$

D. Greynat and E. de Rafael, JHEP 1207 (2012) 020 [1204.3029].

- Constraint via magnetic susceptibility: $a_{\mu}^{\pi^{0}}=7.2 \times 10^{-10}$ A. Nyffeler, Phys. Rev. D 79 (2009) 073012 [0901.1172].
- All in reasonable agreement

$$
\begin{array}{r}
a_{\mu}^{\pi^{0}}=5.9(0.9) \times 10^{-10} \\
a_{\mu}^{\pi^{0}}=6.27 \times 10^{-10}
\end{array}
$$

MV short-distance: π^{0} exchange

- K. Melnikov, A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D70 (2004) 113006. [hep-ph/0312226]
- take $P_{1}^{2} \approx P_{2}^{2} \gg Q^{2}$: Leading term in OPE of two vector currents is proportional to axial current
- $\Pi^{\rho \nu \alpha \beta} \propto \frac{P_{\rho}}{P_{1}^{2}}\langle 0| T\left(J_{A \nu} J_{V_{\alpha}} J_{V \beta}\right)|0\rangle$
- J_{A} comes from

- AVV triangle anomaly: extra info
- Implemented via setting one blob $=1$

- $a_{\mu}^{\pi^{0}}=7.7 \times 10^{-10}$

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

LUND
UNIVERSITY

π^{0} exchange

```
HLbL for \(a_{\mu}\) :
ENJL, CQM and \(\chi \mathcal{L}\)
```

Johan Bijnens

- The pointlike vertex implements shortdistance part, not only π^{0}-exchange
-

Are these part of the quark-loop? See also in
Dorokhov,Broniowski, Phys.Rev. D78(2008)07301

- BPP quarkloop $+\pi^{0}$-exchange $\approx \mathrm{MV} \pi^{0}$-exchange

Introduction
General properties

ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

LUND
UNIVERSITY

π^{0} exchange

- Which momentum regimes important studied: JB and
J. Prades, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170]
- $a_{\mu}=\int d l_{1} d l_{2} a_{\mu}^{L L}$ with $l_{i}=\log \left(P_{i} / G e V\right)$

Which momentum regions do what:
volume under the plot $\propto a_{\mu}$

```
HLbL for \(a_{\mu}\) :
ENJL, CQM and \(\chi \mathcal{L}\)
```

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a1-exchange
π-loop
Summary
Future

UNIVERSITY

Pseudoscalar exchange

- Point-like VMD: $\pi^{0} \eta$ and η^{\prime} give $5.58,1.38,1.04$.
- Models that include $U(1)_{A}$ breaking give similar ratios
- Pure large N_{c} models use this ratio
- The MV argument should give some enhancement over the full VMD like models
- Total pseudo-scalar exchange is about $a_{\mu}^{P S}=8-10 \times 10^{-10}$
- AdS/QCD estimate (includes excited pseudo-scalars) $a_{\mu}^{P S}=10.7 \times 10^{-10}$
D. K. Hong and D. Kim, Phys. Lett. B 680 (2009) 480 [0904.4042]
- Connected contribution only: you get a $\bar{u} u+\bar{d} d$ pseudoscalar, adds $25 / 9$ times the π^{0} contribution

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

Pure quark loop

Cut-off Λ (GeV)	$a_{\mu} \times 10^{7}$ Electron Loop	$a_{\mu} \times 10^{9}$ Muon Loop	$a_{\mu} \times 10^{9}$ Constituent Quark Loop
0.5	$2.41(8)$	$2.41(3)$	$0.395(4)$
0.7	$2.60(10)$	$3.09(7)$	$0.705(9)$
1.0	$2.59(7)$	$3.76(9)$	$1.10(2)$
2.0	$2.60(6)$	$4.54(9)$	$1.81(5)$
4.0	$2.75(9)$	$4.60(11)$	$2.27(7)$
8.0	$2.57(6)$	$4.84(13)$	$2.58(7)$
Known Results	$2.6252(4)$	4.65	$2.37(16)$

- $M_{Q}: 300 \mathrm{MeV}$
- now known fully analytically
- Us: 5+(3-1) integrals extra are Feynman parameters
- Slow convergence:
- electron: all at 500 MeV
- Muon: only half at 500 MeV , at 1 GeV still 20% missing
- 300 MeV quark: at 2 GeV still 25% missing

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL

Quark-loop

UNIVERSITY

Pure quark loop: momentum area

$$
\text { quark loop } \mathrm{m}_{\mathrm{Q}}=0.3 \mathrm{GeV}
$$

$$
\begin{aligned}
\mathrm{P}_{2} & =\mathrm{P}_{1} \\
\mathrm{P}_{2} & =\mathrm{P}_{1} / 2 \\
\mathrm{P}_{2} & =\mathrm{P}_{1 / 4} \\
\mathrm{P}_{2} & =\mathrm{P}_{1} / 8
\end{aligned}
$$

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

```
Johan Bijnens
```

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

Lund
UNIVERSITY

ENJL quark-loop

$\begin{gathered} \text { Cut-off } \\ \Lambda \\ \mathrm{GeV} \end{gathered}$	$a_{\mu} \times 10^{10}$ VMD	$a_{\mu} \times 10^{10}$ ENJL	$a_{\mu} \times 10^{10}$ masscut	$\begin{gathered} a_{\mu} \times 10^{10} \\ \text { sum } \\ \text { ENJL }+ \text { masscut } \end{gathered}$
0.5	0.48	0.78	2.46	3.2
0.7	0.72	1.14	1.13	2.3
1.0	0.87	1.44	0.59	2.0
2.0	0.98	1.78	0.13	1.9
4.0	0.98	1.98	0.03	2.0
8.0	0.98	2.00	. 005	2.0

- Very stable
- ENJL cuts off slower than pure VMD
- masscut: $M_{Q}=\Lambda$ to have short-distance and no problem with momentum regions
- Quite stable in region 1-4 GeV

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Quark-loop

ENJL: scalar

- $g_{S}\left(1+g_{S} \Pi_{S}\right)=\frac{g_{A}\left(r^{2}\right)\left(2 M_{Q}\right)^{2}}{2 f^{2}\left(r^{2}\right)} \frac{1}{M_{S}^{2}\left(r^{2}\right)-r^{2}}$
- $\mathcal{V}^{a b c d \rho \nu \alpha \beta}$: ENJL VMD legs
- In ENJL only scalar+quark-loop properly chiral invariant

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

ENJL: scalar/QL

Cut-off Λ GeV	$a_{\mu} \times 10^{10}$ Quark-loop VMD	$a_{\mu} \times 10^{10}$ Quark-loop ENJL	$a_{\mu} \times 10^{10}$ Scalar Exchange
0.5	0.48	0.78	-0.22
0.7	0.72	1.14	-0.46
1.0	0.87	1.44	-0.60
2.0	0.98	1.78	-0.68
4.0	0.98	1.98	-0.68
8.0	0.98	2.00	-0.68

- ENJL only scalar+quark-loop properly chiral invariant
- Note: ENJL+scalar (BPP) \approx Quark-loop VMD (HKS)
- $M_{S} \approx 620 \mathrm{MeV}$ certainly an overestimate for real scalars
- If scalar is σ : related to pion loop part?
- quark-loop: $a_{\mu}^{q l} \approx 1 \times 10^{-10}$

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

Quark loop DSE/ Nonlocal NJL

- DSE model: $a_{\mu}^{q l}=10.7(0.2) \times 10^{-10}$ T. Goecke, C. S. Fischer and R. Williams, arXiv:1210.1759
- Not a full calculation (yet) but includes an estimate of some of the missing parts
- a lot larger than bare quark loop with constituent mass
- DSE model (Maris-Roberts) does reproduces a lot of low-energy phenomenology. My guess was: numbers similar to ENJL.
- Can one find something in between full DSE and ENJL that is easier to handle?
- Nonlocal chiral quark model or nonlocal NJL (but no vector vertex, i.e. no rho) A. E. Dorokhov, A. E. Radzhabov and A. S. Zhevlakov, arXiv:1502.04487 [hep-ph]. $a_{\mu}^{q l}=11.0(0.9) \times 10^{-10}$

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

Lund

Other quark loop

- de Rafael-Greynat 1210.3029
- Boughezal-Melnikov 1104.4510
- Masjuan-Vanderhaeghen 1212.0357

$$
\begin{aligned}
(7.6-8.9) & 10^{-10} \\
(11.8-14.8) & 10^{-10} \\
(7.6-12.5) & 10^{-10}
\end{aligned}
$$

- Various interpretations: the full calculation or not
- All (even DSE) have in common that a low quark mass is used for a large part of the integration range, not shielded by formfactors

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop

Axial-vector exchange exchange

Cut-off Λ (GeV)	$a_{\mu} \times 10^{10}$ from Axial-Vector Exchange $\mathcal{O}\left(N_{c}\right)$
0.5	$0.05(0.01)$
0.7	$0.07(0.01)$
1.0	$0.13(0.01)$
2.0	$0.24(0.02)$
4.0	$0.59(0.07)$

There is some pseudo-scalar exchange piece here as well, off-shell not quite clear what is what.

- $a_{\mu}^{\text {axial }}=0.6 \times 10^{-10}$
- MV: short distance enhancement + mixing (both enhance about the same)

$$
a_{\mu}^{\text {axial }}=2.2 \times 10^{-10}
$$

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop

UNIVERSITY

π-loop

- A bare π-loop (sQED) give about $-4 \cdot 10^{-10}$
- The $\pi \pi \gamma^{*}$ vertex is always done using VMD
- $\pi \pi \gamma^{*} \gamma^{*}$ vertex two choices:
- Hidden local symmetry model: only one γ has VMD
- Full VMD
- Both are chirally symmetric
- The HLS model used has problems with $\pi^{+}-\pi^{0}$ mass difference (due to not having an a_{1})
- Final numbers quite different: -0.45 and $-1.9\left(\times 10^{-10}\right)$
- For BPP stopped at 1 GeV but within 10% of higher Λ

π loop: Bare vs VMD

- plotted $a_{\mu}^{L L Q}$ for $P_{1}=P_{2}$
- $a_{\mu}=\int d l_{P_{1}} d l_{P_{2}} d l_{Q} a_{\mu}^{L L Q}$
- $I_{Q}=\log (Q / 1 \mathrm{GeV})$

π loop: VMD vs HLS

π loop

Usual HLS, $a=2$

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General properties

ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

UNIVERSITY
32/53

π loop: VMD vs HLS

HLS with $a=1$, satisfies more short-distance constraints

```
HLbL for }\mp@subsup{a}{\mu}{}\mathrm{ :
    ENJL,CQM
    and }\chi\mathcal{L
```

Johan Bijnens

Introduction

General properties

ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

UNIVERSITY
$33 / 53$

π loop

- $\pi \pi \gamma^{*} \gamma^{*}$ for $q_{1}^{2}=q_{2}^{2}$ has a short-distance constraint from the OPE as well.
- HLS does not satisfy it
- full VMD does: so probably better estimate
- Ramsey-Musolf suggested to do pure ChPT for the π loop K. T. Engel and M. J. Ramsey-Musolf, Phys. Lett. B 738 (2014) 123 [arXiv:1309.2225 [hep-ph]].
- Polarizability ($L_{9}+L_{10}$) up to 10%, charge radius 30% at low energies, more at higher
- Both HLS and VMD have charge radius effect but not polarizability

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General properties

ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

LUND
UNIVERSITY

π loop

- $\pi \pi \gamma^{*} \gamma^{*}$ for $q_{1}^{2}=q_{2}^{2}$ has a short-distance constraint from the OPE as well.
- HLS does not satisfy it
- full VMD does: so probably better estimate
- Ramsey-Musolf suggested to do pure ChPT for the π loop K. T. Engel and M. J. Ramsey-Musolf, Phys. Lett. B 738 (2014) 123 [arXiv:1309.2225 [hep-ph]].
- Polarizability $\left(L_{9}+L_{10}\right)$ up to 10%, charge radius 30% at low energies, more at higher
- Both HLS and VMD have charge radius effect but not polarizability

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop

π loop: VMD vs charge radius

low scale, charge radius effect well reproduced

```
HLbL for \(a_{\mu}\) : ENJL, CQM and \(\chi \mathcal{L}\)
```

Johan Bijnens

Introduction
General properties

ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

Lund
UNIVERSITY

π loop: VMD vs L_{9} and L_{10}

- $L_{9}+L_{10} \neq 0$ gives an enhancement of $10-15 \%$
- To do it fully need to get a model: include a_{1}

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

Include a_{1}

- $L_{9}+L_{10}$ effect is from

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$ Johan Bijnens

Introduction
General properties ENJL π-loop
 $38 / 53$

Include a_{1}

- Consistency problem: full a_{1}-loop?
- Treat a_{1} and ρ classical and π quantum: there must be a π that closes the loop
Argument: integrate out ρ and a_{1} classically, then do pion loops with the resulting Lagrangian
- To avoid problems: representation without $a_{1}-\pi$ mixing
- Check for curiosity what happens if we add a_{1}-loop

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Include a_{1}

- Use antisymmetric vector representation for a_{1} and ρ
- Fields $A_{\mu \nu}, V_{\mu \nu}$ (nonets)
- Kinetic terms: $-\frac{1}{2}\left\langle\nabla^{\lambda} V_{\lambda \mu} \nabla_{\nu} V^{\nu \mu}-\frac{1}{2} V_{\mu \nu} V^{\mu \nu}\right\rangle$

$$
-\frac{1}{2}\left\langle\nabla^{\lambda} A_{\lambda \mu} \nabla_{\nu} A^{\nu \mu}-\frac{1}{2} A_{\mu \nu} A^{\mu \nu}\right\rangle
$$

- Terms that give contributions to the L_{i}^{r} :

$$
\frac{F_{V}}{2 \sqrt{2}}\left\langle f_{+\mu \nu} V^{\mu \nu}\right\rangle+\frac{i G_{V}}{\sqrt{2}}\left\langle V^{\mu \nu} u_{\mu} u_{\nu}\right\rangle+\frac{F_{A}}{2 \sqrt{2}}\left\langle f_{-\mu \nu} A^{\mu \nu}\right\rangle
$$

- $L_{9}=\frac{F_{V} G_{V}}{2 M_{V}^{2}}, L_{10}=-\frac{F_{V}^{2}}{4 M_{V}^{2}}+\frac{F_{A}^{2}}{4 M_{A}^{2}}$
- Weinberg sum rules: (Chiral limit)

$$
F_{V}^{2}=F_{A}^{2}+F_{\pi}^{2} \quad F_{V}^{2} M_{V}^{2}=F_{A}^{2} M_{A}^{2}
$$

- VMD for $\pi \pi \gamma$:

$$
F_{V} G_{V}=F_{\pi}^{2}
$$

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0} exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

LuND

$V_{\mu \nu}$ only

- $\Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right)$ is not finite (but was also not finite for HLS)
- But $\left.\frac{\delta \Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right)}{\delta p_{3 \lambda}}\right|_{p_{3}=0}$ also not finite
(but was finite for HLS)
- Derivative one finite for $G_{V}=F_{V / 2}$
- Surprise: $g-2$ identical to HLS with $a=\frac{F_{V}^{2}}{F_{\pi}^{2}}$
- Yes I know, different representations are identical BUT they do differ in higher order terms and even in what is higher order
- Same comments as for HLS numerics

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

LUND
UNIVERSITY

$V_{\mu \nu}$ only

- $\Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right)$ is not finite (but was also not finite for HLS)
- But $\left.\frac{\delta \Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right)}{\delta p_{3 \lambda}}\right|_{p_{3}=0}$ also not finite
(but was finite for HLS)
- Derivative one finite for $G_{V}=F_{V / 2}$
- Surprise: $g-2$ identical to HLS with $a=\frac{F_{V}^{2}}{F_{\pi}^{2}}$
- Yes I know, different representations are identical BUT they do differ in higher order terms and even in what is higher order
- Same comments as for HLS numerics

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

Lund
UNIVERSITY

$V_{\mu \nu}$ and $A_{\mu \nu}$

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

- Add a_{1}
- Calculate a lot
- $\left.\frac{\delta \Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right)}{\delta p_{3 \lambda}}\right|_{p_{3}=0}$ finite for:
- $G_{V}=F_{V}=0$ and $F_{A}^{2}=-2 F_{\pi}^{2}$
- If adding full a_{1}-loop $G_{V}=F_{V}=0$ and $F_{A}^{2}=-F_{\pi}^{2}$

General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

Lund
UNIVERSITY

$V_{\mu \nu}$ and $A_{\mu \nu}$

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop

$V_{\mu \nu}$ and $A_{\mu \nu}$: big disappointment

- Work a whole lot
- $\left.\frac{\delta \Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right)}{\delta p_{3 \lambda}}\right|_{p_{3}=0}$ not obviously finite
- Work a lot more
- Prove that $\left.\frac{\delta \Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right)}{\delta p_{3 \lambda}}\right|_{p_{3}=0}$ finite, only same solutions as before
- Try the combination that show up in $g-2$ only
- Work a lot
- Again, only same solutions as before
- Small loophole left: after the integration for $g-2$ could be finite but many funny functions of m_{π}, m_{μ}, M_{V} and M_{A} show up.

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

a_{1}-loop: cases with good L_{9} and L_{10}

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

- Add F_{V}, G_{V} and F_{A}
- Fix values by Weinberg sum rules and VMD in $\gamma^{*} \pi \pi$
- no a_{1}-loop

a_{1}-loop: cases with good L_{9} and L_{10}

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

- Add F_{V}, G_{V} and F_{A}
- Fix values by Weinberg sum rules and VMD in $\gamma^{*} \pi \pi$
- With a_{1}-loop (is different plot!!)

a_{1}-loop: cases with good L_{9} and L_{10}

HLbL for a_{μ} :
ENJL, CQM
and $\chi \mathcal{L}$
Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

- Add a_{1} with $F_{A}^{2}=+F_{\pi}^{2}$
- Add the full VMD as done earlier for the bare pion loop

Integration results

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop
Summary
Future

LUND
UNIVERSITY

Integration results with a_{1}

- Problem: get high energy behaviour good enough
- But all models with reasonable L_{9} and L_{10} fall way inside the error quoted earlier $(-1.9 \pm 1.3) 10^{-10}$
- Tentative conclusion: Use hadrons only below about 1 $\mathrm{GeV}: a_{\mu}^{\pi-\text { loop }}=(-2.0 \pm 0.5) 10^{-10}$
- Note that Engel and Ramsey-Musolf, arXiv:1309.2225 is a bit more pessimistic quoting numbers from $(-1.1$ to -7.1$) 10^{-10}$

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop

Summary: ENJL vc PdRV

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General
properties
ENJL
π^{0}-exchange
Quark-100p
Scalar
a_{1}-exchange
π-loop
Summary
Future

What can we do more?

- The ENJL model can certainly be improved:
- Chiral nonlocal quark-model (like nonlocal ENJL): so far no rho in the model
- DSE: π^{0}-exchange similar to everyone else, quark-loop very different, looking forward to final results
- More resonances models should be tried, AdS/QCD is one approach, $\mathrm{R} \chi \top$ (Valencia et al.) possible,...
- Note short-distance matching must be done in many channels, there are theorems JB, Gamiz,Lipartia,Prades that with only a few resonances this requires compromises
- π-loop: HLS smaller than double VMD (understood) models with ρ and a_{1} : difficulties with infinities

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop

What can we do more?

- Constraints from experiment:
J. Bijnens and F. Persson, hep-ph/hep-ph/0106130

Studying three formfactors $P \gamma^{*} \gamma^{*}$ in $P \rightarrow \ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}$, $e^{+} e^{-} \rightarrow e^{+} e^{-} P$ exact tree level and for $g-2$ (but beware sign):

- Conclusion: possible but VERY difficult
- Two γ^{*} off-shell not so important for our choice of form-factor
- See also the other talks here
- All information on hadrons and 1-2-3-4 off-shell photons is welcome: constrain the models
- More short-distance constraints: MV, Nyffeler integrate with all contributions, not just π^{0}-exchange
- Need a new overall evaluation with consistent approach.
- Lattice: Lehner
- Dispersion theory: Procura, Vanderhaeghen

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General
properties
ENJL
π^{0}-exchange
Quark-loop
Scalar
a_{1}-exchange
π-loop

Future

Summary of Muon $g-2$ contributions

	$10^{10} a_{\mu}$	
exp	11659209.1	6.3
theory	11659180.3	5.0
QED	11658471.9	0.0
EW	15.4	0.1
LO Had	692.3	4.2
HO HVP	-9.8	0.1
HLbL	10.5	2.6
difference	28.8	8.1

- Error on LO had
- Error on HLbL
- Errors added quadratically
- 3.6σ
- Difference:

4\% of LO Had 270\% of HLbL 1% of leptonic LbL

Generic SUSY: $12.3 \times 10^{-10}\left(\frac{100 \mathrm{GeV}}{M_{\text {SUSY }}}\right)^{2} \tan \beta$ $M_{\text {SUSY }} \approx 66 \mathrm{GeV} \sqrt{\tan \beta}$

HLbL for a_{μ} :
ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction
General
properties

UNIVERSITY

