HLBL CONTRIBUTION TO a_{μ} : ENJL, CHIRAL QUARK MODELS AND CHIRAL LAGRANGIANS

Johan Bijnens

Lund University

Vetenskapsrådet

bijnens@thep.lu.se http://www.thep.lu.se/~bijnens http://www.thep.lu.se/~bijnens/chpt.html $\begin{array}{c} \mathsf{HLbL} \; \mathsf{for} \; a_{\mu} \colon \\ \mathsf{ENJL}, \; \mathsf{CQM} \\ \mathsf{and} \; \chi \mathcal{L} \end{array}$

Johan Bijnens

Introduction

General properties

ENJL

 π^0 -exchange

ocalar

a₁-exchan

1-100p

Summary

Future

Flavour changing and conserving processes, Anacapri 10-12 September 2015

Overview

- Introduction
- General properties
- ENJL
- Φ π^0 -exchange
- Quark-loop
- 6 Scalar
- a_1 -exchange
- 8 π -loop: new stuff is here
- Summary
- Future

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$ Johan Bijnens

Literature

Old stuff: JB, E. Pallante, J. Prades

- "Comment on the pion pole part of the light-by-light contribution to the muon g-2," Nucl. Phys. B 626 (2002) 410 [arXiv:hep-ph/0112255].
- "Analysis of the Hadronic Light-by-Light Contributions to the Muon g-2," Nucl. Phys. B **474** (1996) 379 [arXiv:hep-ph/9511388].
- "Hadronic light by light contributions to the muon g-2 in the large N_c limit," Phys. Rev. Lett. **75** (1995) 1447 [Erratum-ibid. **75** (1995) 3781] [arXiv:hep-ph/9505251].

New stuff:

JB, Mehran Zahiri Abyaneh, Johan Relefors
 HLbL pion loop contribution
 arXiv:1208.3548, arXiv:1208.2554, arXiv:1308.2575 and to
 be published

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

NJL

⁰-exchange

Scalar

caiar

I. . . .

ummary

Muon g-2: HO hadronic

• Two main types of contributions

- HO HVP is like LO Had, can be derived from $e^+e^- \to {\rm hadrons.} \ a_\mu^{\rm HO\ HVP} = -9.84(0.06) \times 10^{-10}$
- HLbL is the real problem: best estimate now: $a_{\mu}^{\mathrm{HLbL}}=10.5(2.6)\times10^{-10}$
- Note that the sum is very small: but not an indication of the error

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

NJL

τ⁰-exchange

uai K-10

Scalar

1-exchan

loop

ummary

HLbL talks

- Melnikov
- Knecht
- Procura
- Vanderhaeghen
- Capiello
- this talk
- Greynat
- Nyffeler
- Several on the underlying form-factors

 $\begin{array}{c} \text{HLbL for } a_{\mu} \colon \\ \text{ENJL, CQM} \\ \text{and } \chi \mathcal{L} \end{array}$

Johan Bijnens

Introduction

General properties

ENJL

 τ^0 -exchange

calar

-exchang

loop

ummary

HLbL: the main object to calculate

- Muon line and photons: well known
- The blob: fill in with hadrons/QCD
- Trouble: low and high energy very mixed
- Double counting needs to be avoided: hadron exchanges versus quarks

 $\begin{array}{c} \text{HLbL for } a_{\mu} \colon \\ \text{ENJL, CQM} \\ \text{and } \chi \mathcal{L} \end{array}$

Johan Bijnens

Introduction

General properties

ENJL

r⁰-exchange

. .

calar

_L-exchange

-loop

A separation proposal: a start

E. de Rafael, "Hadronic contributions to the muon g-2 and low-energy QCD," Phys. Lett. **B322** (1994) 239-246. [hep-ph/9311316].

- ullet Use ChPT p counting and large N_c
- p^4 , order 1: pion-loop
- p^8 , order N_c : quark-loop and heavier meson exchanges
- p^6 , order N_c : pion exchange

Does not fully solve the problem only short-distance part of quark-loop is really p^8 but it's a start

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJL

 π^0 -exchange

Scalar

₁-exchang

-loop

Summar

A separation proposal: a start

E. de Rafael, "Hadronic contributions to the muon g-2 and low-energy QCD," Phys. Lett. **B322** (1994) 239-246. [hep-ph/9311316].

- ullet Use ChPT p counting and large N_c
- p^4 , order 1: pion-loop
- p^8 , order N_c : quark-loop and heavier meson exchanges
- p^6 , order N_c : pion exchange

Implemented by two groups in the 1990s:

- Hayakawa, Kinoshita, Sanda: meson models, pion loop using hidden local symmetry, quark-loop with VMD, calculation in Minkowski space
- JB, Pallante, Prades: Try using as much as possible a consistent model-approach, ENJL, calculation in Euclidean space

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General roperties

\JL

⁰-exchange

Scalar

-exchange

loop

F.....

Actually we really need $\frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)}{\delta p_{3\lambda}}\Big|_{p_3=0}$

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJI

τ⁰-exchange

Quark-

Scalar

loop

т-Іоор

Julillary

$\Pi^{\rho\nu\alpha\beta}(p_1,p_2,p_3)$:

- In general 138 Lorentz structures (but only 28 contribute to g-2)
- Using $q_{\rho}\Pi^{\rho\nu\alpha\beta} = p_{1\nu}\Pi^{\rho\nu\alpha\beta} = p_{2\alpha}\Pi^{\rho\nu\alpha\beta} = p_{3\beta}\Pi^{\rho\nu\alpha\beta} = 0$ 43 gauge invariant structures
- Bose symmetry relates some of them
- All depend on p_1^2 , p_2^2 and q^2 , but before derivative and $p_3 \rightarrow 0$ also p_3^2 , $p_1 \cdot p_2$, $p_1 \cdot p_3$
- Actually 2 less but singular basis Fischer et al.
- Compare HVP: one function, one variable
- General calculation from experiment: how difficult: Procura, Vanderhaeghen
- In four photon measurement: lepton contribution

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

NJL

r⁰-exchange

calar

₁-exchange

-loop

ouiiiiiai y

 $\int \frac{\mathrm{d}^4 p_1}{(2\pi)^4} \int \frac{\mathrm{d}^4 p_2}{(2\pi)^4}$ plus loops inside the hadronic part

- 8 dimensional integral, three trivial,
- 5 remain: $p_1^2, p_2^2, p_1 \cdot p_2, p_1 \cdot p_\mu, p_2 \cdot p_\mu$
- Rotate to Euclidean space:
 - Easier separation of long and short-distance
 - Artefacts (confinement) in models smeared out.
- More recent: can do two more using Gegenbauer techniques Knecht-Nyffeler, Jegerlehner-Nyffeler, JB-Zahiri-Abyaneh-Relefors
- P_1^2 , P_2^2 and Q^2 remain
- study $a_{\mu}^{\rm X}=\int dl_{P_1}dl_{P_2}a_{\mu}^{\rm XLL}=\int dl_{P_1}dl_{P_2}dl_{Q}a_{\mu}^{\rm XLLQ}$ $l_P=\ln\left(P/{\rm G}eV\right)$, to see where the contributions are
- Study the dependence on the cut-off for the photons

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJL

 π^0 -exchange

Quark-loop

calar

1-exchan

-loop

ummary

$$\int \frac{\mathrm{d}^4 p_1}{(2\pi)^4} \int \frac{\mathrm{d}^4 p_2}{(2\pi)^4}$$
 plus loops inside the hadronic part

- 8 dimensional integral, three trivial,
- 5 remain: $p_1^2, p_2^2, p_1 \cdot p_2, p_1 \cdot p_\mu, p_2 \cdot p_\mu$
- Rotate to Euclidean space:
 - Easier separation of long and short-distance
 - Artefacts (confinement) in models smeared out.
- More recent: can do two more using Gegenbauer techniques Knecht-Nyffeler, Jegerlehner-Nyffeler, JB-Zahiri-Abyaneh-Relefors
- P_1^2 , P_2^2 and Q^2 remain
- study $a_{\mu}^{\rm X} = \int dl_{P_1} dl_{P_2} a_{\mu}^{\rm XLL} = \int dl_{P_1} dl_{P_2} dl_{Q} a_{\mu}^{\rm XLLQ}$ $l_P = \ln{(P/{\rm G}eV)}$, to see where the contributions are
- Study the dependence on the cut-off for the photons

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJL

 π^0 -exchange

uark-100

calar

₁-exchang

-loop

ullillaly

ENJL: our main model

$$\mathcal{L}_{\text{ENJL}} = \overline{q}^{\alpha} \left\{ i \gamma^{\mu} \left(\partial_{\mu} - i v_{\mu} - i a_{\mu} \gamma_{5} \right) - \left(\mathcal{M} + s - i p \gamma_{5} \right) \right\} q^{\alpha}$$

$$+ 2 g_{S} \left(\overline{q}_{R}^{\alpha} q_{L}^{\beta} \right) \left(\overline{q}_{L}^{\beta} q_{R}^{\alpha} \right)$$

$$- g_{V} \left[\left(\overline{q}_{L}^{\alpha} \gamma^{\mu} q_{L}^{\beta} \right) \left(\overline{q}_{L}^{\beta} \gamma_{\mu} q_{L}^{\alpha} \right) + \left(\overline{q}_{R}^{\alpha} \gamma^{\mu} q_{R}^{\beta} \right) \left(\overline{q}_{R}^{\beta} \gamma_{\mu} q_{R}^{\alpha} \right) \right]$$

- $\bullet \ \overline{q} \equiv \left(\overline{u}, \overline{d}, \overline{s}\right)$
- v_{μ} , a_{μ} , s, p: external vector, axial-vector, scalar and pseudoscalar matrix sources
- ullet $\mathcal M$ is the quark-mass matrix.
- $g_V \equiv \frac{8\pi^2 G_V(\Lambda)}{N_c \Lambda^2}$, $g_S \equiv \frac{4\pi^2 G_S(\Lambda)}{N_c \Lambda^2}$.
- G_V , G_S are dimensionless and valid up to Λ
- No confinement but has good pion, vector meson and OK axial vector-meson phenomenology

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

ntroduction

General properties

ENJL

π~-exchange

color

₁-exchange

loop

ournmary

ENJL: our main model

(this) ENJL JB, Bruno, de Rafael, Nucl. Phys. B390 (1993) 501 [hep-ph/9206236]; JB, Phys. Rep. 265 (1996) 369 [hep-ph/9502335] (review)

• Gap equation: chiral symmetry spontaneously broken

• Generates poles, i.e. mesons via bubble resummation

 $\begin{array}{c} \text{HLbL for } a_{\mu} \colon \\ \text{ENJL, CQM} \\ \text{and } \chi \mathcal{L} \end{array}$

Johan Bijnens

Introductio

General properties

ENJL

 π^0 -exchange

uark-loop)

calar

a₁-exchange

-loop

Summary

uture

ENJL: our main model

- Can be thought of as a very simple rainbow and ladder approximation in the DSE equation with constant kernels for the one-gluon exchange
- Parameters fit via F_{π} , L_i^r , vector meson properties,...
- $G_S = 1.216$, $G_V = 1.263$, $\Lambda = 1.16$ GeV
- has $M_Q = 263 \text{ MeV}$
- Has a number of decent matchings to short-distance, e.g. $\Pi_V \Pi_A$ but fails in others.
- Generates always VMD in external legs (but with a twist)
- Hook together general processes by one-loop vertices and bubble-chain propagators

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introductio

General properties

ENJL

.0-exchange

dark 100

calar

₁-exchange

loop

Summary

Separation of contributions

- Quark loop with external bubble-chains
- ullet pprox Quark-loop with VMD

- Also internal bubble chain
- Note that vertices have structure
- Off-shell effect in model included

 $\begin{array}{c} \mathsf{HLbL} \; \mathsf{for} \; a_{\mu} \colon \\ \mathsf{ENJL}, \; \mathsf{CQM} \\ \mathsf{and} \; \chi \mathcal{L} \end{array}$

Johan Bijnens

Introduction

General properties

ENJL

 π^0 -exchange

Scalar

a₁-exchang

r-loop

Summary

- " π^0 " = $1/(p^2 m_\pi^2)$
- The blobs need to be modelled, and in e.g. ENJL contain corrections also to the $1/(p^2-m_\pi^2)$
- Pointlike has a logarithmic divergence
- Numbers π^0 , but also η, η'

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJL

 $\pi^0\text{-exchange}$

Quark-loop

calar

a₁-exchang

-loop

Summary

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

	$a_{\mu} imes 10^{10}$				
Cutoff			Pointlike	Transverse	CELLO-
(GeV)	Point-like	ENJL-VMD	VMD	VMD	VMD
0.5	4.92(2)	3.29(2)	3.46(2)	3.60(3)	3.53(2)
0.7	7.68(4)	4.24(4)	4.49(3)	4.73(4)	4.57(4)
1.0	11.15(7)	4.90(5)	5.18(3)	5.61(6)	5.29(5)
2.0	21.3(2)	5.63(8)	5.62(5)	6.39(9)	5.89(8)
4.0	32.7(5)	6.22(17)	5.58(5)	6.59(16)	6.02(10)

BPP: All in reasonable agreement $a_u^{\pi^0} = 5.9 \times 10^{-10}$

 π^0 -exchange

BPP:

$$a_{\mu}^{\pi^0} = 5.9(0.9) \times 10^{-10}$$

Nonlocal guark model:

$$a_{\mu}^{\pi^0}=6.27 imes 10^{-10}$$

DSE model:

A. E. Dorokhov, W. Broniowski, Phys.Rev.**D78** (2008)073011. [0805.0760]
DSE model:
$$a_{II}^{\pi^0} = 5.75 \times 10^{-10}$$

Goecke, Fischer and Williams, Phys.Rev.D83(2011)094006[1012.3886]

LMD+V:

$$a_{\mu}^{\pi^0} = (5.8 - 6.3) \times 10^{-10}$$

M. Knecht, A. Nyffeler, Phys. Rev. **D65**(2002)073034, [hep-ph/0111058] • Formfactor inspired by AdS/QCD: $a_{ii}^{\pi^0} = 6.54 \times 10^{-10}$

Cappiello, Cata and D'Ambrosio, Phys.Rev.D83(2011)093006 [1009.1161]

 $a_{..}^{\pi^0} = 6.8 \times 10^{-10}$ Chiral Quark Model:

D. Greynat and E. de Rafael, JHEP 1207 (2012) 020 [1204.3029].

• Constraint via magnetic susceptibility: $a_{ii}^{\pi^0} = 7.2 \times 10^{-10}$ A. Nyffeler, Phys. Rev. D 79 (2009) 073012 [0901.1172].

All in reasonable agreement

HLbL for an: ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

 π^0 -exchange

MV short-distance: π^0 exchange

- K. Melnikov, A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D70 (2004) 113006. [hep-ph/0312226]
- take $P_1^2 \approx P_2^2 \gg Q^2$: Leading term in OPE of two vector currents is proportional to axial current
- $\Pi^{\rho\nu\alpha\beta} \propto \frac{P_{\rho}}{P_{1}^{2}} \langle 0 | T \left(J_{A\nu} J_{V\alpha} J_{V\beta} \right) | 0 \rangle$
- AVV triangle anomaly: extra info
- ullet Implemented via setting one blob =1

•
$$a_{\mu}^{\pi^0} = 7.7 \times 10^{-10}$$

 $\begin{array}{c} \text{HLbL for } a_{\mu} \colon \\ \text{ENJL, CQM} \\ \text{and } \chi \mathcal{L} \end{array}$

Johan Bijnens

Introduction

General roperties

NJL

 π^0 -exchange

. .

calar

-exchang

loop

ummary

• The pointlike vertex implements shortdistance part, not only π^0 -exchange

Are these part of the quark-loop? See also in Dorokhov, Broniowski, Phys. Rev. D78(2008)07301

ullet BPP quarkloop + π^0 -exchange pprox MV π^0 -exchange

 $\begin{array}{c} \text{HLbL for } a_{\mu} \colon \\ \text{ENJL, CQM} \\ \text{and } \chi \mathcal{L} \end{array}$

Johan Bijnens

ntroduction

General properties

ENJL

 π^0 -exchange

Scalar

aı -exchani

-loop

Summary

 Which momentum regimes important studied: JB and J. Prades, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170]

•
$$a_{\mu} = \int dl_1 dl_2 a_{\mu}^{LL}$$
 with $I_i = \log(P_i/GeV)$

Which momentum regions do what: volume under the plot $\propto a_{\mu}$

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General roperties

NJL

 π^0 -exchange

C - - I - --

Scalar

Loop

ummary

Pseudoscalar exchange

- Point-like VMD: π^0 η and η' give 5.58, 1.38, 1.04.
- Models that include $U(1)_A$ breaking give similar ratios
- Pure large N_c models use this ratio
- The MV argument should give some enhancement over the full VMD like models
- Total pseudo-scalar exchange is about $a_{\mu}^{PS} = 8 10 \times 10^{-10}$
- AdS/QCD estimate (includes excited pseudo-scalars) $a_\mu^{PS}=10.7\times 10^{-10}$ D. K. Hong and D. Kim, Phys. Lett. B **680** (2009) 480 [0904.4042]
- Connected contribution only: you get a $\bar{u}u + \bar{d}d$ pseudoscalar, adds 25/9 times the π^0 contribution

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

ieneral roperties

NJL

 π^0 -exchange

.

calar

-exchang

-loop

_

Pure quark loop

Cut-off	$a_{\mu} imes 10^7$	$a_{\mu} imes 10^9$	$a_{\mu} imes 10^9$
Λ	Electron	Muon	Constituent Quark
(GeV)	Loop	Loop	Loop
0.5	2.41(8)	2.41(3)	0.395(4)
0.7	2.60(10)	3.09(7)	0.705(9)
1.0	2.59(7)	3.76(9)	1.10(2)
2.0	2.60(6)	4.54(9)	1.81(5)
4.0	2.75(9)	4.60(11)	2.27(7)
8.0	2.57(6)	4.84(13)	2.58(7)
Known Results	2.6252(4)	4.65	2.37(16)

M_Q: 300 MeV

now known fully analytically

• Us: 5+(3-1) integrals extra are Feynman parameters

Slow convergence:

electron: all at 500 MeV

Muon: only half at 500 MeV, at 1 GeV still 20% missing

300 MeV quark: at 2 GeV still 25% missing

 $\begin{array}{c} \mathsf{HLbL} \ \mathsf{for} \ a_{\mu} \colon \\ \mathsf{ENJL}, \ \mathsf{CQM} \\ \mathsf{and} \ \chi \mathcal{L} \end{array}$

Johan Bijnens

ntroduction

General properties

ENJL

⁰-exchange

Quark-loop

caiar

-exchange

oop

ummary

Pure quark loop: momentum area

quark loop $m_0 = 0.3 \text{ GeV}$

Most from $P_1 \approx P_2 \approx Q$, sizable large momentum part

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General roperties

NJL

r⁰-exchange

Quark-loop

Scalar

ocalar .

-loop

Summary

ENJL quark-loop

Cut-off	$a_{\mu} imes 10^{10}$	$a_{\mu} imes 10^{10}$	$a_{\mu} imes 10^{10}$	$a_{\mu} imes 10^{10}$
٨				sum
GeV	VMD	ENJL	masscut	ENJL+masscut
0.5	0.48	0.78	2.46	3.2
0.7	0.72	1.14	1.13	2.3
1.0	0.87	1.44	0.59	2.0
2.0	0.98	1.78	0.13	1.9
4.0	0.98	1.98	0.03	2.0
8.0	0.98	2.00	.005	2.0

- Very stable
- ENJL cuts off slower than pure VMD
- \bullet masscut: $M_Q=\Lambda$ to have short-distance and no problem with momentum regions
- Quite stable in region 1-4 GeV

 $\begin{array}{c} \text{HLbL for } a_{\mu} \colon \\ \text{ENJL, CQM} \\ \text{and } \chi \mathcal{L} \end{array}$

Johan Bijnens

Introductio

General properties

r⁰-exchange

Quark-loop

Scalar

₁-exchange

loop

ummary

ENJL: scalar

$$\Pi^{\rho\nu\alpha\beta} = \overline{\Pi}_{ab}^{VVS}(p_1, r)g_S(1 + g_S\Pi^S(r))\overline{\Pi}_{cd}^{SVV}(p_2, p_3)\mathcal{V}^{abcd\rho\nu\alpha\beta}$$
+permutations

•
$$g_S(1+g_S\Pi_S) = \frac{g_A(r^2)(2M_Q)^2}{2f^2(r^2)} \frac{1}{M_S^2(r^2)-r^2}$$

- $V^{abcd\rho\nu\alpha\beta}$: ENJL VMD legs
- In ENJL only scalar+quark-loop properly chiral invariant

 $\begin{array}{c} \text{HLbL for } a_{\mu} \colon \\ \text{ENJL, CQM} \\ \text{and } \chi \mathcal{L} \end{array}$

Johan Bijnens

Introduction

General properties

NJL

⁰-exchange

.

Scalar

1-exchang

-loop

ENJL: scalar/QL

Cut-off	$a_{\mu} imes 10^{10}$	$a_{\mu} imes 10^{10}$	$a_{\mu} imes 10^{10}$
Λ	Quark-loop	Quark-loop	Scalar
GeV	VMD	ENJL	Exchange
0.5	0.48	0.78	-0.22
0.7	0.72	1.14	-0.46
1.0	0.87	1.44	-0.60
2.0	0.98	1.78	-0.68
4.0	0.98	1.98	-0.68
8.0	0.98	2.00	-0.68

ENJL only scalar+quark-loop properly chiral invariant

• Note: ENJL+scalar (BPP) \approx Quark-loop VMD (HKS)

• $M_S \approx 620$ MeV certainly an overestimate for real scalars

• If scalar is σ : related to pion loop part?

• quark-loop: $a_{\mu}^{ql} \approx 1 \times 10^{-10}$

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

ntroductio

General

NJL

⁰-exchange

Scalar

, cuiui

1-exchange

....

bummary

Quark loop DSE/ Nonlocal NJL

- DSE model: $a_{\mu}^{ql}=10.7(0.2)\times 10^{-10}$ T. Goecke, C. S. Fischer and R. Williams, arXiv:1210.1759
- Not a full calculation (yet) but includes an estimate of some of the missing parts
- a lot larger than bare quark loop with constituent mass
- DSE model (Maris-Roberts) does reproduces a lot of low-energy phenomenology. My guess was: numbers similar to ENJL.
- Can one find something in between full DSE and ENJL that is easier to handle?
- Nonlocal chiral quark model or nonlocal NJL (but no vector vertex, i.e. no rho) A. E. Dorokhov, A. E. Radzhabov and A. S. Zhevlakov, arXiv:1502.04487 [hep-ph]. $a_{ij}^{ql} = 11.0(0.9) \times 10^{-10}$

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General roperties

NJL

⁰-exchange

Scalar

a₁-exchange

loop

oummar

Other quark loop

• de Rafael-Greynat 1210.3029

$$(7.6 - 8.9) 10^{-10}$$

Boughezal-Melnikov 1104.4510

$$(11.8 - 14.8) \ 10^{-10}$$

• Masjuan-Vanderhaeghen 1212.0357

$$(7.6 - 12.5) \ 10^{-10}$$

- Various interpretations: the full calculation or not
- All (even DSE) have in common that a low quark mass is used for a large part of the integration range, not shielded by formfactors

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

NJL

 π^0 -exchange

uark-loop

Scalar

a₁-exchange

₁-exchange

-100p

aiiiiiai y

Axial-vector exchange exchange

Cut-off	$a_{\mu} imes 10^{10}$ from
Λ	Axial-Vector
(GeV)	Exchange $\mathcal{O}(N_c)$
0.5	0.05(0.01)
0.7	0.07(0.01)
1.0	0.13(0.01)
2.0	0.24(0.02)
4.0	0.59(0.07)

There is some pseudo-scalar exchange piece here as well, off-shell not quite clear what is what.

•
$$a_{\mu}^{\text{axial}} = 0.6 \times 10^{-10}$$

• MV: short distance enhancement + mixing (both enhance about the same) $a_{\mu}^{\text{axial}} = 2.2 \times 10^{-10}$

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

NJL

⁰-exchange

'aalaa

a₁-exchange

- loop

Summary

π -loop

- A bare π -loop (sQED) give about $-4 \cdot 10^{-10}$
- The $\pi\pi\gamma^*$ vertex is always done using VMD
- $\pi\pi\gamma^*\gamma^*$ vertex two choices:
 - ullet Hidden local symmetry model: only one γ has VMD
 - Full VMD
 - Both are chirally symmetric
 - The HLS model used has problems with π^+ - π^0 mass difference (due to not having an a_1)
- Final numbers quite different: -0.45 and -1.9 ($\times 10^{-10}$)
- ullet For BPP stopped at 1 GeV but within 10% of higher Λ

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

roperties

NJL

 π^0 -exchange

calar

.

 π -loop

ummary

π loop: Bare vs VMD

- $\bullet \ \ \mathsf{plotted} \ \ a_{\mu}^{\mathit{LLQ}} \ \ \mathsf{for} \ \ P_1 = P_2$
- ullet $a_{\mu}=\int dl_{P_1}dl_{P_2}dl_Q\,a_{\mu}^{LLQ}$
- $I_Q = \log(Q/1 \text{ GeV})$

 $\begin{array}{c} \mathsf{HLbL} \; \mathsf{for} \; \mathsf{a}_{\mu} \colon \\ \mathsf{ENJL}, \; \mathsf{CQM} \\ \mathsf{and} \; \chi \mathcal{L} \end{array}$

Johan Bijnens

Introduction

General properties

ENJL

⁰-exchange

_

a₁-exchange

 π -loop

ummary

π loop: VMD vs HLS

Usual HLS, a = 2

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

 π -loop

π loop: VMD vs HLS

HLS with a = 1, satisfies more short-distance constraints

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

 π -loop

π loop

- $\pi\pi\gamma^*\gamma^*$ for $q_1^2=q_2^2$ has a short-distance constraint from the OPE as well.
- HLS does not satisfy it
- full VMD does: so probably better estimate
- Ramsey-Musolf suggested to do pure ChPT for the π loop K. T. Engel and M. J. Ramsey-Musolf, Phys. Lett. B **738** (2014) 123 [arXiv:1309.2225 [hep-ph]].
- Polarizability $(L_9 + L_{10})$ up to 10%, charge radius 30% at low energies, more at higher
- Both HLS and VMD have charge radius effect but not polarizability

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJL

 $\pi^0\text{-exchange}$

Scalar

Lean

 π -loop

ummary

π loop

• $\pi\pi\gamma^*\gamma^*$ for $q_1^2=q_2^2$ has a short-distance constraint from the OPE as well.

- HLS does not satisfy it
- full VMD does: so probably better estimate
- Ramsey-Musolf suggested to do pure ChPT for the π loop K. T. Engel and M. J. Ramsey-Musolf, Phys. Lett. B **738** (2014) 123 [arXiv:1309.2225 [hep-ph]].
- Polarizability $(L_9 + L_{10})$ up to 10%, charge radius 30% at low energies, more at higher
- Both HLS and VMD have charge radius effect but not polarizability

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General

NJL

 π^0 -exchange

guarre ro

Scalar

1 exemang

 π -loop

ummary

_ .

 π loop: L_9, L_{10}

• ChPT for muon g-2 at order p^6 is not powercounting finite so no prediction for a_{μ} exists.

- But can be used to study the low momentum end of the integral over P₁, P₂, Q
- The four-photon amplitude is finite still at two-loop order (counterterms start at order p⁸)
- Add L₉ and L₁₀ vertices to the bare pion loop JB-Relefors-Zahiri-Abyaneh

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJL

 π^0 -exchange

.

Scalar

al-excuant

 π -loop

ummary

-....

π loop: VMD vs charge radius

low scale, charge radius effect well reproduced

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General

ENJL

-0-exchange

. .

2. evchange

 π -loop

ummary

π loop: VMD vs L_9 and L_{10}

- $L_9 + L_{10} \neq 0$ gives an enhancement of 10-15%
- ullet To do it fully need to get a model: include a_1

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJL

-0-exchange

guai N-10

Scalar

 π -loop

Summary

Include a₁

• But to get gauge invariance correctly need

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General

ENJL

 π^0 -exchange

Scalar

1-exchan

 π -loop

Summary

Futu

Include a₁

- Consistency problem: full a₁-loop?
- Treat a_1 and ρ classical and π quantum: there must be a π that closes the loop

 Argument: integrate out ρ and a_1 classically, then do pion loops with the resulting Lagrangian
- To avoid problems: representation without a_1 - π mixing
- Check for curiosity what happens if we add a₁-loop

 $\begin{array}{c} \text{HLbL for } a_{\mu} \colon \\ \text{ENJL, CQM} \\ \text{and } \chi \mathcal{L} \end{array}$

Johan Bijnens

Introduction

General properties

NJL

r⁰-exchange

. .

Scalar

₁-exchange

 π -loop

Summary

-....

Include a₁

- ullet Use antisymmetric vector representation for a_1 and ho
- Fields $A_{\mu\nu}$, $V_{\mu\nu}$ (nonets)
- Kinetic terms: $-\frac{1}{2} \left\langle \nabla^{\lambda} V_{\lambda\mu} \nabla_{\nu} V^{\nu\mu} \frac{1}{2} V_{\mu\nu} V^{\mu\nu} \right\rangle$ $-\frac{1}{2} \left\langle \nabla^{\lambda} A_{\lambda\mu} \nabla_{\nu} A^{\nu\mu} \frac{1}{2} A_{\mu\nu} A^{\mu\nu} \right\rangle$
- Terms that give contributions to the L_i^r :

$$rac{F_V}{2\sqrt{2}}\left\langle f_{+\mu
u}V^{\mu
u}
ight
angle +rac{iG_V}{\sqrt{2}}\left\langle V^{\mu
u}u_{\mu}u_{
u}
ight
angle +rac{F_A}{2\sqrt{2}}\left\langle f_{-\mu
u}A^{\mu
u}
ight
angle$$

•
$$L_9 = \frac{F_V G_V}{2M_V^2}$$
, $L_{10} = -\frac{F_V^2}{4M_V^2} + \frac{F_A^2}{4M_A^2}$

Weinberg sum rules: (Chiral limit)

$$F_V^2 = F_A^2 + F_\pi^2$$
 $F_V^2 M_V^2 = F_A^2 M_A^2$

• VMD for $\pi\pi\gamma$: $F_VG_V = F_\pi^2$

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General roperties

NJL

 π^0 -exchange

calar

1....

 π -loop

ouiiiiiai y

$V_{\mu u}$ only

- $\Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)$ is not finite (but was also not finite for HLS)
- But $\frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)}{\delta p_{3\lambda}}\Big|_{p_3=0}$ also not finite (but was finite for HLS)
- Derivative one finite for $G_V = F_V/2$
- Surprise: g-2 identical to HLS with $a=\frac{F_V^2}{F_\pi^2}$
- Yes I know, different representations are identical BUT they do differ in higher order terms and even in what is higher order
- Same comments as for HLS numerics

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General Properties

NJL

 π^0 -exchange

calar

IT CXCHAIL

 π -loop

Summary

$V_{\mu u}$ only

- $\Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)$ is not finite (but was also not finite for HLS)
- But $\frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)}{\delta p_{3\lambda}}\Big|_{p_3=0}$ also not finite (but was finite for HLS)
- Derivative one finite for $G_V = F_V/2$
- Surprise: g-2 identical to HLS with $a=\frac{F_V^2}{F_\pi^2}$
- Yes I know, different representations are identical BUT they do differ in higher order terms and even in what is higher order
- Same comments as for HLS numerics

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General Properties

NJL

 π^0 -exchange

Quark-loop

Scalar

a₁-exchang

 π -loop

Summary

$$V_{\mu
u}$$
 and $A_{\mu
u}$

- Add a₁
- Calculate a lot

- $G_V = F_V = 0$ and $F_A^2 = -2F_\pi^2$
- If adding full a_1 -loop $G_V=F_V=0$ and $F_A^2=-F_\pi^2$

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJL

 π^0 -exchange

calar

l-exchang

 π -loop

ummary

$$V_{\mu
u}$$
 and $A_{\mu
u}$

• Start by adding $\rho a_1 \pi$ vertices

•
$$\lambda_{1} \langle [V^{\mu\nu}, A_{\mu\nu}] \chi_{-} \rangle + \lambda_{2} \langle [V^{\mu\nu}, A_{\nu\alpha}] h_{\mu}^{\nu} \rangle$$

 $+ \lambda_{3} \langle i [\nabla^{\mu} V_{\mu\nu}, A_{\nu\alpha}] u_{\alpha} \rangle + \lambda_{4} \langle i [\nabla_{\alpha} V_{\mu\nu}, A_{\alpha\nu}] u^{\mu} \rangle$
 $+ \lambda_{5} \langle i [\nabla^{\alpha} V_{\mu\nu}, A_{\mu\nu}] u_{\alpha} \rangle + \lambda_{6} \langle i [V^{\mu\nu}, A_{\mu\nu}] f_{-\alpha}^{\alpha} \rangle$
 $+ \lambda_{7} \langle i V_{\mu\nu} A^{\mu\rho} A^{\nu}{}_{\rho} \rangle$

- All lowest dimensional vertices of their respective type
- Not all independent, there are three relations
- ullet Follow from the constraints on $V_{\mu
 u}$ and $A_{\mu
 u}$ (thanks to Stefan Leupold)

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General roperties

ENJL

 π^0 -exchange

iark-ioop

calar

1-exchang

 π -loop

ummary

$V_{\mu u}$ and $A_{\mu u}$: big disappointment

- Work a whole lot
- $\left. \frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1,p_2,p_3)}{\delta p_{3\lambda}} \right|_{p_3=0} \text{ not obviously finite}$
- Work a lot more
- Prove that $\frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)}{\delta p_{3\lambda}}\Big|_{p_3=0}$ finite, only same solutions as before
- Try the combination that show up in g-2 only
- Work a lot
- Again, only same solutions as before
- Small loophole left: after the integration for g-2 could be finite but many funny functions of m_π, m_μ, M_V and M_A show up.

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General roperties

NJL

 au^0 -exchange

Scalar

I excitating

 π -loop

ummary

a_1 -loop: cases with good L_9 and L_{10}

- Add F_V , G_V and F_A
- ullet Fix values by Weinberg sum rules and VMD in $\gamma^*\pi\pi$
- no a₁-loop

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJL

τ⁰-exchange

C - - I - - -

Scalar

 π -loop

ummary

a_1 -loop: cases with good L_9 and L_{10}

- Add F_V , G_V and F_A
- \bullet Fix values by Weinberg sum rules and VMD in $\gamma^*\pi\pi$
- With *a*₁-loop (is different plot!!)

 $\begin{array}{c} \text{HLbL for } a_{\mu} \colon \\ \text{ENJL, CQM} \\ \text{and } \chi \mathcal{L} \end{array}$

Johan Bijnens

Introduction

General properties

ENJL

τ⁰-exchange

Quark-10

Scalar a₁-exchange

 π -loop

ummary

a_1 -loop: cases with good L_9 and L_{10}

- Add a_1 with $F_A^2 = +F_\pi^2$
- Add the full VMD as done earlier for the bare pion loop

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJL

⁰-exchange

Quark ii

Scalar
a₁-exchange

 π -loop

ummary

Integration results

 $\begin{array}{c} \text{HLbL for } a_{\mu} \colon \\ \text{ENJL, CQM} \\ \text{and } \chi \mathcal{L} \end{array}$

Johan Bijnens

Introduction

General properties

ENJL

-0-exchange

ıark-loo

Scalar

a₁-exchange

 π -loop

.....

Integration results with *a*₁

- Problem: get high energy behaviour good enough
- But all models with reasonable L_9 and L_{10} fall way inside the error quoted earlier $(-1.9 \pm 1.3) \ 10^{-10}$
- Tentative conclusion: Use hadrons only below about 1 GeV: $a_{\mu}^{\pi-\text{loop}} = (-2.0 \pm 0.5) \ 10^{-10}$
- Note that Engel and Ramsey-Musolf, arXiv:1309.2225 is a bit more pessimistic quoting numbers from (−1.1 to −7.1) 10^{−10}

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

ENJL

 π^0 -exchange

uark-loo

Scalar

₁-exchang

 π -loop

Summary

Summary: ENJL vc PdRV

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

	BPP	PdRV arXiv:0901.0306	
quark-loop	$(2.1 \pm 0.3) \cdot 10^{-10}$	_	
pseudo-scalar	$(8.5 \pm 1.3) \cdot 10^{-10}$	$(11.4 \pm 1.3) \cdot 10^{-10}$	
axial-vector	$(0.25\pm0.1)\cdot10^{-10}$	$(1.5\pm1.0)\cdot10^{-10}$	
scalar	$(-0.68 \pm 0.2) \cdot 10^{-10}$	$(-0.7 \pm 0.7) \cdot 10^{-10}$	
π K -loop	$(-1.9 \pm 1.3) \cdot 10^{-10}$	$(-1.9 \pm 1.9) \cdot 10^{-10}$	
errors	linearly	quadratically	
sum	$(8.3 \pm 3.2) \cdot 10^{-10}$	$(10.5 \pm 2.6) \cdot 10^{-10}$	

Summary

What can we do more?

- The ENJL model can certainly be improved:
 - Chiral nonlocal quark-model (like nonlocal ENJL): so far no rho in the model
 - DSE: π^0 -exchange similar to everyone else, quark-loop very different, looking forward to final results
- More resonances models should be tried, AdS/QCD is one approach, R χ T (Valencia *et al.*) possible,...
- Note short-distance matching must be done in many channels, there are theorems JB, Gamiz, Lipartia, Prades that with only a few resonances this requires compromises
- π -loop: HLS smaller than double VMD (understood) models with ρ and a_1 : difficulties with infinities

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

NJL

 π^0 -exchange

Scalar

a₁-exchange

loop

Julilliary

What can we do more?

- Constraints from experiment:
 - J. Bijnens and F. Persson, hep-ph/hep-ph/0106130 Studying three formfactors $P\gamma^*\gamma^*$ in $P\to \ell^+\ell^-\ell'^+\ell'^-$, $e^+e^-\to e^+e^-P$ exact tree level and for g-2 (but beware sign):
 - Conclusion: possible but VERY difficult
 - \bullet Two γ^* off-shell not so important for our choice of form-factor
 - See also the other talks here
- All information on hadrons and 1-2-3-4 off-shell photons is welcome: constrain the models
- More short-distance constraints: MV, Nyffeler integrate with all contributions, not just π^0 -exchange
- Need a new overall evaluation with consistent approach.
- Lattice: Lehner
- Dispersion theory: Procura, Vanderhaeghen

 $\begin{array}{c} \mathsf{HLbL} \; \mathsf{for} \; a_{\mu} \colon \\ \mathsf{ENJL}, \; \mathsf{CQM} \\ \mathsf{and} \; \chi \mathcal{L} \end{array}$

Johan Bijnens

ntroduction

General properties

ENJL

 π^0 -exchange

calar

1-exchange

oop

ummary

Summary of Muon g-2 contributions

	$10^{10} a_{\mu}$	
exp	11 659 209.1	6.3
theory	11 659 180.3	5.0
QED	11 658 471.9	0.0
EW	15.4	0.1
LO Had	692.3	4.2
HO HVP	-9.8	0.1
HLbL	10.5	2.6
difference	28.8	8.1

- Error on LO had
- Error on HLbL
- Errors added quadratically
- 3.6 σ
- Difference:
 4% of LO Had
 270% of HLbL
 1% of leptonic LbL

Generic SUSY: $12.3 \times 10^{-10} \left(\frac{100 \text{ GeV}}{M_{SUSY}}\right)^2 \tan \beta$ $M_{SUSY} \approx 66 \text{ GeV} \sqrt{\tan \beta}$

HLbL for a_{μ} : ENJL, CQM and $\chi \mathcal{L}$

Johan Bijnens

Introduction

General properties

NJL

⁰-exchange

.

calar

1-exchan

(-100p

ummary

