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Updating various theoretical and experimental constraints on the four different types of two-Higgs-

doublet models (2HDMs), we find that only the “lepton-specific” (or “type X”) 2HDM can explain

the present muon g−2 anomaly in the parameter region of large tanβ, a light CP-odd boson, and

heavier CP-even and charged bosons which are almost degenerate. The severe constraints on the

models come mainly from the consideration of vacuum stability and perturbativity, the electroweak

precision data, the b-quark observables like BS → µµ, the precision measurements of the lepton

universality as well as the 125 GeV boson property observed at the LHC.

I. OUTLINE

Since the first measurement of the muon anomalous magnetic moment aµ = (g − 2)µ/2 by the E821 experiment at

BNL in 2001 [1], much progress has been made in both experimental and theoretical sides to reduce the uncertainties

by a factor of two or so establishing a consistent 3σ discrepancy

∆aµ ≡ aEXP
µ − aSM

µ = +262 (85)× 10−11 (1)

which is in a good agreement with the different group’s determinations. Followed by the 2001 announcement, there

have been quite a few studies in the context of 2HDMs [2–4], however, restricted mainly to the type I and II models

out of four different types of 2HDMs ensuring natural flavour conservation. Considering the recent experimental

development confirming more precisely the Standard Model (SM) predictions, including the discovery of the 125 GeV

Brout-Egnlert-Higgs boson, it would be timely to revisit the issue of the muon g–2 in 2HDMs.

An additional contribution to th muon g–2 from an extra boson in 2HDMs, shown in Fig. 1, may be the origin

of the positive excess in the ∆aµ. This can happen in the type II or X (lepton-specific) 2HDM which allows a light

boson having large Yukawa couplings enhanced by tanβ. While the type II option is completely ruled out by now, the

type X model [5] remains an unique option to explain the aµ anomaly evading all the recent experimental constraints

[6–9].

FIG. 1: One and two loop diagrams contributing to the muon g−2 in 2HDMs.

The previous studies on the muon g–2 in the type II 2HDM (2HDM-II) and various experimental constraints were

nicely summarised in Ref. [3]:
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• The one-loop correction mediated by a light CP-even (CP-odd and charged) boson gives a positive (negative)

contribution to ∆aµ, and thus the current 3σ deviation can be explained by a CP-even boson lighter than

about 5 GeV. However, such a light boson was already in contradiction to non-observation of radiative Υ decays

Υ→ γ +X.

• Contrary to the one-loop correction, the major two-loop contribution from the Barr-Zee diagram [10] mediated

by a light CP odd (even) boson can give a sizable positive (negative) contribution to ∆aµ. Thus, a light CP

odd boson A with large tanβ can account for the muon g–2 deviation. However, most of the muon g–2 favoured

region in the lower and upper MA part are excluded by the LEP and TEVATRON search on Z → bb̄A(bb̄),

respectively, except a small gap of MA ≈ 25− 70 GeV with tanβ & 20.

• However, let us note that such a light A gives a huge contribution to Bs → µ+µ− as its rate is proportional to

tan4 β/M4
A [11], and thus the above gap is completely closed now by the LHC measurement which is consistent

with the SM prediction [12].

Now the situation can be quite different in the type X 2HDM (2HDM-X) where all the extra boson couplings to

quarks (leptons) are proportional to cotβ (tanβ). Due to this, the 2HDM-X becomes hadrophobic in the large tanβ

limit invalidating most hadron-related constraints applied to the type II model. On the other hand, its leptophilic

property brings sever constraints from the precision leptonic observables. The key features in confronting the type X

model with the muon g–2 anomaly can be summarized as follows [6–9].

• As in the 2HDM-II, the one-loop correction with a light CP even boson H can account for the muon g–2 excess.

While the Upsilon decay suppressed by 1/ tan2 β cannot provide a meaningful constraint, the Belle and LHCb

searches for B → Kµµ shut down the muon g–2 favoured region except tiny gaps around MH ≈ 3 and 4 GeV

[13]. In any case, such a light Higgs boson is excluded by the current measurement of Bs → µ+µ− even in the

2HDM-X where Γ(Bs → µ+µ−) ∝ 1/M4
H .

• The Barr-Zee diagram with the tau lepton in the loop can account for the muon g–2 anomaly again in a

parameter region of small MA and large tanβ evading all the constraints from the hardron colliders and the

b-quark observables [6] except the process Bs → µ+µ− which rules out MA . 10 GeV [7].

• However, the lepton universality test by HFAG [14] combined with the Z → ττ decay turns out to limit severely

the muon g–2 favoured region of the type X model [8] allowing (only at 2σ) a small region below MA ≈ 80 GeV

and tanβ ≈ 60 [9].

• With such a light A, the exotic decay of the 125 GeV boson h→ AA or AA∗(ττ) becomes generically too large

unless a certain cancelation is arranged to suppress the hAA coupling λhAA which turns out to be possible only

in the wrong-sign limit of the lepton Yukawa coupling [7].

II. FOUR TYPES OF 2HDMS

Non-observation of flavour changing neutral currents restricts 2HDMs to four different classes which differ by how

the Higgs doublets couple to fermions [16]. They are organized by a discrete symmetry Z2 under which different Higgs

doublets and fermions carry different parities. These models are labeled as type I, II, “lepton-specific” (or X) and

“flipped” (or Y). Having two Higgs doublets Φ1,2, the most general Z2 symmetric scalar potential takes the form:

V = m2
11|Φ1|2 +m2

22|Φ2|2 −m2
12(Φ†1Φ2 + Φ1Φ†2)

+
λ1

2
|Φ1|4 +

λ2

2
|Φ2|4 + λ3|Φ1|2|Φ2|2 + λ4|Φ†1Φ2|2 +

λ5

2

[
(Φ†1Φ2)2 + (Φ1Φ†2)2

]
, (2)

where a (soft) Z2 breaking term m2
12 is introduced. Minimization of the scalar potential determines the vacuum

expectation values 〈Φ0
1,2〉 ≡ v1,2/

√
2 around which the Higgs doublet fields are expanded as

Φ1,2 =

[
η+

1,2,
1√
2

(
v1,2 + ρ1,2 + iη0

1,2

)]
. (3)
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The model contains the five physical fields in mass eigenstates denoted by H±, A,H and h. Assuming negligible CP

violation, H± and A are given by

H±, A = sβ η
±,0
1 − cβ η±,02 (4)

where the angle β is determined from tβ ≡ tanβ = v2/v1, and their orthogonal combinations are the corresponding

Goldstone modes G±,0. The neutral CP-even bosons are diagonalized as

h = cα ρ1 − sα ρ2, H = sα ρ1 + cα ρ2 (5)

where h (H) denotes the lighter (heavier) state.

The gauge couplings of h and H are given schematically by

Lgauge = gVmV

(
sβ−αh+ cβ−αH

)
V V (6)

where V = W± or Z. Taking h as the 125 GeV boson of the SM, the SM limit corresponds to sβ−α → 1. Indeed,

LHC finds, cβ−α � 1 in all the 2HDMs confirming the SM-like property of the 125 GeV boson [18].

yAu yAd yAl yHu yHd yHl yhu yhd yhl

Type I cotβ − cotβ − cotβ sinα
sin β

sinα
sin β

sinα
sin β

cosα
sin β

cosα
sin β

cosα
sin β

Type II cotβ tanβ tanβ sinα
sin β

cosα
cos β

cosα
cos β

cosα
sin β

− sinα
cos β

− sinα
cos β

Type X cotβ − cotβ tanβ sinα
sin β

sinα
sin β

cosα
cos β

cosα
sin β

cosα
sin β

− sinα
cos β

Type Y cotβ tanβ − cotβ sinα
sin β

cosα
cos β

sinα
sin β

cosα
sin β

− sinα
cos β

cosα
sin β

TABLE I: The normalized Yukawa couplings for up- and down-type quarks and charged leptons.

Normalizing the Yukawa couplings of the neutral bosons to a fermion f by mf/v where v =
√
v2

1 + v2
2 = 246 GeV,

we have the following Yukawa terms:

−L2HDMs
Yukawa =

∑
f=u,d,l

mf

v

(
yhfhf̄f + yHf Hf̄f − iyAf Af̄γ5f

)
(7)

+
[√

2VudH
+ū
(mu

v
yAu PL +

md

v
yAd PR

)
d+
√

2
ml

v
yAl H

+ν̄PRl + h.c.
]

where the normalized Yukawa couplings yh,H,Af are summarized in Table I for each of these four types of 2HDMs.

Let us now recall that the tau Yukawa coupling yτ ≡ yhl in Type X (also yb ≡ yhd in Type II) can be expressed as

yτ = −sα
cβ

= sβ−α − tβcβ−α (8)

which allows us to have the wrong-sign limit yτ ∼ −1 compatible with the LHC data [15] if cβ−α ∼ 2/tβ for large

tβ ≡ tanβ favoured by the muon g−2. Later we will see that a cancellation in λhAA can be arranged only for yhτ < −1

to suppress the h→ AA decay.

III. THE MUON g−2 FROM A LIGHT CP-ODD BOSON

Considering all the updated SM calculations of the muon g−2, we obtain

aSM

µ = 116591829 (57)× 10−11 (9)

comparing it with the experimental value aEXP
µ = 116592091 (63) × 10−11, one finds a deviation at 3.1σ: ∆aµ ≡

aEXP
µ − aSM

µ = +262 (85) × 10−11. In the 2HDM, the one-loop contributions to aµ of the neutral and charged bosons

are

∆a2HDM

µ (1loop) =
GF m

2
µ

4π2
√

2

∑
j

(
yjµ
)2
rjµ fj(r

j
µ), (10)
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FIG. 2: The 1σ, 2σ and 3σ regions allowed by ∆aµ in the MA-tanβ plane taking the limit of cβ−α = 0 and Mh(H) = 125 (200)

GeV in type II (left panel) and type X (right panel) 2HDMs. The regions below the dashed (dotted) lines are allowed at 3σ

(1.4σ) by ∆ae. The vertical dashed line corresponds to MA = Mh/2.

where j = {h,H,A,H±}, rjµ = m2
µ/M

2
j , and

fh,H(r) =

∫ 1

0

dx
x2(2− x)

1− x+ rx2
, (11)

fA(r) =

∫ 1

0

dx
−x3

1− x+ rx2
, (12)

fH±(r) =

∫ 1

0

dx
−x(1− x)

1− (1− x)r
. (13)

These formula show that the one-loop contributions to aµ are positive for the neutral scalars h and H, and negative

for the pseudo-scalar and charged bosons A and H± (for MH± > mµ). In the limit r � 1,

fh,H(r) = − ln r − 7/6 +O(r), (14)

fA(r) = + ln r + 11/6 +O(r), (15)

fH±(r) = −1/6 +O(r), (16)

showing that in this limit fH±(r) is suppressed with respect to fh,H,A(r). Now the two-loop Barr-Zee type diagrams

with effective hγγ, Hγγ or Aγγ vertices generated by the exchange of heavy fermions gives

∆a2HDM

µ (2loop− BZ) =
GF m

2
µ

4π2
√

2

αem

π

∑
i,f

N c
f Q

2
f y

i
µ y

i
f r

i
f gi(r

i
f ), (17)

where i = {h,H,A}, rif = m2
f/M

2
i , and mf , Qf and N c

f are the mass, electric charge and number of color degrees of

freedom of the fermion f in the loop. The functions gi(r) are

gi(r) =

∫ 1

0

dx
Ni(x)

x(1− x)− r
ln
x(1− x)

r
, (18)

where Nh,H(x) = 2x(1− x)− 1 and NA(x) = 1.

Note the enhancement factor m2
f/m

2
µ of the two-loop formula in Eq. (17) relative to the one-loop contribution

in Eq. (10), which can overcome the additional loop suppression factor α/π, and makes the two-loop contributions

may become larger than the one-loop ones. Moreover, the signs of the two-loop functions gh,H (negative) and gA
(positive) for the CP-even and CP-odd contributions are opposite to those of the functions fh,H (positive) and

fA (negative) at one-loop. As a result, for small MA and large tanβ in Type II and X, the positive two-loop
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pseudoscalar contribution can generate a dominant contribution which can account for the observed ∆aµ discrepancy.

The additional 2HDM contribution δa2HDM
µ = δa2HDM

µ (1loop)+δa2HDM
µ (2loop− BZ) obtained adding Eqs. (10) and (17)

(without the h contributions) is compared with ∆aµ in Fig. 4.

IV. ELECTROWEAK PRECESION DATA

FIG. 3: The parameter space allowed in the MA vs. ∆MH = MH −MH± plane by the electroweak precision constraints. The

green, yellow, gray regions satisfy ∆χ2
EW(MA,∆M) < 2.3, 6.2, 11.8, corresponding to 68.3, 95.4, and 99.7% confidence intervals,

respectively.

Allowing such a light CP-odd boson, there could be a strong limit on the extra boson masses coming from the

electroweak precision test. To see this, we compare the theoretical 2HDMs predictions for MW and sin2θlept
eff with

their present experimental values via a combined χ2 analysis. These quantities can be computed perturbatively by

means of the following relations

M2
W =

M2
Z

2

[
1 +

√
1− 4παem√

2GFM2
Z

1

1−∆r

]
(19)

sin2θlept
eff = kl

(
M2
Z

)
sin2θW , (20)

where sin2θW = 1−M2
W /M

2
Z , and kl(q

2) = 1 + ∆kl(q
2) is the real part of the vertex form factor Z → ll̄ evaluated at

q2 = M2
Z . We than use the following experimental values:

MEXP

W = 80.385± 0.015 GeV,

sin2θlept,EXP

eff = 0.23153± 0.00016. (21)

The results of our analysis are displayed in Fig. 3 confirming a custodial symmetry limit [17] of our interest MA �
MH ∼MH± , MA ∼MH± �MH , or MA ∼MH ∼MH± although the last two cases are disfavoured.

V. THEORETICAL CONSIDERATION OF VACCUM STABILITY AND PERTURBATIVITY

While any value of MA is allowed by the EW precision tests in the limit of MH ∼ MH± , there appear upper

bounds on MH±,H by theoretical consideration of vacuum stability, global minimum, and perturbativity expressed
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respectively by

λ1,2 > 0, λ3 > −
√
λ1λ2, |λ5| < λ3 + λ4 +

√
λ1λ2, (22)

m2
12(m2

11 −m2
22

√
λ1/λ2)(tanβ − (λ1/λ2)1/4) > 0, (23)

|λi| . |λmax| =
√

4π, 2π, or 4π. (24)

Taking λ1 as a free parameter, one can have the following expressions for the other couplings in the large tβ limit:

λ2v
2 ≈ s2

β−αM
2
h (25)

λ3v
2 ≈ 2M2

H± − (s2
β−α + sβ−αyτ )M2

H + sβ−αyτM
2
h (26)

λ4v
2 ≈ −2M2

H± + s2
β−αM

2
H +M2

A (27)

λ5v
2 ≈ s2

β−αM
2
H −M2

A (28)

where we have used the relation (8) neglecting the terms of O(1/t2β).

In the right-sign (RS) limit of the lepton (tau, in particular), yτsβ−α → +1, one finds a strong upper limit of [6]

MA �MH± ∼MH . 250GeV (RS). (29)

On the other hand, in the wrong-sing (WS) limit, yτsβ−α → −1, the heavy boson masses up to the perturbativity

limit,

MA �MH± ∼MH .
√

4πv (WS). (30)

can be obtained.

Let us finally remark that the hAA coupling is generically order one and thus can leads to a sizable non-standard

decay of h → AA or AA∗(ττ) if allowed kinematically. Then, one needs to have |λhAA/v| � 1 to avoid an exotic

decay of the SM boson. Noting that λhAA/v ≈ sβ−α[λ3 + λ4 − λ5], one gets

λhAAv/sβ−α ≈ −(1 + sβ−αyτ )M2
H + sβ−αyτM

2
h + 2M2

A (31)

where we have put s2
β−α = 1. In the RS or SM limit, the condition λhAA ≈ 0 can be met for a rather light H with

M2
H ≈ 1

2M
2
h + M2

A which is disfavoured in the explanation of the muon g–2. On the other hand, one can arrange a

cancellation for λhAA ≈ 0 in the wrong-sign limit for arbitrary value of MH if the tau Yukawa coupling satisfies

yτsβ−α ≈ −
M2
H − 2M2

A

M2
H −M2

h

< −1. (32)

VI. LEPTON UNIVERSALITY TESTS

In the limit of large tanβ, the charged boson can generate significant corrections to τ decays at the tree level and

furthermore the extra Higg boson contribution to one-loop corrections can also be significant [19]. The recent study

[8] showed that a stringent bound on the charged boson contributions can be obtained from the lepton universality

condition obtained by the HFAG collaboration [14]. Given the precision at the level of 0.1 %, the lepton universality

data put the strongest bound on the type X 2HDM parameter space in favor of the muon g–2. Thus, let us now make

a proper analysis of the HFAG data.

From the measurements of the pure leptonic processes, τ → µνν, τ → eνν and µ → eνν, HFAG obtained the

constraints on the three coupling ratios, (gτ/gµ) =
√

Γ(τ → eνν)/Γ(µ→ eνν), etc. Defining δll′ ≡ (gl/gl′)− 1, let us

rewrite the data from the leptonic processes:

δlτµ = 0.0011± 0.0015, δlτe = 0.0029± 0.0015, δlµe = 0.0018± 0.0014 (33)

In addition, combing the semi-hadronic processes π/K → µν, HFAG also provided the averaged constraint on (gτ/gµ)

which is translated into

δl+π+K
τµ = 0.0001± 0.0014. (34)
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It is important to notice that only two ratios out of the three leptonic measurements are independent and thus the

three data (33) are strongly correlated. For a consistent treatment of the data, one combination out of the three has

to be projected out. One can indeed check that the direction δlτµ − δlτe + δlµe has the zero best-fit value and the zero

eigenvalue of the covariance matrix, and thus corresponds to the unphysical direction. Furthermore, two orthogonal

directions δlτµ + δlτe and −δlτµ + δlτe + 2δlµe are found to be uncorrelated in a good approximation. As a result, the

2HDM contribution to δll′ are calculated to be

δlτµ = δloop, δlτe = δtree + δloop, δlµe = δtree, δl+π+K
τµ = δloop. (35)

Here δtree and δloop are given by [19]:

δtree =
m2
τm

2
µ

8m4
H±

tan4 β −
m2
µ

m2
H±

t2β
g(m2

µ/m
2
τ )

f(m2
µ/m

2
τ )
, (36)

δloop =
GFm

2
τ

8
√

2π2
t2β

[
1 +

1

4

(
H(xA) + s2

β−αH(xH) + c2β−αH(xh)
)]
.

where f(x) ≡ 1− 8x+ 8x3− x4− 12x2 ln(x), g(x) ≡ 1 + 9x− 9x2− x3 + 6x(1 + x) ln(x), H(x) ≡ ln(x)(1 + x)/(1− x),

and xφ = m2
φ/m

2
H± . From Eqs. (33), (34) and (35), one obtains the following three independent bounds:

1√
2
δtree +

√
2δloop = 0.0028± 0.0019,√
3

2
δtree = 0.0022± 0.0017, (37)

δloop = 0.0001± 0.0014.

We will use these constraints to put a strong limit on the (g− 2)µ favoured region in the MA–tanβ plane in the next

section. Let us recall that the Z → ττ data, although less strong than the HFAG data, provides an independent

bound [8] which further cuts out some corner of parameter space.

VII. PINING DOWN THE WHOLE 2HDM-X PARAMETER SPACE

It is an interesting task to narrow down the allowed region of the type X 2HDM parameter space collecting all the

relevant experimental data including those outlined in Section I and the 125 GeV boson data from LHC, in particular.

The scan ranges of all the 2HDM-X input parameters are listed in Table II. For our scan, we adopt the convention

−π/2 < α− β < π/2 and 0 < β < π/2, and use the parameter λ1 as an input parameter instead of m2
12.

2HDM parameter Range

Scalar boson mass (GeV) 125 < mH < 400

Pseudoscalar boson mass (GeV) 10 < mA < 400

Charged boson mass (GeV) 94 < mH± < 400

cβ−α 0.0 < cβ−α < 0.1

tanβ 10 < tanβ < 150

λ1 0.0 < λ1 < 4π

TABLE II: The scan ranges of the 2HDM-X input parameters.

Fig. 4 shows the allowed region in the mA-tanβ plane from the profile-likelihood study taking all the other 2HDM-

X parameters as nuisance parameters. To see the impact of the lepton universality data by HFAG, we overlay the

contour lines of the lepton universality likelihood at the 99%, 95% and 90% confidence level based on the constraints

(37). The allowed region opened up for tanβ > 140 needs a comment. Note that the δloop is always negative while

δtree becomes positive for larger tanβ/mH± . Thus, there appears a fine-tuned region around tanβ/mH± ∼ 1 GeV−1
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FIG. 4: The 68% and 95% allowed regions by ∆aµ and other experimental constraints in the mA-tanβ plane. The contours of

the lepton universality likelihood in the 99%, 95% and 90% confidence level are overlayed.

where the positive δtree and the negative δloop cancel each other to give a good fit. However, such regions are excluded

by the Z → ττ data [8] and thus we are left with the tightly limited region of MA ≈ 10− 80 GeV and tanβ ≈ 25− 60

at the 95% confidence level.

FIG. 5: The 68% and 95% allowed regions in the mA–ξlh (yτ ≡ ξlh) (left) and mA–cβ−α (middle), and mA–λhAA (λhAA ≈
λ3 + λ4 − λ5) (right) plane.

The region allowed in Fig. 4 can be either in the right-sign (yτ ≡ ξlh > 0) or wrong-sign (yτ ≡ ξlh < 0) domain

as shown in the left and middle panels of Fig. 5. One can see that the rigt-sign limit is tightly constrained to a

small region of mA ≈ 60 − 80 GeV while the wrong-sign limit is favoured in a wider range of parameter space. The

right panel shows the sizes of the coupling λhAA restricted by the LHC data on the exotic decay of the 125 GeV

boson, putting a generous bound of Br(h → AA(∗)) < 40%. As explained before, the suppressed value of λhAA for

mA . mh/2 is shown to appear only in the wrong-sign domain.

Given the possible existence of a light CP-odd boson explaining the muon g–2 in the type X 2HDM, it would be

important to look for its trails at the LHC. Fig. 6 shows the allowed mass ranges of all the extra bosons. Region A

following the pattern of mA . mH ≈ mH± is favoured while Region B with mA ≈ mH± � mH is already excluded

as discussed before.
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FIG. 6: Distribution of the extra boson masses allowed at the 68% and 95% confidence levels.

VIII. TAU-RICH SIGANTURES AT THE LHC

The bulk parameter space with mA � mH ∼ mH± is a clear prediction of the type X 2HDM as the origin of the

muon g–2 anomaly. Since the extra bosons are mainly from the “leptonic” Higgs doublet with large tanβ, all the

three members are expected to dominantly decay into the τ−flavor, leading to τ−rich signatures at the LHC via the

following production and ensuing cascade decay chains:

pp→W±∗ → H±A→ (τ±ν)(τ+τ−), (38)

pp→Z∗/γ∗ → HA→ (τ+τ−)(τ+τ−),

pp→W±∗ → H±H → (τ±ν)(τ+τ−),

pp→Z∗/γ∗ → H+H− → (τ+ν)(τ−ν̄).

To probe Region A, we select six benchmark points with different combinations of mA and mH presented in Table III.

For each point, we take a simple parametrization of tanβ = 1.25(mA/GeV) + 25 and mH± = mH + 15GeV. Note

that we included the points with mA > 80 GeV for the sake of the LHC study although they are forbidden by the

lepton universality tests. In Table III, we show the production cross-section, the selection cuts and the significance

for each benchmark expected for the integrated luminosity of 25/fb at the 14 TeV LHC.

point A point B point C point D point E point F

mA [GeV] 20 40 100 40 100 180

mH [GeV] 200 200 200 260 260 260

total σgen [fb] 270.980 241.830 153.580 100.430 71.271 44.163

n` ≥ 3 6.606 16.681 21.713 7.110 11.962 8.822

nτ ≥ 3 0.894 2.602 4.386 0.888 2.346 1.971

E/T > 100 GeV 0.201 0.547 1.179 0.209 0.765 0.926

nb = nj = 0 0.098 0.314 0.857 0.121 0.479 0.631

S/B 0.1 0.5 1.2 0.2 0.7 0.9

S/
√
B25fb−1 0.6 1.9 5.2 0.7 2.9 3.8

TABLE III: The number of events after applying successive cuts for 14 TeV LHC.

In Fig. 7, we present the exclusion region coming mainly from the chargino-neutralino search at the LHC8, and

the expected discovery reaches at LHC14 with the integrated luminosity of 25/fb. A heavy CP-even boson with

mH > 200 GeV and a light CP-odd boson with mA < 50 GeV are still allowed, and the LHC14 can explore some

of the regions. The sensitivities are weaker for larger mH just because of smaller cross sections, and for smaller mA
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FIG. 7: The 95% exclusion contour from LHC8 (left) and the 2σ, 3σ and 5σ discovery reach countours at LHC14 (right) in the

mA–mH plane.

because τs from lighter A become softer and thus the acceptance quickly decreases. Moreover, the H/H± → AZ/W±

decay modes also start open to decrease the number of hard τs from direct H/H± decays. In such a region, a light

A from heavy H+/H decay will be boosted, resulting in a collimated τ−pair which becomes difficult to be tagged as

two separated τ -jets. It is one of the reasons to have less acceptance for this parameter region. We can estimate the

separation Rττ of the τ leptons from A decay:

Rττ ∼
2m

pT
∼ 4mA

mH±/H

√
1− 2

m2
A+m2

W/Z

m2
H±/H

+
(m2

A−m2
W/Z

)2

m4
H±/H

. (39)

Since the jets are usually defined with R = 0.5, the τ−pair starts overlapping. We indicated the region with the

overlapping τ problem in red lines in the right panel of Fig. 7. Further studies on how to capture the kinematic

features of the boosted A→ τ+τ− are required to probe such a small mA region.

IX. SUMMARY

The type X 2HDM is still a viable option for the explanation of the muon g–2 in the parameter region with large

tanβ and a light CP-odd boson A. Being “hadrophobic and leptophilic” in the large tanβ limit, it can be easily

free from all the hadron-related constraints, particularly, coming from the decay Bs → µµ which puts only a mild

bound of mA & 10 GeV. However, such a region is tightly limited by the lepton universality tests from the HFAG

and Z → ττ data. Combining all the current bounds, we find allowed at the 95% confidence level a limited region of

tanβ ≈ 15− 60 and mA ≈ 10− 80 GeV with mH ≈ mH± � mA.

It will be an interesting task to search for such a light CP-odd boson A and the extra heavy bosons H,H± in the

next run of the LHC mainly through pp → AH,AH± followed by the decays H± → τ±ν and A,H → τ+τ− which

requires further studies to improve the (boosted) tau identification.
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