
EPJ Web of Conferences will be set by the publisher

DOI: will be set by the publisher

c© Owned by the authors, published by EDP Sciences, 2015

Higher order hadronic and leptonic contributions to the muon g − 2

Alexander Kurz1,3a, Tao Liu2b, Peter Marquard3c, Alexander V. Smirnov4d,

Vladimir A. Smirnov5e, and Matthias Steinhauser1f

1Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
2Department of Physics, University of Alberta, Edmonton AB T6G 2J1, Canada
3Deutsches Elektronen Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
4Scientific Research Computing Center, Moscow State University, 119991, Moscow, Russia
5Skobeltsyn Institute of Nuclear Physics of Moscow State University, 119991, Moscow, Russia

Abstract. In this contribution we discuss next-to-next-to-leading order hadronic and four-loop QED contribu-

tions to the anomalous magnetic moment of the muon.

1 Introduction

The anomalous magnetic moment of the muon, aµ, is

among the most precise measured quantities in particle

physics. It is measured to a precision of 0.54 parts per mil-

lion which matches the precision of the Standard Model

theory prediction [1, 2]. However, since many years one

observes a discrepancy of about three to four standard de-

viations which survives persistent all improvements. This

concerns both the experimental data and theoretical calcu-

lations entering the prediction.

Currently a new experiment is built at FERMILAB

with the aim to increase the accuracy of the measured

value by about a factor four [3, 4]. In the upcoming years

also improvements on the theory side can be expected. On

the one hand this is connected to improved measurements

of R(s) at low energies (see, e.g., Refs. [5–7]). On the other

hand it can be expected that within the next few years re-

sults from lattice simulations become available both for

the hadronic vacuum polarization and hadronic light-by-

light contributions (see, e.g., Refs. [8–12]).

The by far dominant numerical contribution to aµ orig-

inates from QED corrections which are known to five-loop

order [13]. Note, however, that the four- and the five-loop

corrections have only been computed by a single group.1

For this reason we have recently started to systematically

check the four-loop results of [13]. In Ref. [17] analytic

results for the gauge-invariant subsets with two or three

closed electron loops have been obtained neglecting power

corrections of the form me/mµ. All contributions involving
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1Partial four-loop corrections have been obtained in Refs. [14–19].

a τ lepton have been computed in Ref. [20]. After includ-

ing three (analytic) expansion terms in m2
µ/m

2
τ a better pre-

cision has been obtained than in the numerical approach

of Ref. [13]. The numerically most important QED con-

tributions at four-loop level arise from light-by-light-type

diagrams (i.e. the external photon does not couple to the

external muon line) containing a closed electron loop. This

well-defined subset has been considered in Ref. [21] where

an asymptotic expansion for me ≪ mµ has been performed

to compute four expansion terms.

We adopt the notation from Ref. [13] and parametrize

the anomalous magnetic moment in the form

aµ =

∞
∑

n=1

a(2n)
µ

(

α

π

)n

, (1)

where the four-loop contribution can be written as

a(8)
µ = A

(8)

1
+ A

(8)

2
(mµ/me) + A

(8)

2
(mµ/mτ)

+ A
(8)

3
(mµ/me,mµ/mτ) . (2)

A
(8)

1
contains only contributions from photons and muons,

A
(8)

2
(mµ/me) and A

(8)

2
(mµ/mτ) involve closed electron or

tau loops, and each Feynman diagram which contributes

to A
(8)

3
(mµ/me,mµ/mτ) contains all three lepton flavours

simultaneously. In Sections 2 and 3 we describe the

calculation of the light-by-light type QED contribution

to A
(8)

2
(mµ/me) (see also [21]) and the computation of

A
(8)

2
(mµ/mτ) (see also [20]), respectively. Afterwards we

summarize in Section 4 the computation of the next-to-

next-to-leading order (NNLO) hadronic vacuum polariza-

tion contribution published in Ref. [22]. A brief summary

and an outlook is given in Section 5.

2 Four-loop electron contribution

The numerically most important contribution to a
(8)
µ origi-

nates from diagrams involving a closed electron loop (de-
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A
(8)

2

(

mµ

me

)

[21] [13, 28]

IV(a0) 116.76 ± 0.02 116.759183 ± 0.000292

IV(a1) 2.69 ± 0.14 2.697443 ± 0.000142

IV(a2) 4.33 ± 0.17 4.328885 ± 0.000293

IV(a) 123.78 ± 0.22 123.78551 ± 0.00044

IV(b) −0.38 ± 0.08 −0.4170 ± 0.0037

IV(c) 2.94 ± 0.30 2.9072 ± 0.0044

Table 1. Summary of the final results for the individual

four-loop light-by-light-type contributions and their comparison

with results presented in Refs. [13, 28].

noted by A
(8)

2
(mµ/me) in Eq. (2). This contribution con-

tains a gauge invariant subset where the external photon

does not couple to the external muon line but to a closed

fermion loop, the so-called leptonic light-by-light-type di-

agrams. Due to Furry’s theorem such diagrams do not

contribute at two but only start at three loops where four

photons can be attached to the closed fermion loop. Here

we discuss the four-loop result which can be sub-divided

into three gauge invariant and finite contributions which

we denote by IV(a), IV(d) and IV(c). Sample Feynman

diagrams are shown in Fig. 1. Case IV(a) can be further

subdivided according to the flavour of the leptons in the

closed fermion loops. The contribution with two electron

loops is denoted by IV(a0), the one with one muon and

one electron loop and the coupling of the external photon

to the electron by IV(a1), and the remaining one with one

muon and one electron loop by IV(a2). We do not con-

sider the case with two muon loops since this contribution

is part of A
(8)

1
.

The light-by-light-type diagrams are numerically dom-

inant and provide about 95% of the four-loop electron loop

contribution. The main reason for this are log(me/mµ)

terms which are even present in the limit me → 0. In

fact, IV(a0) even has quadratic logarithms which makes

this part the most important one.

Our calculation is based on an asymptotic expan-

sion [23, 24] for me ≪ mµ which is implemented with

the help of asy [25, 26] and in-house Mathematica pro-

grams. Similar to the hard mass procedure applied in Sec-

tion 3 we obtain a factorization of the original two-scale

integrals into products of one-scale integrals. The latter are

either vacuum or on-shell integrals or integrals containing

eikonal propagators of the form 1/(p · q) (see Ref. [21]

for more details). For each integral class we perform a

reduction to master integrals and obtain analytic results

expressed as a linear combination of about 150 so-called

master integrals. About 50% of them we know analyti-

cally or to high numerical precision. The remaining ones

are computed with the help of the package FIESTA [27]

which is the source of the numerical uncertainty in our fi-

nal result. We would like to stress that in our approach

a systematic improvement is possible if it is required to

improve the accuracy.

For all five cases we compute terms up to order

(me/mµ)
3 (i.e. four expansion terms) and check that the cu-

bic corrections only provide a negligible contribution. Our

final results can be found in Tab. 1 where we compare to

the findings of Refs. [13, 28]. Note that results for IV(a0)

have also been obtained in Refs. [29, 30], though with sig-

nificantly larger uncertainty. In all cases good agreement is

found with [13, 28]. Although our numerical uncertainty,

which amounts to approximately 0.4×(α/π)4 ≈ 1.2×10−11,

is larger, the final result is nevertheless sufficiently accu-

rate as can be seen by the comparison to the difference be-

tween the experimental result and theory prediction which

is given by

aµ(exp) − aµ(SM) ≈ 249(87) × 10−11 . (3)

This result is taken from Ref. [13]. Note that the uncer-

tainty in Eq. (3) receives approximately the same amount

from experiment and theory. Even after a projected reduc-

tion of the uncertainty by a factor four both in aµ(exp) and

aµ(SM) our numerical precision is a factor ten below the

uncertainty of the difference.

3 Four-loop tau lepton contribution

In this section we discuss the gauge invariant and finite

subset of Feynman diagrams involving a closed heavy tau

lepton loop. In the limit of infinitely heavy mτ this con-

tribution has to vanish. Thus A
(8)

2
(mµ/mτ) has a paramet-

ric dependence m2
µ/m

2
τ which is of order 10−3. Note, that

α/π ≈ 2 · 10−3 and thus one can expect that the four-loop

tau lepton contribution is of the same order as the universal

five-loop result [13].

We compute this contribution by applying an asymp-

totic expansion in the limit m2
τ ≫ m2

µ. This is realized with

the help of the program exp [31, 32] which is written in

C++. As a result the two-scale four-loop integrals factor-

ize into one-scale vacuum (mτ) and on-shell (mµ) integrals.

Both integral classes are well studied in the literature (for

references see [20]). This concerns both the reduction to

master integrals and the analytic evaluation of the latter.

In the first line of Fig. 2 a sample Feynman diagram

is shown where the thick solid lines represent the tau lep-

tons. Rows two and three of Fig. 2 show the result of the

asymptotic expansion where the graphs left of the symbol

⊗ have to be expanded in all small quantities, i.e., the ex-

ternal momenta and the muon mass. Thus, the only mass

scale of the remaining vacuum integral is the tau lepton

mass. The result of the Taylor expansion is inserted into

the effective vertex (thick blob) present in the diagram to

the right of ⊗. Afterwards the remaining loop integrations,

which are of on-shell type, are performed.

As a final result we obtain an expansion in m2
µ/m

2
τ with

analytic coefficients containing log(m2
µ/m

2
τ) terms. Note

that with the help of this method a better accuracy has been

obtained than with the numerical approach of Ref. [13].

Inserting numerical values for the lepton masses leads to

A
(8)

2,µ
(mµ/mτ) = 0.0421670 + 0.0003257

+ 0.0000015 + . . . , (4)

where the ellipsis indicates terms of order (m2
µ/m

2
τ)

4 which

are expected to contribute at order 10−8 to A
(8)

2,µ
(mµ/mτ).
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IV(a) IV(b) IV(c)

Figure 1. Sample light-by-light-type Feynman diagrams contributing to aµ. The external solid line represents the muon and at least

one of the internal solid loops denotes electrons. In the case of IV(a) the second fermion loop can either be an electron or muon loop.

Wavy lines represent photons.

Figure 2. Graphical example for the application of the asymptotic expansion at four loops. Thick solid, thin solid and wavy lines rep-

resent taus, muons and photons, respectively. Only four representative sub-diagrams are shown; altogether there are eight contributions

for the diagram in the first row.

aµ receives contribution from τ lepton loops starting at

two-loop order. Their numerical impact is given by

1011 × aµ

∣

∣

∣

∣

τloops
= 42.13 + 0.45 + 0.12 , (5)

where the numbers on the right-hand side correspond to

the two, three and four loops. It is interesting to note that

the three-loop term is only less than a factor four larger

than the four-loop counterpart. Furthermore, it is worth

comparing the numbers in Eq. (5) to the universal contri-

butions contained in A1 which read [13]

1011 × aµ

∣

∣

∣

∣

univ.
= 116 140 973.21 − 177 230.51

+ 1 480.42 − 5.56 + 0.06 , (6)

where the individual terms on the right-hand side represent

the results from one to five loops. Note that the four-loop

tau lepton term is twice bigger than the five-loop photonic

contribution.

4 NNLO hadronic contribution

The LO hadronic contribution to the anomalous magnetic

moment of the muon is obtained from diagram (a) in

Fig. 3. One parametrizes the hadronic contribution (rep-

resented by the blob) by the polarization function Π(q2)

which appears as a factor in the integrand of the one-loop

diagram. In a next step one exploits analyticity of Π(q2)

and uses a dispersion integral to introduce its imaginary

part,

R(s) =
σ(e+e− → hadrons)

σpt

, (7)

with σpt = 4πα2/(3s). Note that σ(e+e− → hadrons) does

note include initial state radiative or vacuum polarization

corrections. At that point the loop integration and the dis-

persion integral are interchanged and one obtains

a(1)
µ =

1

3

(

α

π

)2
∫ ∞

m2
π

ds
R(s)

s
K(1)(s) , (8)

A convenient integral representation for the kernel func-

tion K(1)(s), which is the result of the loop integration, is

given by

K(1)(s) =

∫ 1

0

dx
x2(1 − x)

x2 + (1 − x) s

m2
µ

. (9)

At one-loop order it is possible to obtain analytic results

(see Refs. [33, 34]). Nevertheless, it is promising to con-

sider K(1)(s) in the limit m2
µ ≪ s which is justified since the
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lower integration limit in Eq. (8) is m2
π which is bigger than

m2
µ. The expansion of K(1)(s) is easily obtained by remem-

bering that it originates from the vertex diagram similar to

Fig. 3(a) where the hadronic blob (including the external

photon lines) is replaced by a massive photon with mass√
s. The expansion m2

µ ≪ s is easily implemented with the

help of the program exp [31, 32] which implements the

rules of asymptotic expansions involving a large internal

mass (see, e.g., Ref. [24]). As a result the original two-

scale integral is represented as a sum of one-scale integrals

which are simple to compute. Using this approach several

expansion terms in m2
µ/s can be computed. One observes

that an excellent approximation for a
(1)
µ is obtained by in-

cluding terms up to order (m2
µ/s)5.

The approach described in detail for the one-loop di-

agram can also be applied at two and three loops where

exact calculations of the kernel functions are either very

difficult or even impossible. In Ref. [22] four expansion

terms have been computed which provides an approxima-

tion at the per mil level.

A slight complication arises for the contribu-

tions involving more than one hadronic insertion, see

Figs. 3(d,h,i,j,l). In case they are present in the same pho-

ton line formulas similar to Eq. (9) can be derived with

two- and three-dimensional integrations. Diagrams of type

(3c) in Fig. 3 are more involved. Here, we apply a mul-

tiple asymptotic expansion in the limits s ≫ s′ ≫ m2
µ,

s ≈ s′ ≫ m2
µ and s′ ≫ s ≫ m2

µ (s and s′ are the integra-

tion variables) and construct an interpolating function by

combining the results from the individual limits.

The LO result for the hadronic vacuum polarization

contribution to aµ can be found in Refs. [35–38] and NLO

analyses have been performed in Refs. [36, 39–41]. Our

NLO results for the three contributions read

a(2a)
µ = −20.90 × 10−10 ,

a(2b)
µ = 10.68 × 10−10 ,

a(2c)
µ = 0.35 × 10−10 , (10)

which leads to

ahad,NLO
µ = −9.87 ± 0.09 × 10−10 , (11)

in a good agreement with Refs. [36, 41]. Note that in our

analyses no correlated uncertainties are taken into account.

Such a rough treatment should not be done at LO but is

certainly acceptable at NNLO.

For the individual NNLO contributions we obtain the

results

a(3a)
µ = 0.80 × 10−10 ,

a(3b)
µ = −0.41 × 10−10 ,

a(3b,lbl)
µ = 0.91 × 10−10 ,

a(3c)
µ = −0.06 × 10−10 ,

a(3d)
µ = 0.0005 × 10−10 , (12)

which leads to

ahad,NNLO
µ = 1.24 ± 0.01 × 10−10 . (13)

It is interesting to note that similar patterns are observed at

two and three loops: multiple hadronic insertions are small

and the contributions of type (b) involving closed electron

two-point functions reduce the contributions of type (a) by

about 50%. However, at three-loop order there is a new

type of diagram where the external photon couples to a

closed electron loop (a
(3b,lbl)
µ ) which provides the largest

individual contribution. This is in analogy to the three-

loop QED corrections where the light-by-light type dia-

grams dominate the remaining contributions. In fact, due

to a
(3b,lbl)
µ the NNLO hadronic vacuum polarization contri-

bution has a non-negligible impact. It has the same order

of magnitude as the current uncertainty of the leading or-

der hadronic contribution and should thus be included in

future analyses.

An important contribution to aµ is provided by the so-

called hadronic light-by-light diagrams where the external

photon is connected to the hadronic blob. The NLO part

of this contribution is of the same perturbative order as the

corrections in Eq. (13). A first-principle calculation of this

part is currently not available, however, in [42] it has been

estimated to a
lbl−had,NLO
µ = 0.3 ± 0.2 × 10−10.

We want to mention that there is a further hadronic

contribution where four internal photons couple to the

hadronic blob and the external photon couples to the muon

line (“internal hadronic light-by-light”). This contribu-

tion, which is formally of the same perturbative order as

a
had,NNLO
µ , is currently unknown.

5 Summary and conclusions

For more than a decade the measured and predicted results

for the anomalous magnetic moment of the muon show a

discrepancy of three to four standard deviations. This cir-

cumstance has triggered many publications which try to

interpret the deviation with the help of beyond-SM theo-

ries. However, before drawing definite conclusions it is

necessary to cross check the experimental result by per-

forming an independent high-precision determination of

aµ. Furthermore, all ingredients of the theory prediction

should be computed by at least two groups independently.

In this contribution we describe the calculation of two

classes of four-loop QED contributions to aµ, which up to

date only have been computed by one group: the contri-

bution involving tau leptons and the one involving light-

by-light-type closed electron loops. Good agreement with

the results in the literature is found. To complete the cross

check of the four-loop result the non-light-by-light elec-

tron contribution, the diagrams involving simultaneously

electrons and taus, and the pure-muon contribution have to

be computed. From the technical point of view the miss-

ing diagram classes have the same complexity as those de-

scribed in Sections 2 and 3.

As a further topic we have discussed in Section 4 the

calculation of the NNLO hadronic vacuum polarization

contribution.
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(a) LO (b) 2a (c) 2b (d) 2c

(e) 3a (f) 3b (g) 3b (h) 3c

(i) 3c (j) 3c (k) 3b,lbl (l) 3d

Figure 3. Sample LO, NLO and NNLO Feynman diagrams contributing to ahad
µ . The external fermions are muons and the fermions in

the closed loops represent electrons.
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