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SM prediction and experimental status of aµ

Contribution Value ×1010 Uncertainty ×1010

QED 11 658 471.895 0.008
EW 15.4 0.1
HVP (Leading-order) ∗692.3 4.2
HVP (Higher-order) -9.84 0.06
Hadronic light-by-light ∗∗10.5 2.6
Total SM prediction 11 659 180.3 4.9

BNL E821 result 11 659 209.1 6.3
Fermilab E989 target ≈ 1.6

∗ e+e− → hadrons (exp) and dispersion integrals; “3.3σ tension” based on: K. Hagiwara et al.,

J. Phys. G38 (2011) 085003: aHAD, LO VP
µ × 1010 → 694.91

∗∗ based on Prades, de Raphael, and Vainshtein 2009 “Glasgow White Paper”: QCD model including PS meson

contribution; Pauk and Vanderhaeghen Eur.Phys.J. C74 (2014) 8, 3008: include AV,S,T meson poles yields

< 1.0× 10−10 shifts in aHAD, LBL
µ
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The hadronic light-by-light contribution (HLbL)
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The form factor that yields the light-by-light scattering contribution to the muon anomalous
magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of
QED is used and is checked against perturbation theory. The hadronic contribution is calculated
for unphysical quark and muon masses, and only the diagram with a single quark loop is computed.
Statistically significant signals are obtained. Initial results appear promising, and the prospect for
a complete calculation with physical masses and controlled errors is discussed.

INTRODUCTION

The muon anomaly aµ provides one of the most strin-
gent tests of the standard model because it has been
measured to great accuracy (0.54 ppm) [1], and calcu-
lated to even better precision [2–4]. At present, the dif-
ference observed between the experimentally measured
value and the standard model prediction ranges between
249 (87) ⇥ 10�11 and 287 (80) ⇥ 10�11, or about 2.9 to
3.6 standard deviations [2–4]. In order to confirm such
a di↵erence, which then ought to be accounted for by
new physics, new experiments are under preparation at
Fermilab (E989) and J-PARC (E34), aiming for an accu-
racy of 0.14 ppm. This improvement in the experiments,
however, will not be useful unless the uncertainty in the
theory is also reduced.

Table I summarizes the contributions to aµ from
QED [2], electroweak (EW) [5], and QCD sectors of the
standard model. The uncertainty in the QCD contri-
bution saturates the theory error. The precision of the
leading-order (LO) hadronic vacuum polarization (HVP)
contribution requires sub-percent precision on QCD dy-
namics, reached using a dispersion relation and either
the experimental production cross section for hadrons
(+�) in e+e� collisions at low energy, or the experimental
hadronic decay rate of the ⌧ -lepton with isospin breaking
taken into account. Meanwhile lattice QCD calculations
of this quantity are improving rapidly [6], and will pro-
vide an important crosscheck.

Unlike the case for the HVP, it is di�cult, if not im-
possible, to determine the hadronic light-by-light scat-
tering (HLbL) contribution (Fig. 1), aµ(HLbL), from ex-
perimental data and a dispersion relation [7]. So far,
only model calculations have been done. The uncertainty
quoted in Table I was estimated by the “Glasgow consen-
sus” [8]. Note that the size of aµ(HLbL) is the same order
as the current discrepancy between theory and experi-
ment. Thus, a first principles calculation, which is sys-

TABLE I. The standard model contributions to the muon
g�2, scaled by 1010; the QED contribution up to O(↵5), EW
up to O(↵2), and QCD up to O(↵3), consisting of the leading-
order (LO) HVP, the next-to-leading-order (NLO) HVP, and
HLbL. For the LO HVP three results obtained without (the
first two) and with (the last) ⌧ ! hadrons are shown.

QED 116 584 71.8 951 (9)(19)(7)(77) [2]
EW 15.4 (2) [5]
QCD LO HVP 692.3 (4.2) [3]

694.91 (3.72) (2.10) [4]
701.5 (4.7) [3]

NLO HVP �9.79 (9) [9]
HLbL 10.5 (2.6) [8]

tematically improvable, is strongly desired for aµ(HLbL).
In this paper, we present the first result for the magnetic
form factor yielding aµ(HLbL) using lattice QCD.

FIG. 1. Hadronic light-by-light scattering contribution to
the muon g � 2, where the grey part consists of quarks and
gluons. The wavy lines denote photons, and the dashed arrow
line represents the muon.

ar
X

iv
:1

40
7.

29
23

v1
  [

he
p-

la
t] 

 1
0 

Ju
l 2

01
4

For external photon index µ with momentum q:

(−ie)

[
γµF1(q2) +

iσµνqν

2m
F2(q2)

]
(1)

with F2(0) = aµ.
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Important lattice terminology – quark-connected diagrams

Quark-connected

Quark-disconnected

Quark-disconnectedQuark-disconnected

Representative diagrams with one to four quark loops; gluons not
drawn
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HLbL – A long-standing problem of interest for our collaboration

First methodology paper 10 years ago: Blum, Hayakawa, Izubuchi,
Yamada: PoS(LAT2005)353; Quark-connected contribution only

Hadronic light-by-light scattering contribution to the muon g−2 from lattice QCD Masashi Hayakawa

could be estimated by purely theoretical calculation. So far, it has been calculated only based on
the hadronic picture [7, 8]. Thus the first principle calculation based on lattice QCD is particularly
desirable.

µ

elastic scattering amplitude
of two photons by QCD

l1l2

Figure 1: hadronic light-by-light scattering contribution to the muon g−2

The diagram in Fig. 1 evokes the following naive approach; we calculate repeatedly the cor-
relation function of four hadronic electromagnetic currents by lattice QCD with respect to two
independent four-momenta l1, l2 of off-shell photons, and integrate it over l1, l2. Such a task is too
difficult to accomplish with use of supercomputers available in the foreseeable future.

Here we propose a practical method to calculate the h-lbl contribution by using the lattice
(QCD + QED) simulation; we compute

〈 quark 〉

QCD+quenched QEDA

−
〈

quark

〉

QCD+quenched QEDB〈 〉

quenched QEDA

, (2)

amputate the external muon lines, and project the magnetic form factor, and divide by the factor
3. In Eq. (2) the red line denotes the free photon propagator Dµν(x, y) in the non-compact lat-
tice QED solved in an appropriate gauge fixing condition. The black line denotes the full quark
propagator Sf (x, y;U, u) for a given set of SU(3)C gauge configuration

{
Ux,µ

}
andU(1)em gauge

configuration
{
ux,µ

}
, where the sum over relevant flavors f is implicitly assumed. The blue line

represents the full muon propagator s(x, y; u). The average ⟨, ⟩ above means the one over the
unquenched SU(3)C gauge configurations and/or the quenched U(1)em gauge configurations 1 as
specified by the subscript attached to it. Since two statistically independent averages over U(1)em
gauge configurations appear in the second term, they are distinguished by the labels A, B.

1For the unquenched QCD plus quenched QED to respect the gauge invariance of QED, the electromagnetic charges
of sea quarks are assumed to be zero.
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T
2
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5
)
3
5
3
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Noise control: impose quantum-average properties config-by-config
(e → −e, p → −p)

5 / 17



First implementation of this methodology 10 years later:

Blum et al., Phys.Rev.Lett. 114 (2015) 1, 012001: connected
diagrams only, mπ = 329 MeV, a−1 = 1.73 GeV, L = 243 × 64

4

QCD CONTRIBUTION

The inclusion of QCD into the light-by-light amplitude
is straightforward: simply construct combined links from
the product of U(1) (QED) gauge links and SU(3) (QCD)
links [15], and follow exactly the same steps, using the
same code, as described in the previous sub-section. We
use one quenched QED configuration per QCD configura-
tion, though di↵erent numbers of each could be beneficial
and should be explored.

Our main result is again computed on a lattice of size
243 ⇥ 64 (Ls = 16, M5 = 1.8) with spacing a = 0.114
fm (a�1 = 1.73 GeV) and light quark mass 0.005 (m⇡ =
329 MeV) (an RBC/UKQCD collaboration 2+1 flavor,
DWF+Iwasaki ensemble [13, 14]). The bare muon mass
is again set to mµ = 0.1 (the renormalized mass extracted
from the two-point function is 190 MeV), and e = 1 as
before. The domain wall height M5 for the quark loop
propagators is set to 1.8, the value used to generate the
gluon gauge field ensemble; M5 for the muon line is the
same as in the pure QED case.

The all mode averaging (AMA) technique [16] is used
to achieve large statistics at an a↵ordable cost. In the
AMA procedure the expectation value of an operator is
given by hOi = hOresti + 1

NG

P
ghOapprox,gi [16], where

NG is the number of measurements of the approximate
observable, and “rest” refers to the contribution of the
exact observable minus the approximation, evaluated for
the same conditions. The exact part of the AMA calcu-
lation was done using eight point sources on each of 20
configurations, and the approximation was computed us-
ing 400 low-modes of the even-odd preconditioned Dirac
operator and NG = 216 point sources computed with
stopping residual 10�4 on 375 configurations. On a dif-
ferent subset of 190 configurations we tried 125 point
sources and found the 216 sources per configuration to
be more e↵ective at reducing the statistical error. In the
present calculation, the statistical errors are completely
dominated by the second term in the above equation,
(approximately 4:1) and the “rest”, or correction is about
�10 ± 5%.

The external electromagnetic vertex is inserted on time
slice top = 5 with the muon created and destroyed at
several time separations ranging between 8 and 20. We
also include the vector current renormalization in pure
QCD from [14] for the local vector current at the exter-
nal vertex. We have computed the connected diagram
shown in Fig. 2 for a single quark with charge +1 in the
present exploratory study, so the final result is multiplied
by (2/3)4+(�1/3)4+(�1/3)4 to account for (degenerate)
u, d, and s quark contributions.

In Fig. 4 we show F2((2⇡/L)2) for hadronic light-by-
light scattering. Again there is a large excited state ef-
fect. For tsep = 20 the ground state appears to dominate,
and the value is roughly consistent with the model esti-

mate [8]. By tsep = 32, the signal has disappeared, but
there is no suggestion of large residual excited state con-
tamination. The unphysical heavy masses used here for
numerical expediency are expected to lead to a some-
what higher value: in hadronic models the increase due
to muon mass overwhelms the decrease due to heavier
pion mass [18].

F2(Q
2) is shown in Fig. 5 for several values of Q2 for

tsep = 10. A mild dependence on Q2 is seen. While we
have not computed Q2 values for tsep = 20, a similar
dependence is expected since the quark part computed
in both is the same; only the muon line is di↵erent.

As anticipated above, before averaging over equivalent
external momenta, the statistical errors are considerably
larger as the two photon exchange contribution is one
order lower in ↵. While the combinations ±~p e↵ectively
eliminate the error from this contribution, the light-by-
light contribution is identical, so the statistical error is
only reduced by averaging over independent momenta or
the �µ inserted at the external vertex.

0 0.1 0.2 0.3 0.4
Q2 (GeV2)

-0.1

-0.05

0

0.05

0.1

0.15

F 2(Q
2 )

Models
tsep=0-10 (m

π
=330 MeV)

FIG. 5. The muon’s magnetic form factor in units of (↵/⇡)3

from hadronic light-by-light scattering. m⇡ = 329 MeV. The
time separation between the muon source and sink in this case
is tsep = 10. The model result (burst) is for physical masses.

Early preliminary work [19] was done on another
DWF+Iwasaki ensemble with size 163 ⇥ 32 and light
quark mass mq = 0.01 (m⇡ = 422 MeV). Two muon
masses, mµ = 0.4 and 0.1, were used. The external elec-
tromagnetic vertex is inserted on time slice top = 6 and
the incoming and outing muons are created and destroyed
at t = 0 and 12, respectively. Following the same pro-
cedure as above (except that we did not use AMA), for
mµ = 0.4 (6.5 times the physical muon mass), F2(Q

2 =
0.38 GeV2) = (5.8±0.6)⇥10�5 = (0.79±0.08)⇥ (↵/⇡)3.
The magnitude is roughly 5 times larger than the model
estimates for aµ(HLbL). The smaller muon mass mµ =
0.1 yields F2(Q

2 = 0.19 GeV2) = (0.48 ± 0.18) ⇥ 10�5 =
(0.065 ± 0.024) ⇥ (↵/⇡)3.

Finally, the subtraction is shown to be working prop-
erly in the (QCD + QED) case by varying e as follows.
The same non-compact QED configurations are used in
each case; e is varied only when constructing the expo-

y axis in units of (α/π)3
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Imperfections that need to be addressed:

I Omission of quark-disconnected diagrams

I Control of large QED finite-volume errors

I Direct evaluation of / extrapolation to F2 at Q2 = 0

I Control of excited state contributions

I Computation at physical pion mass

7 / 17



Inclusion of QCD+dynamical QED

Blum, Hayakawa, and Izubuchi, PoS(LATTICE 2013)439; Update:
M. Hayakawa Lattice 2015

P
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0
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3
)
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3
9

Update on hadronic light-by-light

second largest values of Q2 where it is zero within statistical errors. Even heavier quarks and
muons lead to large values with the opposite sign compared to models, though this is consistent
with expected non-leading contributions.

A significant shortcoming in the current calculation is the absence of diagrams with two or
more quark loops coupled to photons as the one shown on the right in Fig. 1. They are next-to-
leading order in the number of colors, 1/NC, and 5 diagrams other than the ones in Fig 1 vanish in
the SU(3)-flavor symmetry limit. They may be significant and could correct the odd Q2 behavior
of F2 in Fig. 2. This behavior may also be due to poor statistics and prevents us from making a
reliable Q2 ! 0 extrapolation.

We are currently working to include the contribution of the missing diagrams by using dy-
namical QCD+QED configurations, or equivalently, by re-weighting the quenched QED configu-
rations [16]. In Fig. 3 we show all possible quark-line disconnected diagrams. The corresponding
subtracted correlation functions are shown in Fig. 4. Since the diagrams are not computed sep-
arately, but arise from hadronic vacuum polarization in the dynamical QED configurations, it is
important that they occur with the same multiplicity. A careful accounting of the contributions
shown in Fig. 4 shows this is true. A new complication arises in the last diagram where the quark
loops containing the external vertex and the manually inserted virtual photon are different. In the
latter, a random 4-volume source is required.

I. HADRONIC LIGHT-BY-LIGHT CONTRIBUTION

Thus far, we foused primarily on the hadronic light-by-light contribution involving a

quark loop with four electromagnetic (EM) verties, called LBL(4).

Below, I list up all diagrams containing more than one quark loop having EM vertices

(with no lattice-artifact interactions) 1.

The hadronic light-by-light scattering diagrams with two quark loops having EM vertices

2

* +

QCD

, (1)

* +

QCD

, (2)

* +

QCD

. (3)

1 All figures are brought from M.H.’s slide used at Lattice 2005. Sorry for di↵erence of notations used in

Sec. II
2 Individual photon lines emanated from quark loops should be contracted with those attatched on the

muon lines in all possible ways.

2

I call the contributions (1), (2) and (3) as LBL(1,3), LBL(2,2) and LBL(3,1), respectively

The hadronic light-by-light diagrams with three quark loops having EM vertices

* +

QCD

, (4)

* +

QCD

. (5)

I call the contributions (4) and (5) as LBL(1,1,2) and LBL(2,1,1), respectively.

The hadronic light-by-light diagrams with four quark loops having EM vertices

* +

QCD

, (6)

I call the contribution (6) as LBL(1,1,1,1).

3

I call the contributions (1), (2) and (3) as LBL(1,3), LBL(2,2) and LBL(3,1), respectively

The hadronic light-by-light diagrams with three quark loops having EM vertices

* +

QCD

, (4)

* +

QCD

. (5)

I call the contributions (4) and (5) as LBL(1,1,2) and LBL(2,1,1), respectively.

The hadronic light-by-light diagrams with four quark loops having EM vertices

* +

QCD

, (6)

I call the contribution (6) as LBL(1,1,1,1).

3

Figure 3: Disconnected quark-line diagrams in HLbL scattering. The photons connect the quark loops with
the muon line in all possible combinations.
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Addresses disconnected diagrams, however, isolation of signal from noise
is challenging
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Re-examine statistics

QCD+QED simulations suffer from large statistical uncertainties.
We explore a different method here:

Point Source Photon Light by Light - Comparison

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25 30

F
2
(q

2
)/
(α

/π
)3

tsep

Point Source Photon QCD 16nt32
Stochastic Photon QCD 16nt32

Figure 16. Excited effects on F2. 163 × 32 lattice, with a−1 = 1.747GeV, mπ = 424MeV, mµ =

332MeV. Here we compare the new point source method with the old stochastic photon method.

Same-cost comparison: red data: old method QCD+quenched
QED, black: new stochastic sampling method (Luchang Jin talk at
lattice 2015)

Luchang Jin

Plot for 163 QCD+QED data of Blum et al. 2014
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New stochastic sampling method

Mµ
LbL(q) remains constant, if we try to extract F2(q2) using Eq ???, the noise for F2(q2) would still

go like 1/ q. This can be a serious problem because we are really interested in the value of F2(q
2)

in the q→0 limit. Since we always evaluate the amplitude at q =2π/L, the noise for F2(q2) would
be proportion to L.

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

Figure 22. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. Just like Fig ???, 5 other possible permutations of the three internal photons are
not shown. (L) This is the diagram that we have already calculated. (M) We need to compute sequential
source propagators at xop for each polarizations of the external photon. (R) We also need to compuate
sequential source propagators at xop, but with the external photon momentum in opposite direction, since
we need use γ5-hermiticity to reverse the direction of the propagators, which reverses the momentum of the
external photon as well.

The reason that amplitude is proportion to q is the external photon is couple to a conserved
current of a quark loop. Current conservation ensures that the amplitude vanishes if the external
momentum is zero. Although we implemented exact conserved current at xop and sum it over the
entire space time in the method described above, we didn’t compute all three possible insertions for
the external photon. So the current is only truly conserved after stochastic average over x and y. As
a result, the noise would not be zero when q =0. To fix this, we just need to compute all diagrams
in above figure, then the noise would be proportion to q as well.1 These additional diagrams are
also computationally accessible. We only need to compute sequential propagators for each possible
polarizations and momentums of the external photon. We normally compute three polarization
directions x, y, and t, which are perpendicular to the direction of the external momentum z. This
would be six times more work for the quark loop part of the computation, but the cost for the
muon part remains unchanged. We can adjust M to rebalance the cost, so the over all cost increase
might not be significant but the potential gain can be large especially in a large volume.

There is also another trick. When we sum over z to get the exact photon, we don’t have to sum over
the entire volume, instead, we only sum over the region where |x− y |< |x−z | and |x− y |< |y −z |.2
This trick will enhance the signal in short distance but suppress signal and noise in long distance
where the distance. This trick is called MinDis in the tables blow.

4.1 Zero Total Current Prove

Here we try to prove that the sum of a conserved current is zero if it vanishes at the boundary.

Given:

∂µjµ = 0, (19)

1. Although the current conservation is exact, in finite lattice with periodic boundry condition, around the world
effects will contribute to the noise even when the external momentum is zero. But this noise is suppressed expo-
nentially in the large volume limit. In summary, in the small q and large volume limit, the noise is roughly
O(q)+ O

(
e−mπL/2

)
.

2. We need multiply some different factors when two edges happened to have the same length.

19
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Figure 19. 24I-L
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Figure 20. 32ID
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Figure 21. 32ID

17

Stochastically evaluate the sum over vertices x and y :
I Pick random point x on lattice
I Sample all points y up to a specific distance r = |x − y |, see

vertical red line
I Pick y following a distribution P(|x − y |) that is peaked at

short distances

Advantage: order of magnitude smaller noise, Disadvantage: disconnected diagrams by hand
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QCD + QED on a lattice – finite-volume errors

xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ

z, �

y, � x, ⇢

xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ
z, �

y, � x, ⇢

xsrc xsnky�, �� z�, �� x�, ⇢�

xop, µ
z, �

y, � x, ⇢

Figure 5. The three di�erent possible insertions of the external photon in the connected light-by-

light diagram. While the location of the external photon vertex xop may be fixed, the other three

positions where the internal photons are connected to the quark line x, y and z must be integrated

over space-time.

z must remain close to the fixed position xop. Thus, up to exponentially small corrections

Eq. (4) can also be evaluated in a large but finite volume.

Starting with Eq. (4) we exploit the translational symmetry discussed above, and dis-

place the four arguments x, y, z and xop of the function F� by the four-vector (x + y)/2,

transforming that equation into

G�(pf , xop, pi) =

Z
d4x

Z
d4y

Z
d4z F�

�
x � y

2
, �x � y

2
, z � x + y

2
, xop � x + y

2

�

ei�q·(�x+�y)/2. (5)

=

Z
d4w

Z
d4�z

Z
d4�xop F�

�w

2
, �w

2
, �z, �xop

�
ei�q·�xope�i�q·��xop , (6)

where we have defined q = pi � pf and in the final equation we have adopted the three new

integration variables:

w = x � y, �z = z � x + y

2
, �xop = xop � x + y

2
. (7)

The critical step in our derivation replaces the factor e�i�q·��xop in Eq. (6) by (e�i�q·��xop � 1)

giving:

G�(pf , xop, pi) =

Z
d4w

Z
d4�z

Z
d4�xop F�

�w

2
, �w

2
, �z, �xop

�
ei�q·�xop

�
e�i�q·��xop � 1

�
, (8)

The extra ‘1’ term introduced into the integrand over �xop will vanish if

�

�(�xop)�
F�

�w

2
, �w

2
, �z, �xop

�
= 0 (9)

2

For this diagram separate QCD and QED expectation values are
not zero hence category two and we need to sum over all
displacements between QCD and QED part to control FV errors.
Class b.
Proposal of stochastic sampling ... in the process ... no data yet

25 / 26

Need to sum over all displacements
between QCD and QED part to con-
trol FV errors.

Since muon line does not couple to gluons, this can be done in a
straightforward way: C.L. talk at lattice 2015
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Direct evaluation of form-factor at F2(Q2 = 0)

Model of problem: The lattice gives the position-space correlator
C (x) whose momentum space version

C (q) =
∑

x

e iqxC (x) (2)

vanishes for q = 0 and the observable is related to

F = lim
q→0

C (q)

q
, (3)

while the lattice only has access to C (q) for finite-volume
quantized momenta q.

However: if C (x)→ 0 sufficiently fast as |x | → ∞, we can write

F = i
∑

x

x C (x) (4)

with controlled finite-volume errors.
12 / 17



Imperfections that need to be addressed:

I Omission of quark-disconnected diagrams

X Control of large QED finite-volume errors

X Direct evaluation of / extrapolation to F2 at Q2 = 0

X Control of excited state contributions

X Computation at physical pion mass

13 / 17



Demonstration of validity – Replace quark with lepton loop
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Figure 28.
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Figure 29.

6.2 Finite volume effect
The finite volume effect has power law like correction because of photon has zero mass and its

25
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Demonstration of validity – Replace quark with lepton loop
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Figure 28.
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Figure 29.

6.2 Finite volume effect
The finite volume effect has power law like correction because of photon has zero mass and its

25

Lattice result nicely extrapolates to the known analytic theory result;
Note that the difference between the lepton and full computation is
merely the quark-propagator used, this is a strong test!
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Status of lattice hadronic light-by-light determination:

I Quark-connected diagram seems to be controllable with
current methodology

I We are currently running a large-scale computation at
Argonne National Laboratory using 175M core hours (≈ 5000
typical laptop years) with precision-target for the
quark-connected diagram of 10%− 20%

Work in progress:

I Quark-disconnected diagram strategy needs to be optimized.
This is a statistics problem not a systematic one!

Other collaborations have started similar efforts (Mainz group
presented a computation of the quark four-point function at lattice
2015).

The lattice community is actively putting its focus on this
important quantity.
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Lattice methods – who is checking whom?

The comparison of lattice and model computations does not end
after the first lattice computation. The beauty of lattice

methodology is that it is systematically improvable. Over years
more and more lattice collaborations with independent systematics

and statistics will repeat and refine the computation.
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Thank you



Backup slides



Excited states – A quick reminder of further lattice methodology

The lattice can compute Euclidean-space correlation functions. We
extract operator matrix elements by taking large time separations
to isolate on-shell contributions. Example:

〈A(t)O(top)B(0)〉 =
∑

n,m

〈A|n〉〈n|O|m〉〈m|B〉e−En(t−top)e−Emtop

→ 〈A|n0〉〈n0|O|m0〉〈m0|B〉e−En0 (t−top)e−Em0 top .

Replacing O(top)→ e iqtop allows for determination of norm and to
extract 〈n0|O|m0〉.

Mµ
LbL(q) remains constant, if we try to extract F2(q2) using Eq ???, the noise for F2(q2) would still

go like 1/ q. This can be a serious problem because we are really interested in the value of F2(q
2)

in the q→0 limit. Since we always evaluate the amplitude at q =2π/L, the noise for F2(q2) would
be proportion to L.

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν

y, σ x, ρ

Figure 22. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. Just like Fig ???, 5 other possible permutations of the three internal photons are
not shown. (L) This is the diagram that we have already calculated. (M) We need to compute sequential
source propagators at xop for each polarizations of the external photon. (R) We also need to compuate
sequential source propagators at xop, but with the external photon momentum in opposite direction, since
we need use γ5-hermiticity to reverse the direction of the propagators, which reverses the momentum of the
external photon as well.

The reason that amplitude is proportion to q is the external photon is couple to a conserved
current of a quark loop. Current conservation ensures that the amplitude vanishes if the external
momentum is zero. Although we implemented exact conserved current at xop and sum it over the
entire space time in the method described above, we didn’t compute all three possible insertions for
the external photon. So the current is only truly conserved after stochastic average over x and y. As
a result, the noise would not be zero when q =0. To fix this, we just need to compute all diagrams
in above figure, then the noise would be proportion to q as well.1 These additional diagrams are
also computationally accessible. We only need to compute sequential propagators for each possible
polarizations and momentums of the external photon. We normally compute three polarization
directions x, y, and t, which are perpendicular to the direction of the external momentum z. This
would be six times more work for the quark loop part of the computation, but the cost for the
muon part remains unchanged. We can adjust M to rebalance the cost, so the over all cost increase
might not be significant but the potential gain can be large especially in a large volume.

There is also another trick. When we sum over z to get the exact photon, we don’t have to sum over
the entire volume, instead, we only sum over the region where |x− y |< |x−z | and |x− y |< |y −z |.2
This trick will enhance the signal in short distance but suppress signal and noise in long distance
where the distance. This trick is called MinDis in the tables blow.

4.1 Zero Total Current Prove

Here we try to prove that the sum of a conserved current is zero if it vanishes at the boundary.

Given:

∂µjµ = 0, (19)

1. Although the current conservation is exact, in finite lattice with periodic boundry condition, around the world
effects will contribute to the noise even when the external momentum is zero. But this noise is suppressed expo-
nentially in the large volume limit. In summary, in the small q and large volume limit, the noise is roughly
O(q)+ O

(
e−mπL/2

)
.

2. We need multiply some different factors when two edges happened to have the same length.
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Excited states

I As we go to larger volumes, excited state contributions of
µ+ γ etc. may be enhanced

I Lattice QED perturbation theory converges well and can be
used to construct improved source

I We are exploring this with the PhySyHCAl system that also
was used for a free-field test of Blum et al. 2014


