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Roberta Vinci defeated Serena Williams, 2-6, 6-4, 6-4, and Flavia Penetta 
defeated Simona Halep, 6-1, 6-3, at semifinals of the United States Open,              
Sept 11  



The Workshop started with review by David Hertzog 
of the status of new muon g-2 experiments at FNAL 
and J-PARC and theory review by Kirill Melnikov.

Brookhaven experiment:

This discrepancy which is more than three standard 
deviations will become more than five deviations in the 
FNAL experiment where experimental error will be four 
times smaller.

Thus, decreasing the theoretical error becomes a crucial 
challenge. 

E821 and the new experiment at FNAL

The latest measurements of the muon anomalous magnetic moment in the Brookhaven 
experiment   left us with an interesting puzzle: theoretical and experimental results for g-2 
differ by about three standard deviations:  

The new experiment at FNAL aims at reducing the experimental error by a factor of
four. Assuming no changes in the central value,  the above discrepancy will increase
to 5.1 standard deviations.   By accepted standards, this will qualify as a discovery.

Given the strong potential of the g-2 experiment to clarify the situation,  it is  important to 
scrutinize the theoretical prediction once again and ensure that the theoretical result is 
actually correct within the estimated uncertainty.

aexpµ = 116 592 089(63)⇥ 10�11, athµ = 116 591 830(50)⇥ 10�11

aexpµ � athµ = (259± 81)⇥ 10�11
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Theory of the muon g-2 was a subject of a majority 
of the talks:

Melnikov, Jegerllehner, Knecht, Zhang, Benayoun,
Trentadue, Procura, Cappielle, Bijnens,Greynat, 
Nufeller, Steinhauser, Masjuan

Mostly it was about SM prediction for g-2, particularly 
on hadronic vacuum polarization and light-by-light 
contributions.

Few talks on NP explaining the deviation in g-2 in 
supersymmetric and extra Higgs models:
Stockinger, Chun, Heek



Also I’d separate out two talks on lattice experiments in 
calculation of g-2 by Petschlies and Lehner.

It is in addition to talks on physical experiments on g-2:
Hertzog, Morriciani, Eidelman, Montagna, Chislett, 
Semertzidis.

Other subjects like dipole moments of electron and tau,
dark photon, and particularly lepton flavour violation were 
discussed  both on theoretical and experimental sides.

I would like to limit my outlook by theory of the muon g-2,
my apology for not covering much.



In my view we had very good discussion of different issues  
associated with hadronic contributions. 

Unfortunately, I do not see much of novelty in the 
approaches to, say, hadronic light-by-light which would 
allow to diminish the theoretical uncertainty. This 
uncertainty could be, actually, much larger than the quoted 
one,                                          , if we are missing 
something in our understanding of strong interaction 
effects.

As an example, let me mentioned that the pseudovector 
exchange could be much larger based on the large 
branching 

Contribution to a

HLbL
from scalar exchanges

The ENJL–model should give a good estimate for these contributions. We keep, therefore, the result of
Ref. [7, 8] with, however, a larger error which covers the e↵ect of other unaccounted meson exchanges,

a

HLbL(scalars) = �(0.7 ± 0.7) ⇥ 10�10
. (14)

Contribution to a

HLbL
from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

a

HLbL(⇡�dressed loop) = �(1.9 ± 1.9) ⇥ 10�10
. (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

a

HLbL
µ = (105 ± 26) ⇥ 10�11

, (16)

as our final estimate.
�(f1(1285) ! �⇢

0)

�total

= (5.5 ± 1.3) ⇥ 10�2 (17)

�(f1(1285) ! ��

⇤) = (2.8 ± 0.8) keV (18)

We wish to emphasize, however, that this is only what we consider to be our best estimate at present.
In view of the proposed new gµ�2 experiment, it would be nice to have more independent calculations
in order to make this estimate more robust. More experimental information on the decays ⇡0 ! ��

⇤,
⇡

0 ! �

⇤
�

⇤ and ⇡

0 ! e

+
e

� (with radiative corrections included) could also help to confirm the
result of the main contribution in Eq. (12).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (13) but other C-even exchanges are
also important. Experimental data on radiative decays and two-photon production of C-even reso-
nances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
di�cult task. New approaches to the dressed pion loop contribution, in parallel with experimental in-
formation on the vertex ⇡

+
⇡

�
�

⇤
�

⇤, would be very welcome. Again, measurement of the two-photon
processes like e

+
e

� ! e

+
e

�
⇡

+
⇡

� could give some information on that vertex and help to reduce
the model dependence and therefore the present uncertainty in Eq. (15).
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Ref. [7, 8] with, however, a larger error which covers the effect of other unaccounted meson exchanges,

aHLbL(scalars) = −(0.7 ± 0.7) × 10−10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(π−dressed loop) = −(1.9 ± 1.9) × 10−10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (6), we get

aHLbL = (105 ± 26) × 10−11 , (16)

as our final estimate.
Γ(f1(1285) → γρ0)

Γtotal
= (5.5 ± 1.3) × 10−2 (17)

Γ(f1(1285) → γγ∗) = (2.8 ± 0.8) keV (18)

We wish to emphasize, however, that this is only what we consider to be our best estimate at present.
In view of the proposed new gµ−2 experiment, it would be nice to have more independent calculations
in order to make this estimate more robust. More experimental information on the decays π0 → γγ∗,
π0 → γ∗γ∗ and π0 → e+e− (with radiative corrections included) could also help to confirm the
result of the main contribution in Eq. (12).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (13) but other C-even exchanges are
also important. Experimental data on radiative decays and two-photon production of C-even reso-
nances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
difficult task. New approaches to the dressed pion loop contribution, in parallel with experimental in-
formation on the vertex π+π−γ∗γ∗, would be very welcome. Again, measurement of the two-photon
processes like e+e− → e+e−π+π− could give some information on that vertex and help to reduce
the model dependence and therefore the present uncertainty in Eq. (15).
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It is not consistent with two-photon production 

f

e

e

γ

γ

Ref. [?, ?] with, however, a larger error which covers the effect of other unaccounted meson exchanges,

aHLbL(scalars) = −(0.7 ± 0.7) × 10−10 . (14)

Contribution to aHLbL from a dressed pion loop

Because of the instability of the results for the charged pion loop and unaccounted loops of other
mesons, we suggest using the central value of the ENJL result but wit a larger error:

aHLbL(π−dressed loop) = −(1.9 ± 1.9) × 10−10 . (15)

From these considerations, adding the errors in quadrature, as well as the small charm contribution
in Eq. (??), we get

aHLbL = (105 ± 26) × 10−11 , (16)

as our final estimate.

Γ(f1(1285) → γγ∗) = (2.8 ± 0.8) keV (17)

We wish to emphasize, however, that this is only what we consider to be our best estimate at present.
In view of the proposed new gµ−2 experiment, it would be nice to have more independent calculations
in order to make this estimate more robust. More experimental information on the decays π0 → γγ∗,
π0 → γ∗γ∗ and π0 → e+e− (with radiative corrections included) could also help to confirm the
result of the main contribution in Eq. (??).

More theoretical work is certainly needed for a better understanding of the other contributions
which, although smaller than the one from pseudoscalar exchanges, have nevertheless large uncertain-
ties. This refers, in particular, to pseudovector exchanges in Eq. (??) but other C-even exchanges are
also important. Experimental data on radiative decays and two-photon production of C-even reso-
nances could be helpful. An evaluation of 1/Nc–suppresed loop contributions present even a more
difficult task. New approaches to the dressed pion loop contribution, in parallel with experimental in-
formation on the vertex π+π−γ∗γ∗, would be very welcome. Again, measurement of the two-photon
processes like e+e− → e+e−π+π− could give some information on that vertex and help to reduce
the model dependence and therefore the present uncertainty in Eq. (??).
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which gives much less. The data are quite old.
It shows an importance of experimental input from 
two-photon production.

Let me comment on the procedure of dispersion 
reconstruction suggested in Massimiliano Procura’s talk.

 



Pion transition FFs are input for a numerical analysis of the master formula: 
formulation of a dispersive framework in 

From the unitarity relation with only π0 intermediate state, the pole residues in 
each channel are given by products of doubly-virtual and singly-virtual pion 
transition form factors (         and          )

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

Pion pole: known
Projection on the BTT basis: done
Our master formula=explicit expressions in the literature

4 Mandelstam Representation

Pion pole

• input: doubly-virtual and
singly-virtual pion transition form
factors F����⇥0 and F���⇥0

• dispersive analysis of transition
form factor:
� Hoferichter et al., EPJC 74 (2014) 3180
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4 Mandelstam Representation

Pion pole

• input: doubly-virtual and
singly-virtual pion transition form
factors F����⇥0 and F���⇥0

• dispersive analysis of transition
form factor:
� Hoferichter et al., EPJC 74 (2014) 3180

25

Hoferichter et al. (2014)

For the one-pion exchange it is presented by the diagram

renormalization of a given theory. Moreover, the supercurrent supermultiplet (to
be referred to as hypercurrent) starts from the U(1)R current; therefore the overall
anomaly is determined by the index theorem for the appropriate Dirac operator.

To explain the nature of heterotic modifications let us start with reminding ge-
ometry of unmodified N =(2, 2) sigma models. It was pointed out by Zumino [?]
that the target space of these models should have the Kähler geometry. Moreover, to
be characterized just by one coupling g, it should be a symmetric space which can be
described as a homogeneous space G/H for a Lie group G and the stabilizer H . For
the projective CP(N � 1) space G = SU(N) and H = S (U(N�1) ⇥ U(1)). It
is a particular case of Grassmannian spaces
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In application to g-2 we take the limit           ,  so come to
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a way to uncover renormalization of a given theory. Moreover, the supercurrent
supermultiplet (to be referred to as hypercurrent) starts from the U(1)R current;
therefore the overall anomaly is determined by the index theorem for the appropriate
Dirac operator.

To explain the nature of heterotic modifications let us start with reminding ge-
ometry of unmodified N =(2, 2) sigma models. It was pointed out by Zumino [18]
that the target space of these models should have the Kähler geometry. Moreover, to
be characterized just by one coupling g, it should be a symmetric space which can be
described as a homogeneous space G/H for a Lie group G and the stabilizer H . For
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Note that applying the dispersive approach to the 
effectively three-point amplitude we would put the 
polynomial to zero,

Moreover, we can use the QCD operator product 
expansion to show that this polynomial is vanishing indeed.

means that the bulk of the contribution does not come from small virtual momenta ki and, therefore,
chiral perturbation theory should not be applied. In other words, the term c3 in Eq. (8) with no chiral
enhancement is comparable with c2(m2

ρ/m2
π). It means that loops with heavier mesons should also

be included.
Breaking of the chiral perturbation theory looks surprising at first sight. Indeed, the inverse chiral

parameter m2
ρ/m2

π ≈ 30 is much larger than Nc = 3. What happens is that the leading terms in the

chiral expansion are numerically suppressed, which makes chiral corrections governed not by m2
π/m2

ρ

but rather by ≈ 40 m2
π/m2

ρ . This can be checked analytically in the case of the HVP contribution

to the muon anomaly. The charged pion loop is also enhanced in this case by a factor m2
ρ/m2

π but

the relative chiral correction due to the pion electromagnetic radius (evaluated with a cutoff at m2
ρ in

the ππ spectral function) is ∼ 40 m2
π/m2

ρ ln(mρ/2mπ). Of course, if the pion mass (together with
the muon mass) would be, say, 5 times smaller than in our real world, the charged pion–loop would
dominate both in the HVP and the HLbL contributions to the muon anomalous magnetic moment.

In concluding this Section, we see that the 1/Nc expansion works reasonably well, so one can use
one–particle exchanges for the HLbL amplitude. On the other hand, chiral enhancement factors are
unreliable, so we cannot limit ourselves to the lightest Goldstone–like states, and this is the case both
for the leading and next–to–leading order in the 1/Nc expansion.

3. Short–Distance QCD Constraints.

The most recent calculations of aHLbL in the literature [1, 6, 8, 9] are all compatible with the QCD
chiral constraints and large–Nc limit discussed above. They all incorporate the π0–exchange contri-
bution modulated by π0γ∗γ∗ form factors F(k2

i , k2
j ), correctly normalized to the π0 → γγ decay

width. They differ, however, in the shape of the form factors, originating in different assumptions:
vector meson dominance (VMD) in a specific form of Hidden Gauge Symmetry (HGS) in Refs. [4, 5, 6];
a different form of VMD in the extended Nambu–Jona-Lasinio model (ENJL) in Ref. [7, 8]; large–Nc

models in Refs. [1, 9]; and on whether or not they satisfy the particular operator product expansion
(OPE) constraint discussed in Ref. [9], upon which we next comment.

Let us consider a specific kinematic configuration of the virtual photon momenta k1, k2, k3 in
the Euclidean domain. In the limit q = 0 these momenta form a triangle, k1 + k2 + k3 = 0,
and we consider the configuration where one side of the triangle is much shorter than the others,
k2
1 ≈ k2

2 ≫ k2
3 . When k2

1 ≈ k2
2 ≫ m2

ρ we can apply the known operator product expansion for the
product of two electromagnetic currents carrying hard moments k1 and k2,

∫

d4x1

∫

d4x2 e−ik1·x1−ik2·x2 jν(x1) jρ(x2) =
2

k̂2
ϵνρδγ k̂δ

∫

d4z e−ik3·z jγ
5 (z) + O

(
1

k̂3

)

. (10)

Here jγ
5 =

∑

q Q2
q q̄γγγ5q is the axial current where different flavors are weighted by squares of their

electric charges and k̂ = (k1 − k2)/2 ≈ k1 ≈ −k2 . As illustrated in Fig. 3 this OPE reduces the
HLbL amplitude, in the special kinematics under consideration, to the AVV triangle amplitude.

k

k k

q 01

2 3

q 0

k3

γ γγ 5H

Figure 3: OPE relation between the HLbL scattering and the AVV triangle amplitude.

There are a few things we can learn from the OPE relation in Eq. (10). The first one is that the
pseudoscalar and pseudovector meson exchanges are dominant at large k1,2. Indeed, only 0− and

5

It shows an absence of consistency in the approach 
suggested. 



Let me conclude by expressing some optimism on reaching 
the goal of a better theory in spite of much difficulty.
This optimism is based on now a quite high level of 
attention to subject. 

Workshops like this one play a huge role in the further 
development. So I would like to express mine and other 
participants gratitude to organizers for such a remarkable 
meeting.


