Review on $\gamma\gamma$ physics at KLOE

Dario Moricciani INFN Roma "Tor Vergata"

On behalf KLOE-2 Collaboration

Outline

- KLOE-1 data f off peak
- KLOE-2 : new $\gamma\gamma$ tagger detectors LET and HET
- KLOE-2 : new dataset
- Conclusions

KLOE-1

Off-peak or tagger

 $\gamma\gamma$ physics can be done at a ϕ -factory, on the ϕ peak: gives access to many interesting final states through photon emission from both colliding electron and positron

TRUE, BUT...

<u>γγ events acquired at the φ peak would suffer from φ decays</u> <u>as background</u>

γγ channel	(L = 10 fb ⁻¹)
$e^{_+}e^{} ightarrow e^{_+}e^{}\pi^0$	4 × 10 ⁶
$e^{_+}e^{} ightarrow e^{_+}e^{}\eta$	1 × 10 ⁶
$e^+e^- ightarrow e^+e^-\pi^+\pi^-$	2 × 10 ⁶
$e^+e^- ightarrow e^+e^-\pi^0\pi^0$	2 × 10 ⁴

φ decays	Missing particle	Events (∠ = 10 fb ⁻¹)	Background for :
$K_{S}(\pi^{0}\pi^{0}) K_{L}$	KL	~ 10 ⁹	$\pi^0\pi^0$
${\sf K}_{\sf S}(\pi^+\pi^-) \; {\sf K}_{\sf L}$	KL	~2×10 ⁹	
$\pi^+ \pi^- \pi^0$	π^{O}	~ 10 ⁹	$\pi^+\pi^-$
η(γγ) γ	γ	~ 10 ⁸	η
<i>π</i> ⁰ (γγ) γ	γ	~5×10 ⁸	π^0

Tagging $\gamma\gamma$ events by detecting e^+e^- in the final state is mandatory to reduce backgrounds, otherwise we have to run off-peak from the ϕ events

KLOE-1 off-peak : $\gamma\gamma \rightarrow \eta$

 $\eta \rightarrow \pi^{o} \pi^{o} \pi^{o}$

 $\sigma(e^+e^- \to e^+e^-\eta) = (32.7 \pm 1.3_{\text{stat}} \pm 0.7_{\text{syst}}) \text{ pb}.$

$$\Gamma(\eta \to \gamma \gamma) = (520 \pm 20_{\text{stat}} \pm 13_{\text{syst}}) \text{ eV}$$

 $\eta \rightarrow \pi^+ \pi^- \pi^0$

LET characteristics

LET: Low Energy Tagger(160-230 MeV) lepton energy Calorimeters, LYSO + SiPM

LET system and performance

- 3rd term is fixed, since we have about 5 MeV noise
- Statistical term higher than expected (20 p.e./MeV \rightarrow less than 1%/E^{1/2}(GeV))
- Contribution to constant term due to lateral leakage (matrix not fully readout)
- There is an unknown contribution from the beam
- Resolution is better than 10% for E > 150 MeV

LET acceptance

11

In this study we consider only the reaction $\gamma\gamma \rightarrow \pi^0\pi^0$

- Single arm acceptance: HET = 14%, LET = 17%
- Single Total acceptance (only 1 tagger fired) = 54%
- Double arm acceptance (H*H + 2*L*(H) + L*L) = 2+5+3 = 10%

HET characteristics

The HET detector will be located at 11 m from the IP behind a bending Magnet : Plastics + PMTs

HET acceptance

π° TFFs

 $e^+e^- \rightarrow e^+e^- \pi^o$ $\gamma^* \gamma \rightarrow \pi^o \rightarrow Amplitude \propto F(M^2_{\pi}, Q^2, 0)$

Slope near $Q^2 = 0$ crucial for hadronic LbL contribution to a_{μ}

F. Jegerlehner, A. Nyffeler / Physics Reports 477 (2009) 1-110

$$\begin{split} a_{\mu}^{\text{LbL};\pi^{0}} &= -e^{6} \int \frac{\mathrm{d}^{4}q_{1}}{(2\pi)^{4}} \frac{\mathrm{d}^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1}+q_{2})^{2}[(p+q_{1})^{2}-m_{\mu}^{2}][(p-q_{2})^{2}-m_{\mu}^{2}]} \\ &\times \left[\frac{\mathscr{F}_{\pi^{0*}\gamma^{*}\gamma^{*}}(q_{2}^{2},q_{1}^{2},q_{3}^{2}) \,\mathscr{F}_{\pi^{0*}\gamma^{*}\gamma}(q_{2}^{2},q_{2}^{2},0)}{q_{2}^{2}-m_{\pi}^{2}} \, T_{1}(q_{1},q_{2};p) \right. \\ &+ \left. \frac{\mathscr{F}_{\pi^{0*}\gamma^{*}\gamma^{*}}(q_{3}^{2},q_{1}^{2},q_{2}^{2}) \,\mathscr{F}_{\pi^{0*}\gamma^{*}\gamma}(q_{3}^{2},q_{3}^{2},0)}{q_{3}^{2}-m_{\pi}^{2}} \, T_{2}(q_{1},q_{2};p) \right], \end{split}$$

15

Simulation in KLOE-2 case

Jegerlehner-Nyffeler (JN) and Melnikov-Vainshtein (MV) approaches are used for calculation of $a_{\mu}^{\text{LbyL};\pi}$

- A0 : CLEO, CELLO, PDG
- A1 : CLEO, CELLO, PrimEx
- A2 : CLEO, CELLO, PrimEx, KLOE-2

B0 : CLEO, CELLO, BaBar, PDG
B1 : CLEO, CELLO, BaBar, PrimEx
B2 : CLEO, CELLO, BaBar, PrimEx, KLOE-2

Simulation of KLOE-2 measurement of $F(Q^2)$ (red triangles) with statistical errors for 5 fb⁻¹. The detection efficiency is estimated to be about 20%. Dashed line is the $F(Q^2)$ form factor according to LMD+V model, solid line is F(0) given by Wess-Zumino-Witten term. CELLO (black crosses) and CLEO (blue stars) data at high Q^2 are also shown for illustration.

D. Babusci et al., EPJC 72 (2012) 1917 : We aspect to collect ~ 10000 ev for \mathcal{L}_{int} = 5fb⁻¹

Results on a_{μ}^{HLBL}

Model	Data	$\chi^2/d.o.f.$	$a_{\mu}^{ m LbyL;\pi} imes 10^{11}$
VMD	A 0	6.6/19	(57.2 ± 4.0) _{JN}
VMD	A1	6.6/19	(57.7 ± 2.1) _{JN}
VMD	A2	7.5/27	$(57.3 \pm 1.1)_{JN}$
LMD+V, $h_1 = 0$	A 0	6.5/19	(72.3 ± 3.5) _{JN} *
			(79.8 ± 4.2) _{MV}
LMD+V, $h_1 = 0$	A1	6.6/19	(73.0 ± 1.7) _{JN} *
			(80.5 ± 2.0) _{MV}
LMD+V, $h_1 = 0$	A2	7.5/27	(72.5 ± 0.8) _{JN} *
			(80.0 ± 0.8) _{MV}
LMD+V, $h_1 \neq 0$	A 0	6.5/18	(72.4 ± 3.8) _{JN} *
LMD+V, $h_1 \neq 0$	A1	6.5/18	(72.9 ± 2.1) _{JN} *
LMD+V, $h_1 \neq 0$	A2	7.5/26	(72.4 ± 1.5) _{JN} *
LMD+V, $h_1 \neq 0$	B0	18/35	(71.9 ± 3.4) _{JN} *
LMD+V, $h_1 \neq 0$	B1	18/35	(72.4 ± 1.6) _{JN} *
LMD+V, $h_1 \neq 0$	B2	19/43	(71.8 ± 0.7) _{JN} *

• There is also an additional error coming from the "off-shellness" of the pion

Experimental considerations

LET are located inside KLOE : we can use the KLOE DAQ without any problem of trigger synchronization.

HET if located 11 m far from KLOE : we have to take care about the trigger and the events synchronization.

The DA Φ NE bunch structure could help us to manage this :

HET TDC_V5

NIM A 739 (2014) 75

KLOE-2: data taking campaign

DA Φ NE delivered 1030 pb⁻¹, and KLOE record 790 pb⁻¹. Which correspond 77 % average efficiency

Low Energy Tagger

- LET calibration: equalization with MIPs, • time alignment w.r.t. the EMC
- LET operation with circulating beams •
 - high background environment

(bckg rate evaluated from out of time hits)

- Rough estimate of the radiative Bhabha expected rate with e^+ or e^- on LET (from Babayaga MC) \approx 30 kHz on the whole LET (overestimated)
 - Example of time distribution from data • \Rightarrow peak over a large background Work in progress to understand these events with LET "in time" with the EMC

High Energy Tagger

DA\PhiNE bunch : 5-10-5-15-5-20-5-25

HET Events

- Bhabhayaga : σ =11 mb ϵ_{H} =4.4 % ϵ_{HH} =1.9x10⁻⁵ (but radiative photons are not detected in KLOE). Visible σ_{H} =484µb and σ_{HH} =209nb
- Ekhara : $e^+e^- \rightarrow e^+e^-\pi^0$: σ =280 pb ϵ_H =7.7 % ϵ_{HH} =1.4 %. Visible σ_H =21.6nb and σ_{HH} =3.9nb
- S/B_H=44.6×10⁻⁶ S/B_{HH}=10.3 %

HET time structure

TDC(HETe⁻) - TDC(HETe⁺)

HET - KLOE Synchronization

Conclusion

- KLOE-1 $\gamma\gamma \rightarrow \pi^{\circ}\pi^{\circ}$ should published soon.
- KLOE-2 is running. Our goal is to collect
 ~ 5 fb⁻¹ in the next two years.