Review on $\gamma \gamma$ physics at KLOE

Dario Moricciani
INFN Roma "Tor Vergata"

On behalf KLOE-2 Collaboration

Outline

- KLOE-1 data foff peak
- KLOE-2 : new $\gamma \gamma$ tagger detectors LET and HET
- KLOE-2 : new dataset
- Conclusions

KLOE-1

- LNF ϕ-factory:
$e^{+} e^{-}$collider @ $\sqrt{s} \approx 1020 \mathrm{MeV} \approx M_{\phi}$;
- Best performances in 2005:
- $L_{\text {peak }}=1.4 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- $\int L d t=8.5 \mathrm{pb}^{-1 / d a y}$
- KLOE: $2.5 \mathrm{fb}^{-1} @ \sqrt{s}=M_{\phi}$ and $+250 \mathrm{pb}^{-1}$ off-peak @ $\mathrm{s}=1 \mathrm{GeV}$

Drift chamber:

- gas: $90 \% \mathrm{He}-10 \% \mathrm{C}_{4} \mathrm{H}_{10}$
- $\delta p_{T} / p_{T}=0.4 \%$
- $\sigma_{x y}=150 \mu \mathrm{~m} ; \sigma_{z} \approx 2 \mathrm{~mm}$
- $\sigma_{\text {vertex }} \approx 1 \mathrm{~mm}$

Calorimeter (Pb-Sci.Fi.):

- $\sigma_{E} / E=5.7 \% / \sqrt{ }(E(\mathrm{GeV}))$
- $\sigma_{+}=55 \mathrm{ps} / \sqrt{ }(E(G \mathrm{GV})) \oplus 100 \mathrm{ps}$
- 98% of 4π

Data from off-peak data set are used essentially to study the channels : $\gamma \gamma \rightarrow \eta$ and $\gamma \gamma \rightarrow \pi^{0} \pi^{\circ}$

$\gamma \gamma$ - physics

Off-peak or tagger

$\gamma \gamma$ physics can be done at a φ-factory, on the φ peak: gives access to many interesting final states through photon emission from both colliding electron and positron

TRUE, BUT...
$\gamma \gamma$ events acquired at the φ peak would suffer from φ decays as background

$\gamma \gamma$ channel	$\left(L=10 \mathrm{fb}^{-1}\right)$
$e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0}$	4×10^{6}
$e^{+} e^{-} \rightarrow e^{+} e^{-} \eta$	1×10^{6}
$e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{+} \pi^{-}$	2×10^{6}
$e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0} \pi^{0}$	2×10^{4}

ϕ decays	Missing particle	Events $(\Omega=10 \mathrm{fb}$	Background for:
$\mathrm{K}_{\mathrm{S}}\left(\pi^{0} \pi^{0}\right) \mathrm{K}_{\mathrm{L}}$	K_{L}	$\sim 10^{9}$	$\pi^{0} \pi^{0}$
$\mathrm{~K}_{\mathrm{S}}\left(\pi^{+} \pi^{-}\right) \mathrm{K}_{\mathrm{L}}$	K_{L}	$\sim 2 \times 10^{9}$	
$\pi^{+} \pi^{-} \pi^{0}$	π^{0}	$\sim 10^{9}$	$\pi^{+} \pi^{-}$
$\eta(\gamma \gamma) \gamma$	γ	$\sim 10^{8}$	η
$\pi^{0}(\gamma \gamma) \gamma$	γ	$\sim 5 \times 10^{8}$	π^{0}

Tagging $\gamma \gamma$ events by detecting $e^{+} e^{-}$in the final state is mandatory to reduce backgrounds, otherwise we have to run off-peak from the ϕ events

KLOE-1 off-peak : $\gamma \gamma \rightarrow \eta$

$$
\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}
$$

$$
\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-} \eta\right)=\left(32.7 \pm 1.3_{\mathrm{stat}} \pm 0.7_{\mathrm{syst}}\right) \mathrm{pb}
$$

$$
\Gamma(\eta \rightarrow \gamma \gamma)=\left(520 \pm 20_{\mathrm{stat}} \pm 13_{\mathrm{syst}}\right) \mathrm{eV}
$$

$$
\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}
$$

KLOE-1 off-peak : $\gamma \gamma \rightarrow \pi^{0} \pi^{\circ}$

- bkgrs' sum
$-\mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{L}}$
- $\omega \pi^{0}$
$-\mathrm{f}_{0} \rightarrow \pi^{0} \pi^{0}$

KLOE-2 : new $\gamma \gamma$ taggers

LET system and performance

- $3^{\text {rd }}$ term is fixed, since we have about 5 MeV noise
- Statistical term higher than expected (20 p.e./ $\mathrm{MeV} \rightarrow$ less than $1 \% / \mathrm{E}^{1 / 2}(\mathrm{GeV})$)
- Contribution to constant term due to lateral leakage (matrix not fully readout)
- There is an unknown contribution from the beam
- Resolution is better than 10% for $E>150 \mathrm{MeV}$

LET acceptance

In this study we consider only the reaction $\gamma \gamma \rightarrow \pi^{0} \pi^{0}$

- Single arm acceptance: HET = 14\%, LET = 17\%
- Single Total acceptance (only 1 tagger fired) $=54 \%$
- Double arm acceptance ($H^{\star} H$ + $\left.2 * L *(H)+L^{*} L\right)=2+5+3=10 \%$

HET characteristics

The HET detector will be located at 11 m from the IP behind a bending Magnet : Plastics + PMTs

HET acceptance

The π° width could be measured The low Q^{2} of TFF for the reaction $\gamma^{\star} \gamma \rightarrow \pi^{0}$ could be measured

HET detect leptons in energy range $(20,85)$
MeV .
2 HET ($e^{+} e^{-}$) coincidence cover the energy range $(40,170) \mathrm{MeV}: \gamma \gamma \rightarrow \pi^{\circ}$ could be measured from

$\pi^{0} \rightarrow \gamma \gamma$ case

KLOE-2 data will fix the slope at $Q^{2}=0$

WZW term

$$
\frac{1}{4 \pi^{2} F_{\pi}}
$$

Where F_{π} come from $\pi->\mu v(\gamma)$ decay:
$\mathrm{F}_{\pi}=92.2 \pm 0.14 \mathrm{MeV}$

$$
\begin{aligned}
& \mathcal{F}_{\pi^{0} \gamma \gamma}\left(m_{\pi}^{2}, 0,0\right)=-\frac{N_{C}}{12 \pi^{2} F_{\pi}} \\
& \mathcal{F}_{\pi^{0} \gamma \gamma}^{2}\left(m_{\pi^{0}}^{2}, 0,0\right)=\frac{1}{(4 \pi \alpha)^{2}} \frac{64 \pi \Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)}{M_{\pi^{0}}^{3}}
\end{aligned}
$$

IG. 1: $\pi^{0} \rightarrow \gamma \gamma$ decay width in eV . The dashed horizonta
ine is the LO chiral anomaly prediction. NLO ChPT predic tion [4] is shown as the shaded band on r.h.s. The l.h.s shaded band is the prediction from Ref. [7]. The experimental results, included in the PDG average, are for: (1) done with the direct nethod [12], $(2,3,4)$ with the Primakoff method [9-11], and (5) is the current PrimEx result.

$$
\Gamma_{\pi^{0} \rightarrow \gamma \gamma}^{\text {theor }}=8.09 \pm 0.11 \mathrm{eV}
$$

PRIMEX data

Target	$\Gamma\left(\pi^{0} \rightarrow \gamma \gamma\right)$ $[\mathrm{eV}]$	
	2.3%	
${ }^{12} \mathrm{C}$	7.79 ± 0.18	2.3%
${ }^{208} \mathrm{~Pb}$	7.85 ± 0.23	2.9%

π^{0} TFFs

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0} \\
& \gamma^{*} \gamma \rightarrow \pi^{0} \quad \rightarrow \text { Amplitude } \propto F\left(M_{\pi}^{2} Q^{2}, 0\right)
\end{aligned}
$$

Slope near $Q^{2}=0$ crucial for hadronic LbL contribution to a_{μ}
F. Jegerlehner, A. Nyffeler / Physics Reports 477 (2009) 1-110

$$
\begin{aligned}
& a_{\mu}^{\mathrm{LbL} ; \pi^{0}}=-e^{6} \int \frac{\mathrm{~d}^{4} q_{1}}{(2 \pi)^{4}} \frac{\mathrm{~d}^{4} q_{2}}{(2 \pi)^{4}} \frac{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}\left[\left(p+q_{1}\right)^{2}-m_{\mu}^{2}\right]\left[\left(p-q_{2}\right)^{2}-m_{\mu}^{2}\right]}{q_{2}^{2}-m_{\pi}^{2}} \\
& \times\left[\frac{\mathcal{F}_{\pi^{0 *} \gamma^{*} \gamma^{*}}\left(q_{2}^{2}, q_{1}^{2}, q_{3}^{2}\right) \mathcal{F}_{\pi^{0 *} \gamma^{*} \gamma}\left(q_{2}^{2}, q_{2}^{2}, 0\right)}{q_{1}^{2}\left(q_{1}, q_{2} ; p\right)}\right. \\
&\left.\quad+\frac{\mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{3}^{2}, q_{1}^{2}, q_{2}^{2}\right) \mathcal{F}_{\pi^{0 *} \gamma^{*} \gamma}\left(q_{3}^{2}, q_{3}^{2}, 0\right)}{q_{3}^{2}-m_{\pi}^{2}} T_{2}\left(q_{1}, q_{2} ; p\right)\right],
\end{aligned}
$$

Simulation in KLOE-2 case

Jegerlehner-Nyffeler (JN) and Melnikov-Vainshtein (MV)

 approaches are used for calculation of $a_{\mu}^{\mathrm{LbyL} ; \pi}$

A0 : CLEO, CELLO, PDG
A1: CLEO, CELLO, PrimEx
A2 : CLEO, CELLO, PrimEx, KLOE-2
B0: CLEO, CELLO, BaBar, PDG
B1: CLEO, CELLO, BaBar, PrimEx
B2 : CLEO, CELLO, BaBar, PrimEx, KLOE-2

Simulation of KLOE-2 measurement of $F\left(Q^{2}\right)$ (red triangles) with statistical errors for $5 \mathrm{fb}^{-1}$. The detection efficiency is estimated to be about 20%. Dashed line is the $F\left(Q^{2}\right)$ form factor according to $\mathrm{LMD}+\mathrm{V}$ model, solid line is $F(0)$ given by Wess-Zumino-Witten term. CELLO (black crosses) and CLEO (blue stars) data at high Q^{2} are also shown for illustration.
D. Babusci et al., EPJC 72 (2012) 1917 : We aspect to

Results on $a_{\mu}{ }^{\text {HLBL }}$

Model	Data	$\chi^{2} /$ d.o.f.	$a_{\mu}^{\mathrm{LbyL} ; \pi} \times 10^{11}$
VMD	A0	6.6/19	$(57.2 \pm 4.0)_{J N}$
VMD	A1	6.6/19	$(57.7 \pm 2.1)^{\mathrm{JN}}$
VMD	A2	7.5/27	$(57.3 \pm 1.1)^{\mathrm{JN}}$
LMD $+\mathrm{V}, h_{1}=0$	A0	6.5/19	$\begin{aligned} & (72.3 \pm 3.5)_{J N} \\ & (79.8 \pm 4.2)_{M V} \end{aligned}$
$\mathrm{LMD}+\mathrm{V}, h_{1}=0$	A1	6.6/19	$\begin{aligned} & (73.0 \pm 1.7)_{J N} \text { * } \\ & (80.5 \pm 2.0)_{M V} \end{aligned}$
$\mathrm{LMD}+\mathrm{V}, h_{1}=0$	A2	7.5/27	$\begin{aligned} & (72.5 \pm 0.8)_{J N} \\ & (80.0 \pm 0.8)_{M V} \end{aligned}$
LMD+V, $h_{1} \neq 0$	A0	6.5/18	$(72.4 \pm 3.8)_{J N}{ }^{\text {* }}$
LMD $+\mathrm{V}, h_{1} \neq 0$	A1	6.5/18	$(72.9 \pm 2.1)_{J N}{ }^{*}$
LMD $+\mathrm{V}, h_{1} \neq 0$	A2	7.5/26	$(72.4 \pm 1.5)_{J N}{ }^{*}$
LMD+V, $h_{1} \neq 0$	B0	18/35	$(71.9 \pm 3.4)_{J N}{ }^{\text {* }}$
LMD $+\mathrm{V}, h_{1} \neq 0$	B1	18/35	$(72.4 \pm 1.6)_{J N}{ }^{*}$
LMD+V, $h_{1} \neq 0$	B2	19/43	$(71.8 \pm 0.7)_{J N}{ }^{*}$

- There is also an additional error coming from the "off-shellness" of the pion

Experimental considerations

LET are located inside KLOE : we can use the KLOE DAQ without any problem of trigger synchronization.
HET if located 11 m far from KLOE : we have to take care about the trigger and the events synchronization.
The DAФNE bunch structure could help us to manage this :

$$
2.7 \text { ns Empty bunches }
$$

 distinguish two consecutive bunches.
Three DA $\triangle N E$ revolution is acquired for each KLOE trigger

HET TDC_V5

NIM A 739 (2014) 75

KLOE-2 : data taking campaign

DAФNE delivered $1030 \mathrm{pb}^{-1}$, and KLOE record $790 \mathrm{pb}^{-1}$. Which correspond 77 \% average efficiency

Low Energy Tagger

- LET calibration: equalization with MIPs, time alignment w.r.t. the EMC
- LET operation with circulating beams \Rightarrow high background environment
(bckg rate evaluated from out of time hits)
- Rough estimate of the radiative Bhabha expected rate with e^{+}or e^{-}on LET (from Babayaga MC) $\approx 30 \mathrm{kHz}$ on the whole LET (overestimated)

- Example of time distribution from data \Rightarrow peak over a large background Work in progress to understand these events with LET "in time" with the EMC

High Energy Tagger

DAФNE no collision test : bck ≈ 11 \%

HET Events

- Bhabhayaga : $\sigma=11 \mathrm{mb} \varepsilon_{H}=4.4 \% \varepsilon_{H H}=1.9 \times 10^{-5}$ (but radiative photons are not detected in KLOE). Visible $\sigma_{H}=484 \mu b$ and $\sigma_{H H}=209 \mathrm{nb}$
- Ekhara : $e^{+} e^{-} \rightarrow e^{+} e^{-} \pi^{0}: \sigma=280 \mathrm{pb} \varepsilon_{H}=7.7 \%$ $\varepsilon_{H H}=1.4 \%$. Visible $\sigma_{H}=21.6 \mathrm{nb}$ and $\sigma_{H H}=3.9 \mathrm{nb}$
- $S / B_{H}=44.6 \times 10^{-6}$
$S / B_{H H}=10.3 \%$

HET time structure

TDC(HETe $\left.e^{-}\right)-\mathrm{TDC}\left(\mathrm{HETe}^{+}\right)$

TDC TriggerKloe vs Trigger HETA

HET - KLOE Synchronization

Conclusion

- KLOE-1 $\gamma \gamma \rightarrow \pi^{0} \pi^{0}$ should published soon.
- KLOE-2 is running. Our goal is to collect $\sim 5 \mathrm{fb}^{-1}$ in the next two years.

