HIGGS SEARCHES BEYOND THE STANDARD MODEL AT THE LARGE HADRON COLLIDER

P. Meridiani

INFN Roma Universita` "La Sapienza" - 10/06/2015

OUTLINE

- Run I at the LHC: the birth of the Higgs physics
- Precision Higgs physics as a way to probe BSM
- BSM Higgs decays
- Searches for additional Higgs bosons
- Perspectives for Run2 & beyond

Disclaimer: my personal selection of the most significant results from Run 1

Discovery of the Higgs boson

$M_{H}~=~(125.09\pm0.21\pm0.11)~GeV$

8th October 2013

THE BEH-MECHANISM, INTERACTIONS WITH SHORT RANGE FORCES AND SCALAR PARTICLES

No direct sign of new physics... yet

RUN I: THE BIRTH OF THE HIGGS PHYSICS

li Fisica Nucleare

THE "STANDARD THEORY"

Self consistent up to large scales [JHEP 1208 (2012) 098]

EWSB: THE NATURALNESS PUZZLE

Higgs potential is renormalizable, however loop corrections to the Higgs boson mass quadratically divergent

Not an issue if cut-off Λ not far from TeV, instead if SM->Planck scale fine-tuning

Elegant Solutions (some including dark matter candidates):

- Additional symmetries: supersymmetry
- **Composite Higgs**, Higgs as a " π^0 " of a new strong interaction
- Extra-dimensions, "move the Planck scale"
- New ideas: arXiv:1504.07551

Or:

- **Deal with it**, anthropic principle/multiverse

SUPERSYMMETRY SEARCHES

ATLAS Preliminary

 $\sqrt{s} = 7.8 \text{ TeV}$

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Feb 2015

	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	$\int \mathcal{L} dt [fb$	¹] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}\gamma, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{1} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ GMSB (\tilde{\ell} NLSP) \\ GGM (bino NLSP) \\ GGM (mino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino NLSP) \\ Gravitino LSP \end{array} $	$\begin{matrix} 0 \\ 0 \\ 1 \gamma \\ 0 \\ 2 e, \mu \\ 1-2 \tau + 0-1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20 20 20.3 20.3 20.3 4.8 4.8 5.8 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 1502.01518
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\$\vec{x}\$ 1.25 TeV m(\vec{k}_{1}^{0})<400 GeV \$\vec{x}\$ 1.1 TeV m(\vec{k}_{1}^{0})<350 GeV \$\vec{x}\$ 1.34 TeV m(\vec{k}_{1}^{0})<400 GeV \$\vec{x}\$ 1.3 TeV m(\vec{k}_{1}^{0})<300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{1} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow b\tilde{\chi}_{1}^{1} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow \tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow \tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow \tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1} (natural GMSB) \\ \tilde{i}_{2}\tilde{i}_{2}, \tilde{i}_{2} \rightarrow \tilde{i}_{1} + Z \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 2 \ e, \mu \\ 0-1 \ e, \mu \\ 0 \\ 1 \\ 0 \\ 3 \ e, \mu \ (Z) \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets 1-2 b 1000-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1209.2102,1407.0583 1403.4853,1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{split} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell}_{\gamma}(\ell \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L}(\ell \tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1^0, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \\ \tilde{\chi}_2^0 \tilde{\chi}_1^0, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{\ell}_R \ell \end{split} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ γ e,μ,γ 4 e,μ	0 0 - 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 trk μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow e e \widetilde{v}_{\mu}, e \mu \widetilde{v}_e \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow \tau \tau \widetilde{v}_e, e \tau \widetilde{v}_{\tau} \\ \widetilde{g} \rightarrow q q q \\ \widetilde{g} \rightarrow \widetilde{t}_1 t, \ \widetilde{t}_1 \rightarrow b s \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 0-3 b - - 6-7 jets 0-3 b	- Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ $\sqrt{s} = 7 \text{ TeV}$ full data	$\frac{1}{s} = 8 \text{ TeV}$	2c $\sqrt{s} = 3$ full	Yes 8 TeV data	20.3 1	λ 490 GeV m(λ ⁰ ₁)<200 GeV 0 ⁻¹ 1 Mass scale [TeV]	1501.01325

Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1\sigma* theoretical signal cross section uncertainty.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

EXOTICS SEARCHES

CMS Searches for New Physics Beyond Two Generations (B2G)

95% CL Exclusions (TeV)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

Paolo Meridiani

8

BSM HIGGS PHYSICS

Complementary directions to look for BSM physics in Higgs sector

BSM HIGGS PHYSICS

Complementary directions to look for BSM physics in Higgs sector

THE HIGGS PICTURE FROM RUN I

$\mu \equiv \sigma \cdot \mathrm{Br} / (\sigma \cdot \mathrm{Br})_{_{\mathrm{SM}}}$

Nature was very kind with us

product of BR ~ max @ 125 GeV

PRECISION: COUPLINGS DEVIATIONS

Looking for Higgs couplings deviations: use an "effective approach"

- parametrize deviation from SM with coupling modifiers, "kappa", kxSM=1
 - tensor structure kept as SM
 - ok for Run1 precision

e.g. signal strength in $H \rightarrow \gamma \gamma$:

	$\mathrm{H} \to \gamma \gamma$
ggH	$\frac{\kappa_{g}^{2} \cdot \kappa_{\gamma}^{2}}{\kappa_{H}^{2}}$
$t\overline{t}H$	$\frac{\kappa_{\rm t}^2 \cdot \kappa_{\gamma}^2}{\kappa_{\rm H}^2}$
VBF	$\frac{\kappa_{\rm VBF}^2(\kappa_{\rm Z},\!\kappa_{\rm W})\!\cdot\!\kappa_{\gamma}^2}{\kappa_{\rm H}^2}$
WH	$\frac{\frac{\kappa_{\rm W}^2 \cdot \kappa_{\gamma}^2}{\kappa_{\rm H}^2}}{\kappa_{\rm H}^2}$
ZH	$\frac{\kappa_{\rm Z}^2 \cdot \kappa_{\gamma}^2}{\kappa_{\rm H}^2}$

LHC Run I probe Higgs couplings @ 15-30% level

Still large room for BSM

"CLASSIC" HIGGS BSM SCENARIOS

Extended Higgs sector: E.g. 2HDM/MSSM, EWSB via 2 Higgs doublets.

Direct searches: look for additional scalars (neutral or charged), if SUSY direct searches for SUSY partners

Indirect searches: b-physics $(B \rightarrow \tau v, B \rightarrow D^{(*)} \tau v, b \rightarrow s g, B_s \rightarrow \mu \mu)$, H(125) couplings

Composite Higgs: Higgs as pseudo Goldstone boson of a new strong interaction

Direct searches: new vector resonances, new "light" fermion partner states

Indirect searches: stringent constraints from EWPT, H(125) couplings (controlled by $\xi = (v/f)^2$ compositeness parameter)

INTERPRETATION EXAMPLE: 2HDM

Effective theory with 2 complex scalar doublets

> 5 physical scalar fields after EWSB

- →neutral: h,H CP even, A CP odd
- ⇒charged: H[±]

Couplings described by 2 mixing angles

• $\tan\beta = v_1/v_2$, α mixing angle h/H

$$g_{hVV}^2 + g_{HVV}^2 + g_{AVV}^2 = (g_{hVV}^{SM})^2$$

Coupling scale factor		Type I	Type II	Type III	Type IV	
	κ _V		$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
	ки		$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
	Кd		$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
	κı		$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$

ATLAS-CONF-2014-010

Decoupling region: Higgs very close to SM or m_{A,H}>>m_h not probed given current precision

INTERPRETATION EXAMPLE: MSSM

15

Paolo Meridiani

INTERPRETATION EXAMPLE: COMPOSITE HIGGS

MCHM: SO(5)/SO(4) symmetry breaking

Coupling k_v "universally" modified, proportional to $\xi = v^2/f^2$

Coupling k_F depends on the actual model implementation

arXiv:hep-ph/0412089

MCHM4 $\kappa = \kappa_V = \kappa_F = \sqrt{1 - \xi},$ **MCHM5** $\kappa_V = \sqrt{1 - \xi},$ $\kappa_F = \frac{1 - 2\xi}{\sqrt{1 - \xi}}.$

PROBING k_v/k_f Relative Phase

Reversed phase for fermion coupling $K_f=-1$ disfavoured by k_V/k_F couplings fit

Most channels constraints independent from relative phase

Degeneracy broken by $H \rightarrow yy$: BR enhanced if phase is reversed

However, when assuming BSM contributions \checkmark in k_g & k_{yy}, still degeneracy in k_v/k_f plane [J.Ellis, T.You, JHEP 06 (2013) 103]

A BETTER INTERFEROMETER: T+H

t+H: SM tree level cancellation $\sigma(t+H)=18 \text{ fb } @ 8 \text{ TeV}(\sigma \sim 1/10 \text{ of } ttH)$ x15 σ if Y_t relative sign reversed wrt SM

t+H: first proposed by Biwas, Mele, Gabrielli as a probe for Htt sign [JHEP 01 (2013) 088]

Analysis testing k_t =-1 hypothesis, assuming rest of SM still valid

not realistic, but allows easy interpretation test also other BSM models where t+H enhanced

Combination to be published soon: sensitivity to exclude $\sim x 2 \sigma(k_t=-1)$

Potential to exclude $k_t=-1$ with <20 fb⁻¹ @ 13 TeV

95% CL exclusion limits on $\sigma/\sigma(k_t=-1)$

CMS HIG-14-001 t+H(→ɣɣ)	Obs 4.1(Exp 4.1)
CMS HIG-14-015 t+H(→bb)	Obs 7.6(Exp 5.2)
CMS HIG-14-026 t+H(WW,ττ)	Obs 6.7 (Exp 5.0)

 $H \rightarrow \gamma \gamma$ final state most sensitive thanks to BR enhancement

BSM HIGGS PHYSICS

Complementary directions to look for BSM physics in Higgs sector

HIGGS BSM DECAYS

- $-h \rightarrow \mu \tau$ (lepton flavour violation)
- $-h \rightarrow \varphi \varphi \rightarrow xx yy$
- $-h \rightarrow long lived particles$

$$-h \rightarrow \dots$$

H→INVISIBLE

Most sensitive channel. H(125) BR upper limits:

ATLAS: 29% (exp 35%), CMS: 57% (exp 40%)

H(125) BR upper limitsATLAS: Z(->II)+H 75% (exp 62%)ATLAS: Z(->IJ)+H 78% (exp 86%)CMS: Z(->II,->bb)+H 81% (exp 83%)

H→INVISIBLE

Complementary search wrt direct dark matter experiments for low mass DM: $m_X < m_H/2$

Higgs portal models: direct interactions of Higgs with DM candidate

E.g. spin independent nucleonscalar DM cross section

$$\sigma_{\rm S-N}^{\rm SI} = rac{4\Gamma_{\rm inv}}{m_{\rm H}^3 v^2 \beta} rac{m_{\rm N}^4 f_{\rm N}^2}{(M_{\chi} + m_{\rm N})^2},$$

f_N: Higgs-nucleon form factor from lattice QCD

$$\mathcal{L}_{\text{scalar}} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_S^2 S^2 - \frac{\lambda_{HS}}{2} H^{\dagger} H S^2 - \frac{\lambda_S}{4} S^4$$

$H \rightarrow \mu \tau$: Lepton Flavour Violation

FCNC heavily constrained in the quark sector, but lepton sector less constrained

Indirect limits on BR(H $\rightarrow\mu\tau$) from τ rare decays search ($\tau \rightarrow 3\mu, \tau \rightarrow \mu\gamma$): ~10%

LIGHT SCALARS: $H \rightarrow \phi \phi$

Search for light scalars mostly motivated in the NMSSM (Next-to Minimal SSM) context

MSSM: μ -problem, higgsino mass parameter μ imposed at EWSB scale **NMSSM:** generate μ dinamically, adding a singlet super field S $\mu = \lambda \langle S \rangle$ from: $\lambda \hat{S} \hat{H}_u \hat{H}_d$ Less fine-tuning then in MSSM $\begin{array}{l} MSSM: \ m_h^2 \approx M_Z^2 \cos^2 2\beta + \Delta m_h^2 \\ NMSSM: \ m_h^2 \approx M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \Delta m_h^2 \end{array}$ **NMSSM:** larger Higgs sector: 3 CP-even H, 2 CP-odd A, 2 charged H[±]. H(125) not necessarily the lightest scalar

Include constraints from b-physics, dark matter relic density, LEP & LHC Higgs searches

LIGHT SCALARS: $H \rightarrow \phi \phi \rightarrow 2\mu 2\tau$

 $BR(\phi \rightarrow XX)$ expected to be proportional to m_{χ}^{2}

 $2\mu 2\tau$ good compromise: use clean m_{µµ} as final observable

BSM HIGGS PHYSICS

Complementary directions to look for BSM physics in Higgs sector

HEAVY SCALAR SEARCHES

Istituto Nazionale di Fisica Nucleare

$\phi \rightarrow \tau \tau$

MSSM: large BR($\phi \rightarrow \tau \tau$) for for tan β >5

Analysis builds up on SM h $\rightarrow \tau \tau$. Bump search in reconstructed m_{$\tau\tau$}

Several final states considered for the τ decay: $\tau_{e,}\tau_{\mu,}\tau_{had}$

Paolo Meridiani

29

X→HH

Charged Higgs: $H^{\pm} \rightarrow \tau^{\pm} v$

hMSSM: RUN I SUMMARY

Istituto Nazionale di Fisica Nucleare

BEYOND RUN1

Target for 2015: 5-10 fb⁻¹ First stable collisions: 03.06.2015 >100 fb⁻¹ by 2018, >300 fb⁻¹ by 2023 HL-LHC: ~3000 fb-1, 5 x 10³⁴ cm⁻²s⁻¹ requires detector+DAQ+trigger upgrades

PERSPECTIVES FOR HIGGS PHYSICS @ RUN 2

13 TeV: H cross section $\sim x 2$, ttH $\sim x4$

Run I sensitivity/precision will be reached for H analyses ~10 fb⁻¹ @ 13 TeV

Full Run2+3 statistics (~300 fb⁻¹):

~10M H produced ~400k H useful for precision measurements

Rare processes: $H \rightarrow \mu\mu$ @ & 3σ , $H \rightarrow Z\gamma$ @ > 2σ **Direct ttH** coupling could be established @ ~ 5σ

Higgs couplings can be tested at levels better then 10%

Differential cross-sections for $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ, H \rightarrow WW$ improving sensitivity for new physics looking also at kinematic deviations

	σ(8 TeV)	σ(13 TeV)	ratio
gg→H	19.3	43.9	2.3
VBF	1.58	3.75	2.4
WH	0.70	1.38	2.0
ZH	0.42	0.87	2.1
ttH	0.13	0.51	3.9

RUN 2: A NEW ERA FOR HIGGS MEASUREMENTS

Transition from statistically limited to systematically limited in the Higgs precision physics

Reaching the ultimate precision will require new tools and new ideas, paving the grounds for HL-LHC.

Theory and experiment working together https://twiki.cern.ch/twiki/bin/view/ LHCPhysics/LHCHXSWG

Higgs boson couplings ratios $\kappa_{g} \kappa_{7} / \kappa_{H}$ κ_γ / κ₇ κ_W / κ_7 $\kappa_{\rm b}/\kappa_{\rm 7}$

CMS Projection

Expected uncertainties on

We are organized in 3 working groups.

Group TWiki	Mail to conveners	ATLAS	CMS	THEORY	
Higgs XS&BR	Mail	Bruce Mellado (Witwatersrand)	Pasquale Musella (CERN)	Massimiliano Grazzini (Zürich)	Robert Harlander (Wuppertal)
Higgs Properties	Mail	Michael Dührssen (CERN)	Andre David (CERN)	Adam Falkowski (Orsay-LPT)	Gino Isidori (Zürich)
BSM Higgs	Mail	Nikolaos Rompotis (Washington)	Mario Pelliccioni (Torino)	Ian Low (Argonne and Northwestern)	Margarete Mühlleitner (Karlsruhe)

300 fb⁻¹ at $\sqrt{s} = 14$ TeV Scenario 1

300 fb⁻¹ at $\sqrt{s} = 14$ TeV Scenario 2

BEYOND RUN2: HL-LHC

ATLAS-PHYS-PUB-2014-017

HL-LHC (3000 fb⁻¹): ultimate precision for the Higgs coupling measurements

If no direct sign of BSM found, Higgs precision physics will be the most important tool to look for new physics

HL-LHC: PROBING HIGGS SELF COUPLING

hh non-resonant production: small crosssection in the SM ~40fb @ 14 TeV

- potential to measure the Higgs self coupling
- can reveal anomalous hh couplings

h(\rightarrow yy)h(\rightarrow bb) the most promising channel @ HL-LHC: \sim 2 σ per experiment according to current projections

 $h(\rightarrow \tau \tau)h(\rightarrow bb)$ also being studied

Run 1: from Higgs discovery, to the start of the Higgs physics

we have a new toy to play

Run 2: pushing the Higgs physics into the precision era

- ~10 fb⁻¹ @ 13 TeV needed to achieve Run I sensitivity
- <10% precision on Higgs couplings at the end of Run 2
- prepare grounds for HL-LHC where ultimate precision will be reached

General feeling of "Higgs and no BSM". However:

- Wait for Run2! Direct searches reach increase very rapidly thanks to increase in sqrt(s)
- Smaller BSM cross-sections can be probed later-on thanks to the Run 2 statistics

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

RUN2 HAS STARTED!

Z→e+e- candidate

THE HIGGS IN THE SM

 $\frac{M_W}{M_Z} = \rho \frac{g^2}{g^2 + g'^2} = \rho \cos^2 \theta_W$ $\rho = 1$

Discovery not really a surprise: LEP legacy

Flavour hierarchy unexplained

LOOKING FOR SM DEVIATION: MASS

Consistent with SM EWK precision tests

Fisica Nucleare

H→µµ & H→ee

BR(H→μμ)=2.2x10⁻⁴ ~ 1/10 x BR(H→γγ)

H(125) $\rightarrow \mu\mu$ 95% CL observed (expected) limits on σ/σ_{SM}

ATLAS: PLB 738 (2015)	7.0(7.2)
CMS: arXiv:1410.6679	7.4(6.5)

Together with evidence of $H \rightarrow \tau \tau$, confirm lepton non-universality

With 300 fb⁻¹ @ 13 TeV sensitivity to ~exclude $H{\rightarrow}\mu\mu$

H→**ee**: CMS put 95% CL exclusion limit on $\sigma \times BR(H(125) \rightarrow ee)=41 fb$

$\mathsf{H} \rightarrow \mathsf{J}/\Psi \mathsf{V}, \mathsf{Y} \mathsf{V}$

Very small BR BR(H→J/ψγ) ~ 3x10⁻⁶

Limit on H(\rightarrow J/ ψ γ) ~ x 540 SM

J/ψ + γ candidates

RARE HIGGS DECAYS: $H \rightarrow Z\gamma \& H \rightarrow \gamma^*\gamma \rightarrow \mu\mu\gamma$

- Search performed in $Z(\rightarrow ee)+\gamma$ and $Z(\rightarrow \mu\mu)+\gamma$ channel
- Very small BR expected in SM ~0.1%.
 - New particles/couplings (e.g composite higgs) can be revealed in decays involving loop
- For h(125) excluding BR enhancement
 ~ x10 @ 95% CL
 - Dalitz decay
 - different contributions to the same final state, not yet disentangled
 - -wrt to $Z\gamma$: m_{µµ}<20 GeV
 - Sensitivity similar to Zγ: excluding
 >x11 @ 95% CL

H→DARK/HIDDEN SECTOR

H→ DARK SECTOR

If dark sector, e.g. new a U(1)_d gauge boson, Higgs could decay to its dark boson Z_d

 $U(1)_d$ unbroken: $H \rightarrow ZZ_d$, coupling via kinematic mixing

U(1)_d broken: H mixing with dark Higgs, $H \rightarrow Z_d Z_d$

ATLAS-CONF-2015-003

H→ DARK SECTOR

HMSSM: HEAVY HIGGS DECAYS

 $BR(H \rightarrow \tau \tau)$ 50 10-1 40 30 20 10⁻² 10 tan β 76 5 10⁻³ 1 600 M_A (GeV) 200 300 400 500 700 800 900 1000

 $BR(H \rightarrow hh)$

 $BR(H \rightarrow ZZ)$

 $BR(H \rightarrow t\bar{t})$

Istituto Nazionale di Fisica Nucleare

Istituto Nazionale di Fisica Nucleare

CHARGED HIGGS

High m_{H+} mass: H⁺→tb

di-lepton + b-jets final state

sensitive to both H⁺ \rightarrow tb & H⁺ $\rightarrow \tau v$ interpretation provided for BR(H⁺ \rightarrow tb)=1 or BR(H⁺ $\rightarrow \tau v$)=1

Higgs triplet model: $H^{\pm} \rightarrow W^{\pm}Z$ allowed at tree level

Search performed with VBF production of charged Higgs 2 jets (VBF topology), 2 central jets

 $\phi \rightarrow \gamma \gamma, \phi \rightarrow Z\gamma$

H→γ+MET

Higgs decays to neutralinos/gravitinos: **\coloredyty+MET final state**

CMS: inclusive analysis y p_T>45 GeV

ATLAS: associated VBF production

