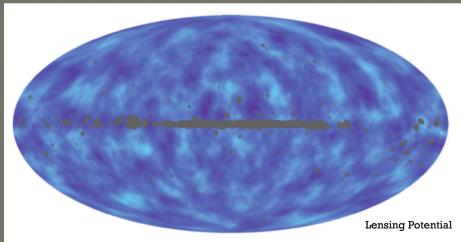
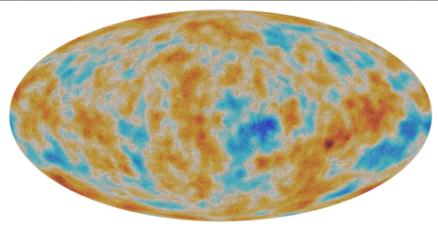
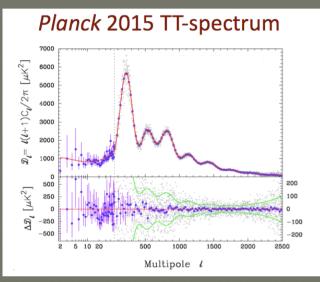
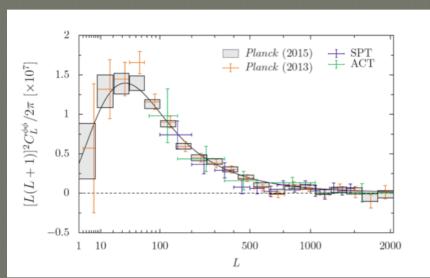

Neutrino Cosmology after Planck 2015

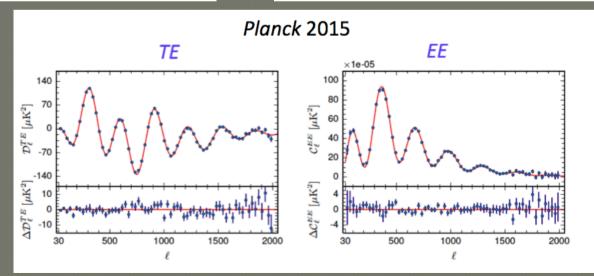

G. Mangano INFN, Napoli


Università di Roma La Sapienza, 16 marzo 2015

Summary


- Planck 2015
- Neutrino properties from cosmology: overview
- Neutrino properties from cosmology: details Are there neutrinos in the universe?
 - How many of them? (the long tale of $N_{\rm eff}$)
 - Neutrino mass: universe better than lab's?
 - Oscillations and neutrino asymmetries
- Sterile states?





Polarization

What's new in 2015 results

- Change in the calibration pipeline has brought down the 1% disagreeement between *Planck* and WMAP, which now differ by less than 0.3%
- Better understanding of systematics
- Using the mission data, the l=1800 feature found in 2013, which was due to the 4K cooler line, has no impact on cosmological results
- · Increase of the sky area considered
- Improved models of foreground contributions
- 2013 results were based on a combination of Planck temperature data and low-ell WMAP polarization to constrain the optical depth.
- In 2015 we have a full *Planck* likelihood which only uses *Planck* data both in temperature and polarization

Parameter	[1] Planck TT+lowP	[2] Planck TE+lowP	[3] Planck EE+lowP	[4] Planck TT,TE,EE+lowP	$([1] - [4])/\sigma_{[1]}$
$\Omega_b h^2 \dots$	0.02222 ± 0.00023	0.02228 ± 0.00025	0.0240 ± 0.0013	0.02225 ± 0.00016	-0.1
$\Omega_c h^2$	0.1197 ± 0.0022	0.1187 ± 0.0021	$0.1150^{+0.0048}_{-0.0055}$	0.1198 ± 0.0015	0.0
$100\theta_{MC}$	1.04085 ± 0.00047	1.04094 ± 0.00051	1.03988 ± 0.00094	1.04077 ± 0.00032	0.2
τ	0.078 ± 0.019	0.053 ± 0.019	$0.059^{+0.022}_{-0.019}$	0.079 ± 0.017	-0.1
$ln(10^{10}A_s)$	3.089 ± 0.036	3.031 ± 0.041	$3.066^{+0.046}_{-0.041}$	3.094 ± 0.034	-0.1
n _s	0.9655 ± 0.0062	0.965 ± 0.012	0.973 ± 0.016	0.9645 ± 0.0049	0.2
H_0	67.31 ± 0.96	67.73 ± 0.92	70.2 ± 3.0	67.27 ± 0.66	0.0
$\Omega_{\rm m}$	0.315 ± 0.013	0.300 ± 0.012	$0.286^{+0.027}_{-0.038}$	0.3156 ± 0.0091	0.0
$\sigma_8 \dots \dots$	0.829 ± 0.014	0.802 ± 0.018	0.796 ± 0.024	0.831 ± 0.013	0.0
$10^{9}A_{s}e^{-2\tau}$	1.880 ± 0.014	1.865 ± 0.019	1.907 ± 0.027	1.882 ± 0.012	-0.1

Planck 2015 results, XIII

↑ CDM model is an excellent fit of data

What's new in 2015 results for neutrinos:

better determination of $N_{\rm eff}$ tighter mass scale bound strong evidence of free streaming ν 's concordance with BBN less room for light (eV) sterile states

Neutrino properties from cosmology: overview

Neutrinos impact expansion history:

High T regime (> MeV): weak + gravitational effects (BBN) observables: phase space density (in particular $\nu_{\rm e}$ distribution), non standard interactions, chemical potentials, number of species (active, sterile)

Intermediate T regime (eV): gravitational effects including perturbations (CMB) observables: phase space density, non standard interactions, mass scale

Neutrino properties from cosmology: overview

Low T regime (< eV): gravitational effects including perturbations (LSS) observables: phase space density, non standard interactions, mass scale

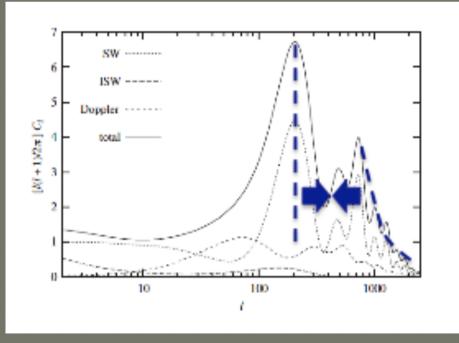
Not in this seminar:

Extremely high T regime (above EW scale): Majorana vs. Dirac, see-saw mechanism, high scale physics (Leptogenesis)

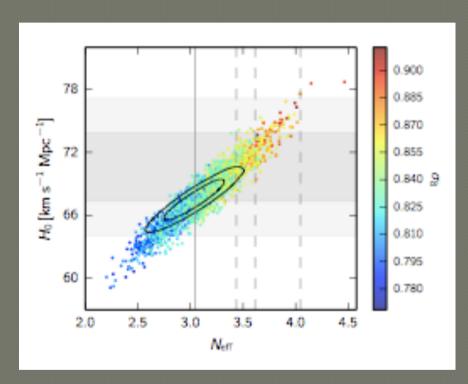
Extremely low T regime (today): mass scale, local density (Cosmic Neutrino Background (CNB) direct detection)

Neutrino properties from cosmology: details

BBN and CMB probe the light particle content at different epochs: both require relativistic species in addition to photons


$$\rho_R = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{eff} \right)$$

For BBN: $N_{eff} = 3$ is a good fit (see later) BBN requires electron neutrinos!


CMB

fixing the angular scale of acoustic peaks and z_{eq} , a larger amount of dark radiation (and a larger H_0) gives a higher expansion speed, a shorter age of the universe T at recombination.

Diffusion length $\approx \sqrt{T}$ Sound horizon $\approx T$

J. Lesgourgues, Planck 2014, Ferrara

Planck 2015 results, XIII

 $N_{\rm eff}$ > 0 at 10 σ

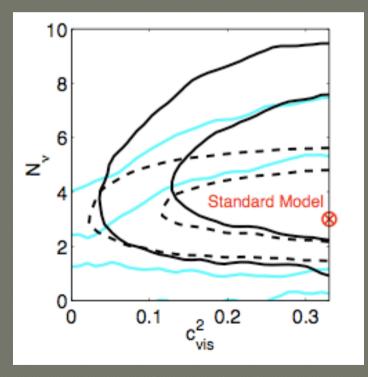
BBN needs a radiation dominated expansion: radiation but not necessarily neutrinos. $N_{\rm eff}$ blind to the specific nature of relativistic species.

BBN needs $\nu_{\rm e}$: neutrons and protons kept in chemical equilibrium via CC processes. For n \approx p the primordial 4 He mass fraction would be

$$Y_p = 4 (n/2)/(n+p) \approx 1$$

Data say $Y_p \approx 0.25$

From flavour oscillations: BBN needs the same amount of the three active species!

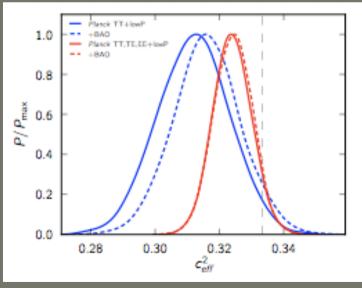

Perturbation effects:

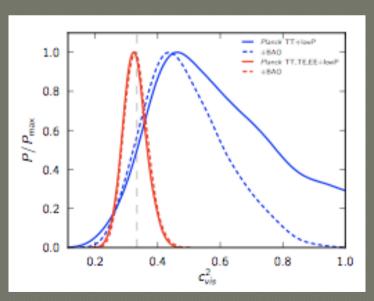
gravitational feedback of neutrino

free streaming damping

anisotropic stresscontributions

c_{vis}:velocity/metric shear – anisotropic stress relation (Hu 1998)




Trotta & Melchiorri 2005

Neutrino perturbations in terms of two phenomenological parameters:

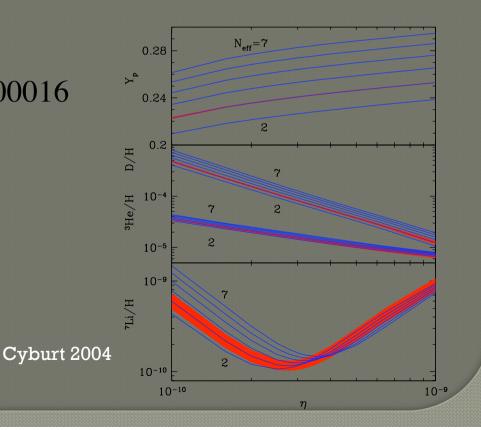
$$\delta P = c_{eff}^2 \delta \rho (1/3)$$

$$c_{vis}^2 \qquad (1/3)$$

Planck 2015 results, XIII

How many of them? (the long tale of N_{eff})

both 4 He mass fraction Y_p and 2 H/H are increasing functions of N_{eff} : change of expansion rate ν_e distribution crucial in weak rates baryon density fixed by CMB! (but still 2 H/H can varies a lot)


$$\Omega_b h^2 = 0.02225 \pm 0.00016$$

crucial inputs:

experimental values

nuclear rates

How many of them? (the long tale of N_{eff})

⁴He still affected by a remarkable systematic uncertainty Recent re-analysis

$$Y_p = 0.2565 \pm 0.0010(stat) \pm 0.0050(syst)$$

 $Y_p = 0.2561 \pm 0.0108$

 $Y_p = 0.2573 \pm 0.033$

 $Y_p = 0.2465 \pm 0.0097$

 $Y_p \le 0.2631 95\% \text{ C.L.}$

Izotov & Thuan 2010

Aver et al. 2010

Aver etl. 2012

Aver et al. 2013

Mangano & Serpico 2011

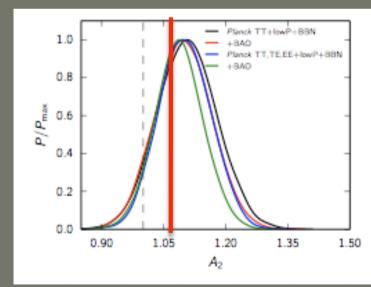
²H/H is presently quite well determined, thanks to new very metal poor system measurements (Cooke et al. 2013)

$$^{2}H/H = (2.53 \pm 0.04) \cdot 10^{-5}$$

How many of them? (the long tale of N_{eff})

Several claims, spanning from "Evidence for extra neutrinos"

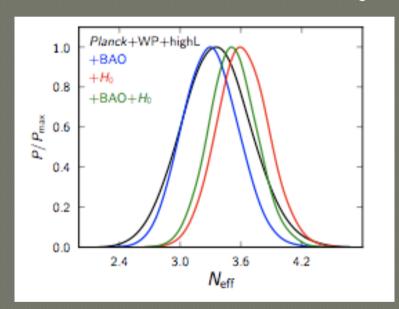
to

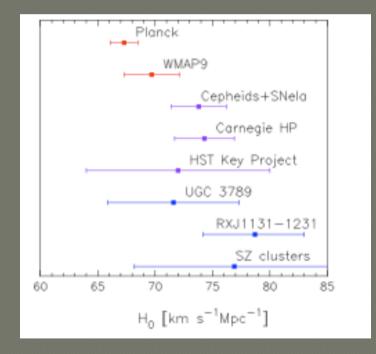

"No room for extra neutrinos"

Conservative estimate: $N_{\rm eff}$ < 4 (still !) Degeneracies! One example: for Planck baryon density a higher deuterium

$$^{2}H/H = (2.65 \pm 0.07) \cdot 10^{-5}$$

 $N_{\rm eff}$ smaller than 3 (2.7)? Maybe, or a larger S-factor for $d(p, \gamma)^3$ He, as in the theoretical estimate of Marcucci et al. (2005)


Di Valentino et al (2014): rate/rate_{exp} = \mathbb{A}_2


Planck 2015 results, XIII

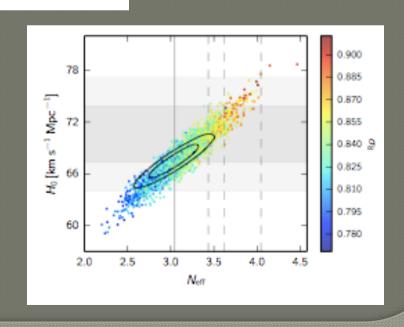
How many of them? (the long tale of N_{eff})

Planck 2013: a narrower 95 % C.L. range for $N_{\rm eff}$, but still inconclusive. H_0 problem:

3.4±0.7 3.3±0.8 3.6±0.5

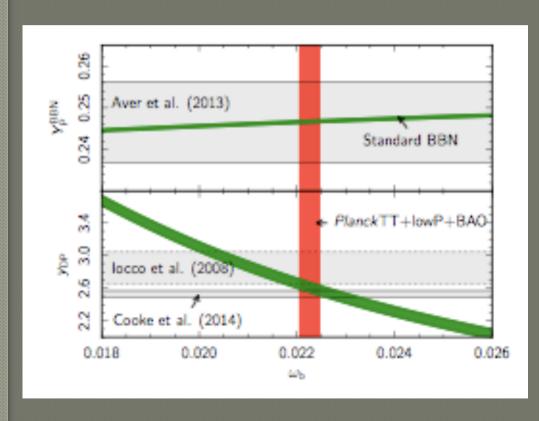
Ade et al. 2013 (Planck XVI)

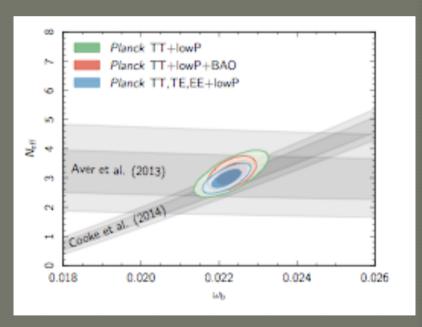
How many of them? (the long tale of $N_{\rm eff}$)


Planck 2015:

```
\begin{split} N_{\rm eff} &= 3.13 \pm 0.32 \quad \textit{Planck} \; \text{TT+lowP}\,; \\ N_{\rm eff} &= 3.15 \pm 0.23 \quad \textit{Planck} \; \text{TT+lowP+BAO}\,; \\ N_{\rm eff} &= 2.99 \pm 0.20 \quad \textit{Planck} \; \text{TT}, \text{TE}, \text{EE+lowP}\,; \\ N_{\rm eff} &= 3.04 \pm 0.18 \quad \textit{Planck} \; \text{TT}, \text{TE}, \text{EE+lowP+BAO}\,. \end{split}
```

In good agreemnt with Standard expectation (3.046)


GM et al 2004


Caveat: discrepancy with SNIa value of H_0 at 2.2 σ level

How many of them? (the long tale of $N_{\rm eff}$)

CMB and BBN are quite consistent

 $N_{\rm eff} = 3.046$

Planck 2015 results, XIII Pisanti et al 2008 (PArthENoPE) N_{eff} free

Neutrino mass: universe better than lab's ?

Laboratory is still missing! 2 eV for $\, \nu_{\, {
m e}}$

Katrin wil tell us more (when?)

Cosmology blind to neutrino mass till recent times.

CMB:

For the expected mass range the main effect is around the first acoustic peak due to the early integrated Sachs-Wolfe (ISW) effect;

Planck: gravitational lensing. Increasing neutrino mass, increases the expansion rate at z > 1 and so suppresses clustering on scales smaller than the horizon size at the nonrelativistic transition (Kaplinghat et al. 2003; Lesgourgues et al. 2006). Suppression of the CMB lensing potential.

Neutrino mass: universe better than lab's ?

Total neutrino mass also affects the angular-diameter distance to last scattering, and can be constrained through the angular scale of the first acoustic peak. Degenerate with Ω_{Λ} (and so the derived H_0)


Including BAO constraint is much tighter:

```
\sum m_{\nu} < 0.72 \text{ eV} Planck TT+lowP;

\sum m_{\nu} < 0.21 \text{ eV} Planck TT+lowP+BAO;

\sum m_{\nu} < 0.49 \text{ eV} Planck TT, TE, EE+lowP;

\sum m_{\nu} < 0.17 \text{ eV} Planck TT, TE, EE+lowP+BAO.
```


Planck 2015 results, XIII

Early times:

$$f_a = \frac{1}{e^{p/T - \xi_a} + 1}$$
 $f_{\bar{a}} = \frac{1}{e^{p/T + \xi_a} + 1}$

$$f_{\overline{a}} = \frac{1}{e^{p/T + \xi_a} + 1}$$

Kinetic and chemical equilibrium

MeV scale (set by G_F and Δm^2 's):

- freezing of weak interaction processes
- ν distributions mixed up, depending on mixing angles

density matrix formalism ρ_{ab}

 ρ_{aa} occupation number ρ_{ab} a \neq b mixing

$$\frac{d}{dt}\rho = \frac{1}{i} \left[\Omega_{vac} + \Omega_{matter}, \rho \right] + C$$

 Ω_{vac} vacuum oscillations: M²/2p

 Ω_{matter} matter term: $2^{1/2} G_F \Delta n_i + 8 2^{1/2} G_F p T_0^0/3 M_{W,Z}^2$

C: collisional integral (loss of coherence and distribution re-shuffling)

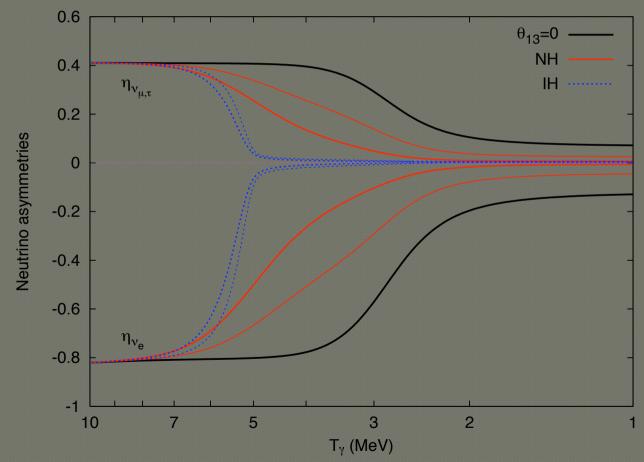
Stodolski 1987

Raffelt ad Sigl 1993

......

When oscillations matter:

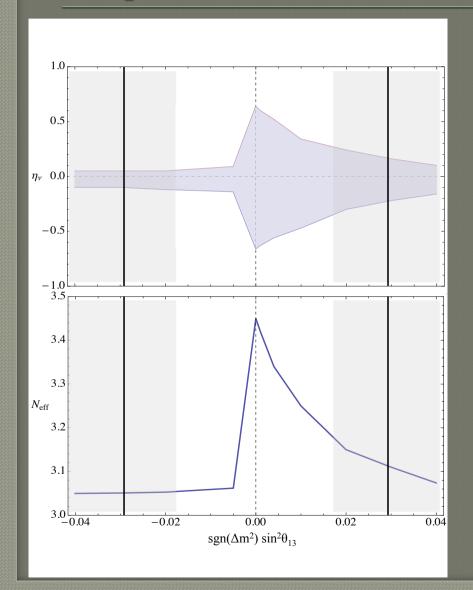
Lepton asymmetries expected quite small in (standard) leptogenesis


$$\eta_a = \frac{n_a - n_{\bar{a}}}{n_v} = \frac{1}{12\xi(3)} \left(\pi^2 \xi_a + \xi_a^3\right) \approx \eta_B = 6 \times 10^{-10}$$

unless leptogenesis takes place well below the EW breaking scale

 $\exp\left(-M_W(T)/g^2T\right) << 1$

The value of θ_{13} is crucial (and to a minor extent


the mass hierarchy)

Pastor et al 2011 GM et al 2012

$$\begin{split} \mathbf{T}_{\text{mix}} >> \mathbf{T}_{\text{dec}} & f_a = f_b = \frac{1}{e^{p/T} + 1} & \mathbf{N}_{\text{eff}} = 3.046 \\ \mathbf{T}_{\text{mix}} << \mathbf{T}_{\text{dec}} & f_a = f_b = \cos^2\theta \frac{1}{e^{p/T - \xi} + 1} + \sin^2\theta \frac{1}{e^{p/T + \xi} + 1} \\ & \mathbf{N}_{\text{eff}} > 3 \\ & \text{unless } \xi = 0 \\ \mathbf{f}_{\text{a}} & \mathbf{MIXING} & \mathbf{EQUILIBRIUM} \\ & \mathbf{f}_{\text{b}} & \mathbf{SINK \& SOURCE} \end{split}$$

 γ , e^{\pm}

the bounds: scanning all asymmetries compatible with BBN

 $N_{eff} < 3.2$

 $-0.2 (-0.1) \le \eta_{\nu} \le 0.15 (0.05)$

GM et al 2012

- $ightharpoonup N_{eff} \le 3.2$ still compatible with slightly degenerate neutrinos
- N_{eff} ≥ 3.2 some extra "dark" radiation required or higly non-thermal neutrino distribution, or both

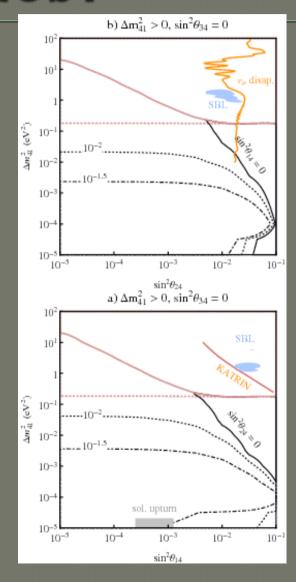
Planck 2015: a (large) neutrino asymmetry is still viable and can saturate the $N_{\rm eff}$ (68 % C.L.) upper bound

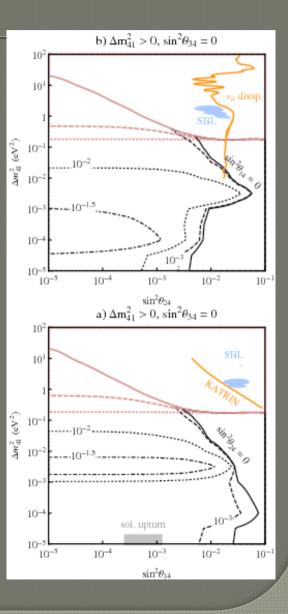
Hints for sterile neutrino states from long(short) standing anomalies

LSND, MiniBoone Reactor anomaly Gallium anomaly

$$m_{\nu} \approx eV$$
, $\sin^2 \theta_{as} \approx 10^{-2}$

With standard assumptions too many sterile neutrinos in the early universe, produced via oscillations

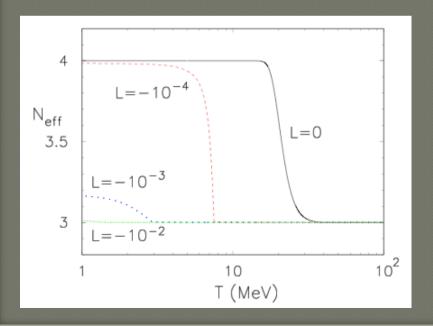

Unless there is a fine tuning, the typical outcome is either too few or too many (and too heavy!)

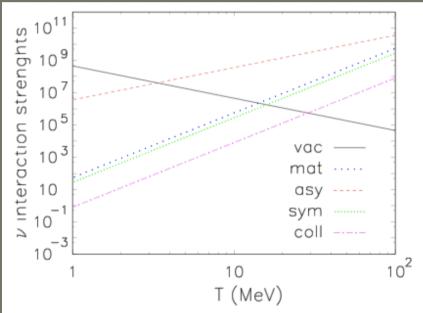

- The standard case
- 2. Large lepton asymmetries
- "secret" "sterile" interactions

The standard case
(Mirizzi et al 2013)

New Planck analysis (Planck XIII 2015)

 $N_{eff} < 3.7$ $m_s < 0.38 \text{ eV}$





Lepton asymmetry suppresses sterile

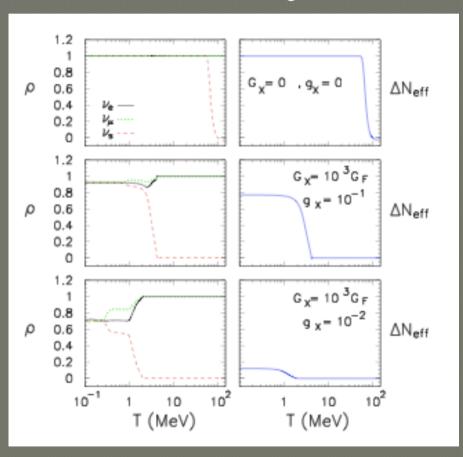
production

$$V = \sqrt{2} G_F L_{\nu}$$

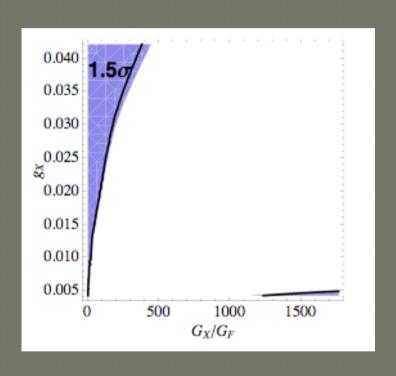
 $L_{\nu} = 10^{-4}$ Mirizzi et al. 2012

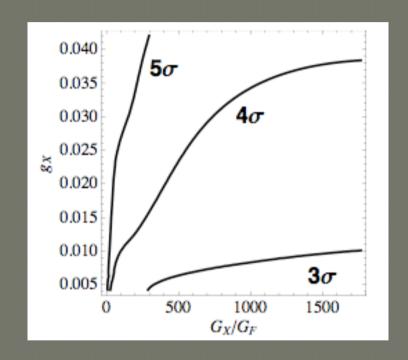
Large sterile self-interactions suppress sterile production due to large potential

$$V_s = -\sqrt{2}G_X \frac{8\langle p \rangle \rho_s}{3M_X^2}$$


(Hannestad et al 2013)

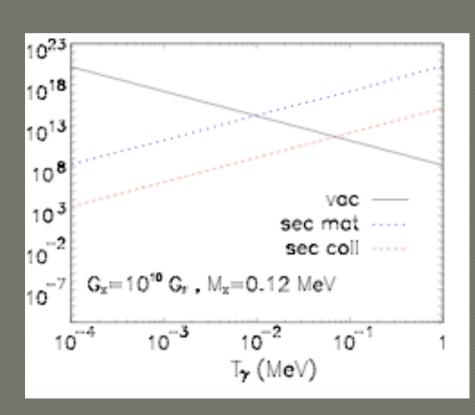
G_X larger than Fermi constant. OK for N_{eff} smaller than 1.


$$G_X = \frac{\sqrt{2}g_X^2}{8M_X^2}$$


Saviano et al 2014

BBN sensitive to $\nu_{\rm e}$ distribution

Saviano et al 2014



Y

²H/H

Saviano et al 2014

Can we evade BBN constraints?

Mirizzi et al 2014

Large couplings suppresses sterile production well after BBN

But eventually sterile states are excited: $n_{\text{sterile}} \approx n_{\text{active}}$

Entropy conservation: $N_{eff} \approx 2.7$

Two regimes:

Sterile become collisionless before non relativistic: mass bound applies

Sterile become collisionless after non relativistic: mass bound does not apply

Conclusions

We know a lot about neutrino properties from lab experiments.

We would like to know more exploiting their impact on cosmological and astrophysical observables.

Precision Cosmology: precise observations which fit the standard model extremely well.

But: as soon as we move away from our comfortable standard?

Robust vs weak predictions: which is the case for neutrino properties?