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A long-standing problem, since the introduction of the
ε-expansion by Wilson and Fisher in 1972, has been to prove it
rigorously. This expansion gives a quantitative explanation for
nonclassical critical exponents and the scaling dimensions of
the fields present in the theory at hand.

Quoting from p. 64 of the book “Renormalization Group” by
Benfatto and Gallavotti:

“. . . it has to be stressed that the possibility of nonclassical
critical indices (i.e., of nonzero anomaly η) is probably the
most important achievement of the renormalization group.”

In this talk I will present the first (?) RG proof of dynamically
generated anomalous scaling for a Bosonic field governed by
an isolated nontrivial fixed point similar to the Wilson-Fisher
fixed point (A.A.-Chandra-Guadagni, arXiv 2013). Suprisingly
perhaps, the model for which we proved this result is a
hierarchical model.
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Long-term goal:

Reaching a deeper understanding of probability measures on
spaces of distributions which arise in quantum/statistical field
theory, where “deeper” means related to the more advanced
features such as composite fields and the operator product ex-
pansion.

RG gives correlations functions 〈φ(x1) · · ·φ(xn)〉 but also much
more:

Composite fields: O = 1, φ, φ∂φ, φ2, (∂2φ)φ3, . . .
expected to satisfy OPE

OA(x)OB(y) =
∑
C

CAB,C (y − x)OC (x)

inside correlations as asymptotic series when y → x .
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In fact OPE expected to converge (for y closer than the
nearest spectator field).

Perturbative RG: convergence of OPE is a theorem
(Hollands-Kopper CMP 2012).

Constructive RG: ???

Conclusion of the talk:

Progress on these difficult questions is possible if one focuses
on natural hierarchical models, e.g., the p-adic model of A.A.-
Chandra-Guadagni arXiv 2013.
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Hierarchial models

Long history in QFT and statistical mechanics:

Dyson CMP 1969, Wilson PR 1971 (The approximate
recursion), Baker PRB 1972, Bleher-Sinai CMP 1973,
Collet-Eckmann CMP 1977, Gallavotti ANL 1978, Benfatto et
al. CMP 1978,. . .
HMs important for the development of RG theory. Little
known fact: the ε-expansion was first discovered in the HM
setting.

“Then, at Michael’s urging, I work out what happens near four
dimensions for the approximate recursion formula, and find
that d-4 acts as a small parameter. Knowing this it is then
trivial, given my field theoretic training, to construct the
beginning of the epsilon expansion for critical exponents.” K.
G. Wilson, interview in Physics of Scales Activities, July 6,
2002.
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Hierarchial models

HM idea is ubiquitous in mathematics: see 2007 blog post
“Dyadic Models” by Terence Tao. For example in harmonic
analysis:

Euclidean model↔ Fourier series

Hierarchical model↔Walsh series

Basic idea of HM is to replace the real line by the leafs of an
infinite tree.

Two kinds of HMs in literature: artificial and natural.

artificial: tree is embedded in Rd .

natural: tree is considered intrinsically without reference to
any embedding in Rd .
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Hierarchical models

artificial 6= bad

Sometimes one can prove a result on Euclidean model by
reduction to embedded HM.

Example 1: work of Dyson on long-range 1d Ising.

Example 2: work of Bramson-Zeitouni for extrema of
massless free field (embedded HM is branching random walk).



Wilson’s prediction

in “Renormalization of a scalar field theory in strong coupling”
PRD 1972, for a scalar HM at a nontrivial fixed point

W1) the elementary field φ has no anomalous dimension, i.e.,
〈φxφy〉 ∼ |x− y|−2[φ] where [φ] is the scaling dimension for the
perturbed Gaussian.

W2) 〈φ2
x, φ

2
y〉T ∼ |x− y|−2[φ2] with [φ2] > 2[φ], namely, φ2

has an anomalous dimension.

Previous work
Much on HMs but little concerning correlation functions.
Gawedzki-Kupiainen, in “Non-Gaussian scaling limits.
Hierarchical model approximation” JSP 1984, confirmed W1.
But, then said that 〈φm

x , φ
m
y 〉T ∼ |x− y|−2[φ] for any m.

In A.A.-Chandra-Guadagni arXiv 2013 we proved an integrated
version of W2 therefore justifying Wilson’s prediction and
invalidating the claim by Gawedzki-Kupiainen when m = 2.
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1) Hierarchical continuum

Let p be an integer > 1 (in fact a prime number).

Let Lk , k ∈ Z, be the set of boxes
∏d

i=1

[
aip

k , (ai + 1)pk
)

for
a1, . . . , ad ∈ N. The cubes in Lk forms a partition of the
octant [0,∞)d .

Then T = ∪k∈ZLk naturally has the structure of a doubly
infinite tree organized in layers or generations Lk :



1) Hierarchical continuum

Let p be an integer > 1 (in fact a prime number).

Let Lk , k ∈ Z, be the set of boxes
∏d

i=1

[
aip

k , (ai + 1)pk
)

for
a1, . . . , ad ∈ N. The cubes in Lk forms a partition of the
octant [0,∞)d .

Then T = ∪k∈ZLk naturally has the structure of a doubly
infinite tree organized in layers or generations Lk :



Picture for d = 1, p = 2



Now forget about [0,∞)d and Rd .
Define the substitute for continuum Qd

p := set of leafs at
infinity “L−∞”.

More precisely, this is the set of upward paths in the tree.

A path representing some x ∈ Qd
p
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A point x ∈ Qd
p encoded by sequence (an)n∈Z,

an ∈ {0, 1, . . . , p − 1}d .
Let 0 ∈ Qd

p correspond to sequence with all digits equal to
zero.

Caution! perverse notation ahead
an represents local coordinates of L−n−1 box inside L−n box.
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Moreover, scaling defined as follows
if x = (an)n∈Z then px = (an−1)n∈Z, i.e., upward shift.

Likewise p−1x is downward shift and so on for defining pkx ,
k ∈ Z.
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2) Distance

If x , y ∈ Qd
p , define their distance as |x − y | := pk where k is

the depth where the bifurcation between the two paths occurs

also define |x | := |x − 0|. Because of the strange notation

|px | = p−1|x |
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3) Lebesgue measure

Metric space Qd
p − > Borel σ-algebra − > Lebesgue measure

ddx which gives measure pdk for closed ball ball of radius pk .

Construction: take product of uniform probability measures on
({0, 1, . . . , p− 1}d)N for B(0, 1) and similarly for other balls of
radius 1, then collate.
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4) Massless Gaussian measure

To any G group of offsprings of site z ∈ Lk+1 associate
centered Gaussian vector (ζx)x∈G with pd × pd covariance
matrix with 1− p−d on diagonal and −p−d everywhere else.
These vectors are set to be independent for different groups or
layers.

Note that
∑

x∈G ζx = 0 a.s.
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Ancestor function: for k < k ′, x ∈ Lk , let anck ′(x) be the
ancestor in Lk ′ .

Likewise for anck ′(x) for x ∈ Qd
p .

Massless Gaussian field φ(x), x ∈ Qd
p with engineering scaling

dimension [φ] is

φ(x) =
∑
k∈Z

p−k[φ]ζanck (x)

〈φ(x)φ(y)〉 =
c

|x − y |2[φ]

only formal since φ not defined pointwise. Need random
distributions.
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5) Test functions

f : Qd
p → R smooth iff locally constant

S(Qd
p) := {smooth compactly supported functions}

= ∪n∈NS−n,n(Qd
p)

where for t− ≤ t+, St−,t+(Qd
p) is space of functions which are

constant in closed boxes of radius pt− and support in
B(0, pt+).

Topology generated by the set of all seminorms.
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6) Distributions

S ′(Qd
p) is topological dual with weak-∗ topology.

S(Qd
p) ' ⊕NR

Thus
S ′(Qd

p) ' RN

with product topology − > Polish space.

Probability theory on S ′(Qd
p) is very nice!
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4 Uniform convergence of characteristic functions in
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Theorem).

5 Analytic RG and dynamical systems methods we
introduced deliver exactly that.
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p) ' S ′(Qd
p) so same tools work for joint

law of pair of distributional random fields, e.g., (φ,N[φ2]).
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7) p-adic BMS model

d = 3,

[φ] = 3−ε
4

, L = pl RG step

r ∈ Z UV cut-off, r → −∞

s ∈ Z IR cut-off, s →∞

Cut-off Gaussian measure µCr is law of

φr (x) =
∞∑

k=l r

p−k[φ]ζanck (x)

Sample paths are functions that are locally constant at scale
Lr .
Gaussian measures are scaled copies of each other.
If law of φ(·) is µC0 , then law of L−r [φ]φ(Lr ·) is µCr .
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Introduce fixed parameters g , µ and cut-off dependent
couplings gr = L−(3−4[φ])rg and µr = L−(3−2[φ])rµ.

Let Λs = B(0, Ls), volume or IR cut-off.

Let

Vr ,s(φ) =

∫
Λs

{gr : φ4 :Cr (x) + µr : φ2 :Cr (x)}d3x

and define the probability measure

dνr ,s(φ) =
1

Zr ,s
e−Vr,s(φ)dµCr (φ)
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Let φr ,s random variable in S ′(Q3
p) sampled according to νr ,s

and define square field Nr [φ
2
r ,s ] which is deterministic

S ′(Q3
p)-valued function of φr ,s given by

Nr [φ
2
r ,s ](j) = Z r

2

∫
Q3

p

{Y2 : φ2
r ,s :Cr (x)− Y0L

−2r [φ]} j(x) d3x

Z2, Y0, Y2 are parameters to be adjusted.

Our main result concerns the limit law of the pair
(φr ,s ,Nr [φ

2
r ,s ]) in S ′(Q3

p)× S ′(Q3
p) when r → −∞, s →∞

regardless of the order of limits.
Will need approximate fixed point coupling

ḡ∗ =
pε − 1

36Lε(1− p−3)
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ḡ∗ =
pε − 1

36Lε(1− p−3)



8) Results

Theorem 1: A.A.-Chandra-Guadagni 2013

∃ρ, ∃L0, ∀L ≥ L0, ∃ε0 > 0, ∀ε(0, ε0], ∃ηφ2 > 0, ∃ functions

µ(g), Y0(g), Y2(g) on interval (ḡ∗ − ρε
3
2 , ḡ∗ + ρε

3
2 ) such that

if one sets µ = µ(g), Y0 = Y0(g), Y2 = Y2(g) then law of
(φr ,s ,Nr [φ

2
r ,s ]) converges weakly and in the sense of moments

to that of a pair (φ,N[φ2]) such that:

1) ∀k ∈ Z,

(L−k[φ]φ(Lk ·), L−k[φ2]N[φ2](Lk ·))
d
= (φ,N[φ2])

where [φ2] = 2[φ] + 1
2
ηφ2

2)
〈φ(1Z3

p
), φ(1Z3

p
), φ(1Z3

p
), φ(1Z3

p
)〉T < 0

i.e., φ is non-Gaussian. Here 1Z3
p

= B(0, 1)

3) 〈N[φ2](1Z3
p
),N[φ2](1Z3

p
)〉T = 1
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3
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Mixed correlations satisfy in sense of distributions

〈φ(L−kx1) · · ·φ(L−kxn)N[φ2](L−ky1) · · ·N[φ2](L−kym)〉

= L−(n[φ]+m[φ2])k〈φ(x1) · · ·φ(xn)N[φ2](y1) · · ·N[φ2](ym)〉

ηφ2 = 2
3
ε + o(ε)

The law νφ×φ2 of (φ,N[φ2]) is independent of g : universality
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Theorem 2: A.A.-Chandra-Guadagni 2013

νφ×φ2 is fully scale invariant, i.e., invariant under action of pZ

instead of just LZ. Moreover, µ(g) and ηφ2 independent of RG
step L.

Two point functions given as distributions by

〈φ(x)φ(y)〉 =
c1

|x − y |2[φ]

〈N[φ2](x) N[φ2](y)〉 =
c2

|x − y |4[φ]+ηφ2

Note 4[φ] = 3− ε so 4[φ] + ηφ2 = 3− 1
3
ε + o(ε) − > still

L1,loc !



Theorem 2: A.A.-Chandra-Guadagni 2013

νφ×φ2 is fully scale invariant, i.e., invariant under action of pZ

instead of just LZ. Moreover, µ(g) and ηφ2 independent of RG
step L.

Two point functions given as distributions by

〈φ(x)φ(y)〉 =
c1

|x − y |2[φ]

〈N[φ2](x) N[φ2](y)〉 =
c2

|x − y |4[φ]+ηφ2

Note 4[φ] = 3− ε so 4[φ] + ηφ2 = 3− 1
3
ε + o(ε) − > still

L1,loc !



Theorem 2: A.A.-Chandra-Guadagni 2013

νφ×φ2 is fully scale invariant, i.e., invariant under action of pZ

instead of just LZ. Moreover, µ(g) and ηφ2 independent of RG
step L.

Two point functions given as distributions by

〈φ(x)φ(y)〉 =
c1

|x − y |2[φ]

〈N[φ2](x) N[φ2](y)〉 =
c2

|x − y |4[φ]+ηφ2

Note 4[φ] = 3− ε so 4[φ] + ηφ2 = 3− 1
3
ε + o(ε) − > still

L1,loc !



Theorem 3: A.A. 2015

Let ψi denote φ or N[φ2]. Then for every mixed correlation
∃ smooth function 〈ψ1(z1) · · ·ψn(zn)〉 on (Q3

p)n\Diag which is
locally integrable (even on Diag) such that

〈ψ1(f1) · · ·ψn(fn)〉 =∫
(Q3

p)n\Diag

〈ψ1(z1) · · ·ψn(zn)〉f1(z1) · · · fn(zn) d3z1 · · · d3zn

for all test functions f1, . . . , fn ∈ S(Q3
p).

Moreover the point-
wise correlations satisfy the possibly new but certainly nice L1,loc

bound
|〈ψ1(z1) · · ·ψn(zn)〉| ≤

O(1)×
n∏

i=1

|zi − (nearest neighbor of zi)|−[ψi ]



Theorem 3: A.A. 2015

Let ψi denote φ or N[φ2]. Then for every mixed correlation
∃ smooth function 〈ψ1(z1) · · ·ψn(zn)〉 on (Q3

p)n\Diag which is
locally integrable (even on Diag) such that

〈ψ1(f1) · · ·ψn(fn)〉 =∫
(Q3

p)n\Diag

〈ψ1(z1) · · ·ψn(zn)〉f1(z1) · · · fn(zn) d3z1 · · · d3zn

for all test functions f1, . . . , fn ∈ S(Q3
p). Moreover the point-

wise correlations satisfy the possibly new but certainly nice L1,loc

bound
|〈ψ1(z1) · · ·ψn(zn)〉| ≤

O(1)×
n∏

i=1

|zi − (nearest neighbor of zi)|−[ψi ]



1 Introduction

2 Model and results

3 Key ideas in the proof



Usually rigorous RG for couplings which are constant in space∫
{g : φ4 : (x) + µ : φ2 : (x)}ddx

We introduced extended RG for space-dependent couplings∫
{g(x) : φ4 : (x) + µ(x) : φ2 : (x)}ddx

e.g,. g(x) = gbulk + δg(x), where δg(x) is a local
perturbation, e.g., a test function.
Extended RG is rigorous nonperturbative version of local RG:
Wilson-Kogut PR 1974, Drummond-Shore PRD 1979,
Jack-Osborn NPB 1990,. . .
used in generalizations of Zamolodchikov’s c-“Theorem”,
investigations of scale vs. conformal invariance, AdS/CFT,. . .
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1st step: rescale to unit lattice

ST
r ,s(f ) := log∫

dµCr (φ) exp
(
−
∫

Λs
{gr : φ4 :r (x) + µr : φ2 :r}dx +

∫
φ(x)f (x)dx

)
∫
dµCr (φ) exp

(
−
∫

Λs
{gr : φ4 :r (x) + µr : φ2 :r}dx

)

= log

∫
dµC0(φ)I(r ,r)[f ](φ)∫
dµC0(φ)I(r ,r)[0](φ)

with
I(r ,r)[f ](φ) =

exp

(
−
∫

Λs−r

{g : φ4 :0 (x) + µ : φ2 :0}d3x

+L(3−[φ])r

∫
φ(x)f (L−rx)d3x

)
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2nd step: define extended RG
Fluctuation covariance Γ := C0 − C1.
Corresponding Gaussian measure is law of fluctuation field

ζ(x) =
∑

0≤k<l

p−k[φ]ζanck (x)

L-blocks are independent.

Write∫
I(r ,r)[f ](φ) dµC0(φ) =

∫ ∫
I(r ,r)[f ](ζ +ψ) dµΓ(ζ)dµC1(ψ)

=

∫
I(r ,r+1)[f ](φ) dµC0(φ)

with new integrand

I(r ,r+1)[f ](φ) =

∫
I(r ,r)[f ](ζ + L−[φ]φ(L·)) dµΓ(ζ)
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Need to use Brydges-Yau lift

RGext

~V (r ,q) −→ ~V (r ,q+1)

↓ ↓
I(r ,q) −→ I(r ,q+1)

I(r ,q)(φ) =
∏
∆∈L0

∆⊂Λs−q

[
e f∆φ∆×

{
exp
(
−β4,∆ : φ4

∆ :C0 −β3,∆ : φ3
∆ :C0 −β2,∆ : φ2

∆ :C0 −β1,∆ : φ1
∆ :C0

)
×
(
1 + W5,∆ : φ5

∆ :C0 +W6,∆ : φ6
∆ :C0

)
+R∆(φ∆)}]

Dynamical variable is ~V = (V∆)∆∈L0 with

V∆ = (β4,∆, β3,∆, β2,∆, β1,∆,W5,∆,W6,∆, f∆,R∆)
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RGext acts on space Eext which essentially is∏
∆∈L0

{
C7 × C 9(R,C)

}

Stable subspaces

Ebulk ⊂ Eext: data constant in space
E ⊂ Ebulk: even potentials, i.e, g , µ only and R even function.
Let RG be action of RGext inside E .
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3rd step: stabilize the bulk
Show ∀q ∈ Z, that

lim
r→−∞

~V (r ,q)[0]

exists, i.e.,

lim
r→−∞

RG q−r
(
~V (r ,r)[0]

)
exists.

Bulk evolution is
g ′ = Lεg − A1g

2 + · · ·
µ′ = L

3+ε
2 µ − A2g

2 − A3gµ + · · ·
R ′ = L(g ,µ)(R) + · · ·

Tadpole graph with mass insertion

A3 = 12L3−2[φ]

∫
Q3

p

Γ(0, x)2 d3x

is main culprit for anomalous dimension.
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Irwin’s proof − > stable manifold W s

Restrict dynamics to W s − > contraction − > IR fixed point
v∗.
Construct unstable manifold W u and show intersects W s

transversely exactly at v∗.

Here, ~V (r ,r)[0] independent of r : strict scaling limit of a fixed
lattice theory.
Just a matter of choosing it on W s − > µ(g) critical mass.
Thus

∀q ∈ Z, lim
r→−∞

~V (r ,q)[0] = v∗

Tangent spaces at fixed point: E s and E u.
E u = Ceu, with eu eigenvector of Dv∗RG for eigenvalue
αu = L3−2[φ] × Z2 =: L3−[φ2].
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4th step: control the deviations
Namely, for all q bound the deviations ~V (r ,q)[f ]− ~V (r ,q)[0]
uniformly in r .

1)
∑

x∈G ζx = 0 a.s. − > deviation is 0 for q less than the
constancy scale of f .
2) deviation resides in unit box at origin for q more than
radius of support of f with respect to origin − > geometric
decay for q large. For φ2 source term add

Y2Z
r
2

∫
: φ2 :Cr (x)j(x)d3x

in potential. ST
r ,s(f , j) depends on two test functions. After

rescaling to unit lattice, we get

Y2α
r
u

∫
: φ2 :C0 (x)j(L−rx)d3x

to be combined with µ in the now space-dependent mass
(β2,∆)∆∈L0 .
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5th step: partial linearization
To repeat previous steps when j is present

need to construct

Ψ(v ,w) = lim
n→∞

RG n(v + α−nu w)

for v ∈ W s and any direction w (primarily needed for
∫

: φ2 :
direction).
For fixed v , Ψ(v , ·) is parametrization of W u satisfying
Ψ(v , αuw) = RG (Ψ(v ,w)).
If no W s direction, i.e., 1d dynamics, then Ψ is a conjugation
− > Poincare-Koenigs Theorem.
Ψ(v ,w) is jointly holomorphic in v and w .
Essential for probability theory interpretation of (φ,N[φ2]) as
pair of S ′(Q3

p)-valued random variables.
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What next?
1) Prove pointwise OPE
2) Proved smeared OPE, i.e., show N[φ2] deterministic local
function of φ
3) Prove OS positivity: UV cut-off by convolution with
compactly supported mollifier + exclusion corridor. Show
theory is the same as without corridor − > extended RG for
boundaries, domain walls, etc.
4) Heteroclinic RG trajectory
5) Investigate conformal invariance
6) Transpose all this to the Euclidean setting: all hinges on
developing Euclidean extended RG.


