# Proof of a 43-Year-Old Prediction by Wilson on Anomalous Scaling for a Hierarchical Composite Field 

Abdelmalek Abdesselam<br>Department of Mathematics, University of Virginia<br>\[ \begin{gathered} Partly joint work with Ajay Chandra (U. of Warwick)<br>and Gianluca Guadagni (U. of Virginia) \end{gathered} \]

Pierluigi Falco Memorial Conference, Rome, June 11, 2015
(1) Introduction
(2) Model and results
(3) Key ideas in the proof

A long-standing problem, since the introduction of the $\epsilon$-expansion by Wilson and Fisher in 1972, has been to prove it rigorously. This expansion gives a quantitative explanation for nonclassical critical exponents and the scaling dimensions of the fields present in the theory at hand.

A long-standing problem, since the introduction of the $\epsilon$-expansion by Wilson and Fisher in 1972, has been to prove it rigorously. This expansion gives a quantitative explanation for nonclassical critical exponents and the scaling dimensions of the fields present in the theory at hand.
Quoting from p. 64 of the book "Renormalization Group" by Benfatto and Gallavotti:
". . . it has to be stressed that the possibility of nonclassical critical indices (i.e., of nonzero anomaly $\eta$ ) is probably the most important achievement of the renormalization group."

A long-standing problem, since the introduction of the $\epsilon$-expansion by Wilson and Fisher in 1972, has been to prove it rigorously. This expansion gives a quantitative explanation for nonclassical critical exponents and the scaling dimensions of the fields present in the theory at hand.
Quoting from p. 64 of the book "Renormalization Group" by Benfatto and Gallavotti:
". . . it has to be stressed that the possibility of nonclassical critical indices (i.e., of nonzero anomaly $\eta$ ) is probably the most important achievement of the renormalization group."

In this talk I will present the first (?) RG proof of dynamically generated anomalous scaling for a Bosonic field governed by an isolated nontrivial fixed point similar to the Wilson-Fisher fixed point (A.A.-Chandra-Guadagni, arXiv 2013).

A long-standing problem, since the introduction of the $\epsilon$-expansion by Wilson and Fisher in 1972, has been to prove it rigorously. This expansion gives a quantitative explanation for nonclassical critical exponents and the scaling dimensions of the fields present in the theory at hand.
Quoting from p. 64 of the book "Renormalization Group" by Benfatto and Gallavotti:
"...it has to be stressed that the possibility of nonclassical critical indices (i.e., of nonzero anomaly $\eta$ ) is probably the most important achievement of the renormalization group."

In this talk I will present the first (?) RG proof of dynamically generated anomalous scaling for a Bosonic field governed by an isolated nontrivial fixed point similar to the Wilson-Fisher fixed point (A.A.-Chandra-Guadagni, arXiv 2013). Suprisingly perhaps, the model for which we proved this result is a hierarchical model.

Long-term goal:
Reaching a deeper understanding of probability measures on spaces of distributions which arise in quantum/statistical field theory, where "deeper" means related to the more advanced features such as composite fields and the operator product expansion.

Long-term goal:
Reaching a deeper understanding of probability measures on spaces of distributions which arise in quantum/statistical field theory, where "deeper" means related to the more advanced features such as composite fields and the operator product expansion.

RG gives correlations functions $\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ but also much more:

Long-term goal:
Reaching a deeper understanding of probability measures on spaces of distributions which arise in quantum/statistical field theory, where "deeper" means related to the more advanced features such as composite fields and the operator product expansion.

RG gives correlations functions $\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ but also much more:

Composite fields: $\mathcal{O}=1, \phi, \phi \partial \phi, \phi^{2},\left(\partial^{2} \phi\right) \phi^{3}, \ldots$ expected to satisfy OPE

$$
\mathcal{O}_{A}(x) \mathcal{O}_{B}(y)=\sum_{C} \mathcal{C}_{A B, C}(y-x) \mathcal{O}_{C}(x)
$$

inside correlations as asymptotic series when $y \rightarrow x$.

In fact OPE expected to converge (for $y$ closer than the nearest spectator field).

In fact OPE expected to converge (for $y$ closer than the nearest spectator field).

Perturbative RG: convergence of OPE is a theorem (Hollands-Kopper CMP 2012).

In fact OPE expected to converge (for $y$ closer than the nearest spectator field).

Perturbative RG: convergence of OPE is a theorem (Hollands-Kopper CMP 2012).

Constructive RG: ???

In fact OPE expected to converge (for $y$ closer than the nearest spectator field).

Perturbative RG: convergence of OPE is a theorem
(Hollands-Kopper CMP 2012).
Constructive RG:
???
Conclusion of the talk:
Progress on these difficult questions is possible if one focuses on natural hierarchical models, e.g., the p-adic model of A.A.-Chandra-Guadagni arXiv 2013.

Hierarchial models

Hierarchial models
Long history in QFT and statistical mechanics:
Dyson CMP 1969, Wilson PR 1971 (The approximate recursion), Baker PRB 1972, Bleher-Sinai CMP 1973, Collet-Eckmann CMP 1977, Gallavotti ANL 1978, Benfatto et al. CMP 1978,...

## Hierarchial models

Long history in QFT and statistical mechanics:
Dyson CMP 1969, Wilson PR 1971 (The approximate recursion), Baker PRB 1972, Bleher-Sinai CMP 1973, Collet-Eckmann CMP 1977, Gallavotti ANL 1978, Benfatto et al. CMP 1978,...
HMs important for the development of RG theory. Little known fact: the $\epsilon$-expansion was first discovered in the HM setting.

## Hierarchial models

Long history in QFT and statistical mechanics:
Dyson CMP 1969, Wilson PR 1971 (The approximate recursion), Baker PRB 1972, Bleher-Sinai CMP 1973, Collet-Eckmann CMP 1977, Gallavotti ANL 1978, Benfatto et al. CMP 1978,...
HMs important for the development of RG theory. Little known fact: the $\epsilon$-expansion was first discovered in the HM setting.
"Then, at Michael's urging, I work out what happens near four dimensions for the approximate recursion formula, and find that d-4 acts as a small parameter. Knowing this it is then trivial, given my field theoretic training, to construct the beginning of the epsilon expansion for critical exponents." K. G. Wilson, interview in Physics of Scales Activities, July 6, 2002.

## Hierarchial models

HM idea is ubiquitous in mathematics: see 2007 blog post
"Dyadic Models" by Terence Tao. For example in harmonic analysis:

Euclidean model $\leftrightarrow$ Fourier series
Hierarchical model $\leftrightarrow$ Walsh series
Basic idea of HM is to replace the real line by the leafs of an infinite tree.

## Hierarchial models

HM idea is ubiquitous in mathematics: see 2007 blog post
"Dyadic Models" by Terence Tao. For example in harmonic analysis:

Euclidean model $\leftrightarrow$ Fourier series
Hierarchical model $\leftrightarrow$ Walsh series
Basic idea of HM is to replace the real line by the leafs of an infinite tree.

Two kinds of HMs in literature: artificial and natural.

## Hierarchial models

HM idea is ubiquitous in mathematics: see 2007 blog post
"Dyadic Models" by Terence Tao. For example in harmonic analysis:

Euclidean model $\leftrightarrow$ Fourier series
Hierarchical model $\leftrightarrow$ Walsh series
Basic idea of HM is to replace the real line by the leafs of an infinite tree.

Two kinds of HMs in literature: artificial and natural. artificial: tree is embedded in $\mathbb{R}^{d}$.

## Hierarchial models

HM idea is ubiquitous in mathematics: see 2007 blog post
"Dyadic Models" by Terence Tao. For example in harmonic analysis:

Euclidean model $\leftrightarrow$ Fourier series
Hierarchical model $\leftrightarrow$ Walsh series
Basic idea of HM is to replace the real line by the leafs of an infinite tree.

Two kinds of HMs in literature: artificial and natural. artificial: tree is embedded in $\mathbb{R}^{d}$.
natural: tree is considered intrinsically without reference to any embedding in $\mathbb{R}^{d}$.

Hierarchical models

## artificial $\neq$ bad

Sometimes one can prove a result on Euclidean model by reduction to embedded HM.

Example 1: work of Dyson on long-range 1d Ising.
Example 2: work of Bramson-Zeitouni for extrema of massless free field (embedded HM is branching random walk).

## Wilson's prediction

in "Renormalization of a scalar field theory in strong coupling"
PRD 1972, for a scalar HM at a nontrivial fixed point

## Wilson's prediction

in "Renormalization of a scalar field theory in strong coupling" PRD 1972, for a scalar HM at a nontrivial fixed point
W1) the elementary field $\phi$ has no anomalous dimension, i.e., $\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle \sim|\mathbf{x}-\mathbf{y}|^{-2[\phi]}$ where $[\phi]$ is the scaling dimension for the perturbed Gaussian.

## Wilson's prediction

in "Renormalization of a scalar field theory in strong coupling" PRD 1972, for a scalar HM at a nontrivial fixed point
W1) the elementary field $\phi$ has no anomalous dimension, i.e., $\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle \sim|\mathbf{x}-\mathbf{y}|^{-2[\phi]}$ where $[\phi]$ is the scaling dimension for the perturbed Gaussian.
W2) $\left\langle\phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2}\right\rangle^{\mathrm{T}} \sim|\mathbf{x}-\mathbf{y}|^{-2\left[\phi^{2}\right]}$ with $\left[\phi^{2}\right]>2[\phi]$, namely, $\phi^{2}$
has an anomalous dimension.

## Wilson's prediction

in "Renormalization of a scalar field theory in strong coupling" PRD 1972, for a scalar HM at a nontrivial fixed point
W1) the elementary field $\phi$ has no anomalous dimension, i.e., $\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle \sim|\mathbf{x}-\mathbf{y}|^{-2[\phi]}$ where $[\phi]$ is the scaling dimension for the perturbed Gaussian.
W2) $\left\langle\phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2}\right\rangle^{\mathrm{T}} \sim|\mathbf{x}-\mathbf{y}|^{-2\left[\phi^{2}\right]}$ with $\left[\phi^{2}\right]>2[\phi]$, namely, $\phi^{2}$
has an anomalous dimension.

## Previous work

Much on HMs but little concerning correlation functions.

## Wilson's prediction

in "Renormalization of a scalar field theory in strong coupling" PRD 1972, for a scalar HM at a nontrivial fixed point
W1) the elementary field $\phi$ has no anomalous dimension, i.e., $\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle \sim|\mathbf{x}-\mathbf{y}|^{-2[\phi]}$ where $[\phi]$ is the scaling dimension for the perturbed Gaussian.
W2) $\left\langle\phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2}\right\rangle^{\mathrm{T}} \sim|\mathbf{x}-\mathbf{y}|^{-2\left[\phi^{2}\right]}$ with $\left[\phi^{2}\right]>2[\phi]$, namely, $\phi^{2}$
has an anomalous dimension.

## Previous work

Much on HMs but little concerning correlation functions.
Gawedzki-Kupiainen, in "Non-Gaussian scaling limits.
Hierarchical model approximation" JSP 1984, confirmed W1.
But,

## Wilson's prediction

in "Renormalization of a scalar field theory in strong coupling" PRD 1972, for a scalar HM at a nontrivial fixed point
W1) the elementary field $\phi$ has no anomalous dimension, i.e., $\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle \sim|\mathbf{x}-\mathbf{y}|^{-2[\phi]}$ where $[\phi]$ is the scaling dimension for the perturbed Gaussian.
W2) $\left\langle\phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2}\right\rangle^{\mathrm{T}} \sim|\mathbf{x}-\mathbf{y}|^{-2\left[\phi^{2}\right]}$ with $\left[\phi^{2}\right]>2[\phi]$, namely, $\phi^{2}$
has an anomalous dimension.

## Previous work

Much on HMs but little concerning correlation functions.
Gawedzki-Kupiainen, in "Non-Gaussian scaling limits.
Hierarchical model approximation" JSP 1984, confirmed W1.
But, then said that $\left\langle\phi_{x}^{m}, \phi_{\mathbf{y}}^{m}\right\rangle^{\mathrm{T}} \sim|\mathbf{x}-\mathbf{y}|^{-2[\phi]}$ for any $m$.

## Wilson's prediction

in "Renormalization of a scalar field theory in strong coupling" PRD 1972, for a scalar HM at a nontrivial fixed point
W1) the elementary field $\phi$ has no anomalous dimension, i.e., $\left\langle\phi_{\mathbf{x}} \phi_{\mathbf{y}}\right\rangle \sim|\mathbf{x}-\mathbf{y}|^{-2[\phi]}$ where $[\phi]$ is the scaling dimension for the perturbed Gaussian.
W2) $\left\langle\phi_{\mathbf{x}}^{2}, \phi_{\mathbf{y}}^{2}\right\rangle^{\mathrm{T}} \sim|\mathbf{x}-\mathbf{y}|^{-2\left[\phi^{2}\right]}$ with $\left[\phi^{2}\right]>2[\phi]$, namely, $\phi^{2}$
has an anomalous dimension.

## Previous work

Much on HMs but little concerning correlation functions. Gawedzki-Kupiainen, in "Non-Gaussian scaling limits.
Hierarchical model approximation" JSP 1984, confirmed W1.
But, then said that $\left\langle\phi_{\mathbf{x}}^{m}, \phi_{\mathbf{y}}^{m}\right\rangle^{\mathrm{T}} \sim|\mathbf{x}-\mathbf{y}|^{-2[\phi]}$ for any $m$. In A.A.-Chandra-Guadagni arXiv 2013 we proved an integrated version of W2 therefore justifying Wilson's prediction and invalidating the claim by Gawedzki-Kupiainen when $m=2$.
(1) Introduction
(2) Model and results
(3) Key ideas in the proof

## 1) Hierarchical continuum

Let $p$ be an integer $>1$ (in fact a prime number).
Let $\mathbb{L}_{k}, k \in \mathbb{Z}$, be the set of boxes $\prod_{i=1}^{d}\left[a_{i} p^{k},\left(a_{i}+1\right) p^{k}\right)$ for $a_{1}, \ldots, a_{d} \in \mathbb{N}$. The cubes in $\mathbb{L}_{k}$ forms a partition of the octant $[0, \infty)^{d}$.

## 1) Hierarchical continuum

Let $p$ be an integer $>1$ (in fact a prime number).
Let $\mathbb{L}_{k}, k \in \mathbb{Z}$, be the set of boxes $\prod_{i=1}^{d}\left[a_{i} p^{k},\left(a_{i}+1\right) p^{k}\right)$ for $a_{1}, \ldots, a_{d} \in \mathbb{N}$. The cubes in $\mathbb{L}_{k}$ forms a partition of the octant $[0, \infty)^{d}$.

Then $\mathbb{T}=\cup_{k \in \mathbb{Z}} \mathbb{L}_{k}$ naturally has the structure of a doubly infinite tree organized in layers or generations $\mathbb{L}_{k}$ :


Picture for $d=1, p=2$

Now forget about $[0, \infty)^{d}$ and $\mathbb{R}^{d}$.
Define the substitute for continuum $\mathbb{Q}_{p}^{d}:=$ set of leafs at infinity " $L_{-\infty}$ ".

Now forget about $[0, \infty)^{d}$ and $\mathbb{R}^{d}$.
Define the substitute for continuum $\mathbb{Q}_{p}^{d}:=$ set of leafs at infinity " $\mathbb{L}_{-\infty}$ ".
More precisely, this is the set of upward paths in the tree.


A path representing some $x \in \mathbb{Q}_{p}^{d}$

A point $x \in \mathbb{Q}_{p}^{d}$ encoded by sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$, $a_{n} \in\{0,1, \ldots, p-1\}^{d}$. Let $0 \in \mathbb{Q}_{p}^{d}$ correspond to sequence with all digits equal to zero.

A point $x \in \mathbb{Q}_{p}^{d}$ encoded by sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$, $a_{n} \in\{0,1, \ldots, p-1\}^{d}$.
Let $0 \in \mathbb{Q}_{p}^{d}$ correspond to sequence with all digits equal to zero.

## Caution! perverse notation ahead

$a_{n}$ represents local coordinates of $\mathbb{L}_{-n-1}$ box inside $\mathbb{L}_{-n}$ box.

A point $x \in \mathbb{Q}_{p}^{d}$ encoded by sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$,
$a_{n} \in\{0,1, \ldots, p-1\}^{d}$.
Let $0 \in \mathbb{Q}_{p}^{d}$ correspond to sequence with all digits equal to zero.

Caution! perverse notation ahead $a_{n}$ represents local coordinates of $\mathbb{L}_{-n-1}$ box inside $\mathbb{L}_{-n}$ box.


Moreover, scaling defined as follows
if $x=\left(a_{n}\right)_{n \in \mathbb{Z}}$ then $p x=\left(a_{n-1}\right)_{n \in \mathbb{Z}}$, i.e., upward shift.

Moreover, scaling defined as follows
if $x=\left(a_{n}\right)_{n \in \mathbb{Z}}$ then $p x=\left(a_{n-1}\right)_{n \in \mathbb{Z}}$, i.e., upward shift.


Likewise $p^{-1} x$ is downward shift and so on for defining $p^{k} x$, $k \in \mathbb{Z}$.

## 2) Distance

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where $k$ is the depth where the bifurcation between the two paths occurs

## 2) Distance

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where $k$ is the depth where the bifurcation between the two paths occurs


## 2) Distance

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where $k$ is the depth where the bifurcation between the two paths occurs

also define $|x|:=|x-0|$.

## 2) Distance

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where $k$ is the depth where the bifurcation between the two paths occurs

also define $|x|:=|x-0|$. Because of the strange notation

$$
|p x|=p^{-1}|x|
$$

Closed balls $\Delta$ of radius $p^{k}$ correspond to points $\mathbf{x} \in \mathbb{L}_{k}$

Closed balls $\Delta$ of radius $p^{k}$ correspond to points $\mathbf{x} \in \mathbb{L}_{k}$


## 3) Lebesgue measure

Metric space $\mathbb{Q}_{p}^{d}->$ Borel $\sigma$-algebra - > Lebesgue measure $d^{d} x$ which gives measure $p^{d k}$ for closed ball ball of radius $p^{k}$.
3) Lebesgue measure

Metric space $\mathbb{Q}_{p}^{d}->$ Borel $\sigma$-algebra $->$ Lebesgue measure $d^{d} x$ which gives measure $p^{d k}$ for closed ball ball of radius $p^{k}$.

Construction: take product of uniform probability measures on $\left(\{0,1, \ldots, p-1\}^{d}\right)^{\mathbb{N}}$ for $\bar{B}(0,1)$ and similarly for other balls of radius 1 , then collate.

## 4) Massless Gaussian measure



To any $G$ group of offsprings of site $\mathbf{z} \in \mathbb{L}_{k+1}$ associate centered Gaussian vector $\left(\zeta_{\mathrm{x}}\right)_{\mathrm{x} \in G}$ with $p^{d} \times p^{d}$ covariance matrix with $1-p^{-d}$ on diagonal and $-p^{-d}$ everywhere else.
These vectors are set to be independent for different groups or layers.

## 4) Massless Gaussian measure



To any $G$ group of offsprings of site $\mathbf{z} \in \mathbb{L}_{k+1}$ associate centered Gaussian vector $\left(\zeta_{\mathrm{x}}\right)_{\mathrm{x} \in G}$ with $p^{d} \times p^{d}$ covariance matrix with $1-p^{-d}$ on diagonal and $-p^{-d}$ everywhere else.
These vectors are set to be independent for different groups or layers. Note that $\sum_{\mathbf{x} \in G} \zeta_{\mathbf{x}}=0$ a.s.

Ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let $\operatorname{anc}_{k^{\prime}}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k^{\prime}}$.

Ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let $\operatorname{anc}_{k^{\prime}}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k^{\prime}}$.
Likewise for $\operatorname{anc}_{k^{\prime}}(x)$ for $x \in \mathbb{Q}_{p}^{d}$.

Ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let $\operatorname{anc}_{k^{\prime}}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k^{\prime}}$.
Likewise for $\operatorname{anc}_{k^{\prime}}(x)$ for $x \in \mathbb{Q}_{p}^{d}$.
Massless Gaussian field $\phi(x), x \in \mathbb{Q}_{p}^{d}$ with engineering scaling dimension [ $\phi$ ] is

$$
\begin{aligned}
& \phi(x)=\sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\text {anc }_{k}(x)} \\
& \langle\phi(x) \phi(y)\rangle=\frac{c}{|x-y|^{2[\phi]}}
\end{aligned}
$$

Ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let $\operatorname{anc}_{k^{\prime}}(\mathbf{x})$ be the ancestor in $\mathbb{L}_{k^{\prime}}$.
Likewise for $\operatorname{anc}_{k^{\prime}}(x)$ for $x \in \mathbb{Q}_{p}^{d}$.
Massless Gaussian field $\phi(x), x \in \mathbb{Q}_{p}^{d}$ with engineering scaling dimension [ $\phi$ ] is

$$
\begin{aligned}
& \phi(x)=\sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)} \\
& \langle\phi(x) \phi(y)\rangle=\frac{c}{|x-y|^{2[\phi]}}
\end{aligned}
$$

only formal since $\phi$ not defined pointwise. Need random distributions.

## 5) Test functions

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ smooth iff locally constant

## 5) Test functions

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ smooth iff locally constant

$$
\begin{aligned}
S\left(\mathbb{Q}_{p}^{d}\right) & :=\{\text { smooth compactly supported functions }\} \\
& =\cup_{n \in \mathbb{N}} S_{-n, n}\left(\mathbb{Q}_{p}^{d}\right)
\end{aligned}
$$

where for $t_{-} \leq t_{+}, S_{t_{-}, t_{+}}\left(\mathbb{Q}_{p}^{d}\right)$ is space of functions which are constant in closed boxes of radius $p^{t-}$ and support in $\bar{B}\left(0, p^{t_{+}}\right)$.

## 5) Test functions

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ smooth iff locally constant

$$
\begin{aligned}
S\left(\mathbb{Q}_{p}^{d}\right) & :=\{\text { smooth compactly supported functions }\} \\
& =\cup_{n \in \mathbb{N}} S_{-n, n}\left(\mathbb{Q}_{p}^{d}\right)
\end{aligned}
$$

where for $t_{-} \leq t_{+}, S_{t_{-}, t_{+}}\left(\mathbb{Q}_{p}^{d}\right)$ is space of functions which are constant in closed boxes of radius $p^{t-}$ and support in $\bar{B}\left(0, p^{t_{+}}\right)$.

Topology generated by the set of all seminorms.
6) Distributions

## 6) Distributions

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is topological dual with weak-* topology.

## 6) Distributions

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is topological dual with weak-* topology.

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

## 6) Distributions

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is topological dual with weak-* topology.

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology

## 6) Distributions

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is topological dual with weak-* topology.

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology $->$ Polish space.

## 6) Distributions

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is topological dual with weak-* topology.

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology $->$ Polish space.

Probability theory on $S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is very nice!
(1) Prokhorov's Theorem
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Levy's Continuity Theorem
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Levy's Continuity Theorem
(4) Uniform convergence of characteristic functions in complex neighborhood of origin implies weak convergence of probability measures (use moments or Vitali's Theorem).
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Levy's Continuity Theorem
(4) Uniform convergence of characteristic functions in complex neighborhood of origin implies weak convergence of probability measures (use moments or Vitali's Theorem).
(5) Analytic RG and dynamical systems methods we introduced deliver exactly that.
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Levy's Continuity Theorem
(4) Uniform convergence of characteristic functions in complex neighborhood of origin implies weak convergence of probability measures (use moments or Vitali's Theorem).
(5) Analytic RG and dynamical systems methods we introduced deliver exactly that.
(6) $S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \times S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ so same tools work for joint law of pair of distributional random fields, e.g., $\left(\phi, N\left[\phi^{2}\right]\right)$.
7) p-adic BMS model

$$
d=3
$$

7) p-adic BMS model

$$
d=3,[\phi]=\frac{3-\epsilon}{4},
$$

7) p-adic BMS model
$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
8) p-adic BMS model
$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
$r \in \mathbb{Z} U V$ cut-off, $r \rightarrow-\infty$
9) p-adic BMS model
$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$
10) p-adic BMS model
$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$
Cut-off Gaussian measure $\mu_{c_{r}}$ is law of

$$
\phi_{r}(x)=\sum_{k=I r}^{\infty} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

## 7) p-adic BMS model

$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
$r \in \mathbb{Z} U V$ cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$
Cut-off Gaussian measure $\mu_{c_{r}}$ is law of

$$
\phi_{r}(x)=\sum_{k=I r}^{\infty} p^{-k[\phi]} \zeta_{\text {anc }_{k}(x)}
$$

Sample paths are functions that are locally constant at scale $L^{r}$.
Gaussian measures are scaled copies of each other.

## 7) p-adic BMS model

$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\prime} \mathrm{RG}$ step
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z} \operatorname{IR}$ cut-off, $s \rightarrow \infty$
Cut-off Gaussian measure $\mu_{c_{r}}$ is law of

$$
\phi_{r}(x)=\sum_{k=I r}^{\infty} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

Sample paths are functions that are locally constant at scale $L^{r}$.
Gaussian measures are scaled copies of each other. If law of $\phi(\cdot)$ is $\mu c_{0}$, then law of $L^{-r[\phi]} \phi\left(L^{r}\right)$ is $\mu c_{r}$.

Introduce fixed parameters $g, \mu$ and cut-off dependent couplings $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Introduce fixed parameters $g, \mu$ and cut-off dependent couplings $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Let $\Lambda_{s}=\bar{B}\left(0, L^{s}\right)$, volume or IR cut-off.

Introduce fixed parameters $g, \mu$ and cut-off dependent couplings $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Let $\Lambda_{s}=\bar{B}\left(0, L^{s}\right)$, volume or IR cut-off.
Let

$$
V_{r, s}(\phi)=\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}: c_{r}(x)+\mu_{r}: \phi^{2}: c_{r}(x)\right\} d^{3} x
$$

and define the probability measure

$$
d \nu_{r, s}(\phi)=\frac{1}{\mathcal{Z}_{r, s}} e^{-V_{r, s}(\phi)} d \mu_{C_{r}}(\phi)
$$

Let $\phi_{r, s}$ random variable in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ sampled according to $\nu_{r, s}$ and define square field $N_{r}\left[\phi_{r, s}^{2}\right]$ which is deterministic $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$-valued function of $\phi_{r, s}$ given by

$$
N_{r}\left[\phi_{r, s}^{2}\right](j)=Z_{2}^{r} \int_{\mathbb{Q}_{p}^{3}}\left\{Y_{2}: \phi_{r, s}^{2}: c_{r}(x)-Y_{0} L^{-2 r[\phi]}\right\} j(x) d^{3} x
$$

$Z_{2}, Y_{0}, Y_{2}$ are parameters to be adjusted.

Let $\phi_{r, s}$ random variable in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ sampled according to $\nu_{r, s}$ and define square field $N_{r}\left[\phi_{r, s}^{2}\right]$ which is deterministic $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$-valued function of $\phi_{r, s}$ given by

$$
N_{r}\left[\phi_{r, s}^{2}\right](j)=Z_{2}^{r} \int_{\mathbb{Q}_{Q}^{3}}\left\{Y_{2}: \phi_{r, s}^{2}: c_{r}(x)-Y_{0} L^{-2 r[\phi]}\right\} j(x) d^{3} x
$$

$Z_{2}, Y_{0}, Y_{2}$ are parameters to be adjusted.
Our main result concerns the limit law of the pair $\left(\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right) \times S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ when $r \rightarrow-\infty, s \rightarrow \infty$ regardless of the order of limits.
Will need approximate fixed point coupling

$$
\bar{g}_{*}=\frac{p^{\epsilon}-1}{36 L^{\epsilon}\left(1-p^{-3}\right)}
$$

## 8) Results

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon\left(0, \epsilon_{0}\right], \exists \eta_{\phi^{2}}>0, \exists$ functions $\mu(g), Y_{0}(g), Y_{2}(g)$ on interval $\left(\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}\right)$ such that if one sets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ then law of ( $\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]$ ) converges weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:

## 8) Results

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon\left(0, \epsilon_{0}\right], \exists \eta_{\phi^{2}}>0, \exists$ functions $\mu(g), Y_{0}(g), Y_{2}(g)$ on interval $\left(\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}\right)$ such that if one sets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ then law of ( $\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]$ ) converges weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:

1) $\forall k \in \mathbb{Z}$,

$$
\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)
$$

where $\left[\phi^{2}\right]=2[\phi]+\frac{1}{2} \eta_{\phi^{2}}$

## 8) Results

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon\left(0, \epsilon_{0}\right], \exists \eta_{\phi^{2}}>0, \exists$ functions $\mu(g), Y_{0}(g), Y_{2}(g)$ on interval $\left(\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}\right)$ such that if one sets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ then law of ( $\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]$ ) converges weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:

1) $\forall k \in \mathbb{Z}$,

$$
\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)
$$

where $\left[\phi^{2}\right]=2[\phi]+\frac{1}{2} \eta_{\phi^{2}}$
2)

$$
\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}<0
$$

i.e., $\phi$ is non-Gaussian. Here $\mathbf{1}_{\mathbb{Z}_{p}^{3}}=\bar{B}(0,1)$

## 8) Results

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon\left(0, \epsilon_{0}\right], \exists \eta_{\phi^{2}}>0, \exists$ functions $\mu(g), Y_{0}(g), Y_{2}(g)$ on interval $\left(\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}\right)$ such that if one sets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ then law of ( $\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]$ ) converges weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:

1) $\forall k \in \mathbb{Z}$,

$$
\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)
$$

where $\left[\phi^{2}\right]=2[\phi]+\frac{1}{2} \eta_{\phi^{2}}$
2)

$$
\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}<0
$$

i.e., $\phi$ is non-Gaussian. Here $\mathbf{1}_{\mathbb{Z}_{p}^{3}}=\bar{B}(0,1)$
3) $\left\langle N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}}\right)\right\rangle^{\mathrm{T}}=1$

Mixed correlations satisfy in sense of distributions

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

Mixed correlations satisfy in sense of distributions

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle \\
\eta_{\phi^{2}}= & \frac{2}{3} \epsilon+o(\epsilon)
\end{aligned}
$$

Mixed correlations satisfy in sense of distributions

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle \\
\eta_{\phi^{2}} & =\frac{2}{3} \epsilon+o(\epsilon)
\end{aligned}
$$

The law $\nu_{\phi \times \phi^{2}}$ of $\left(\phi, N\left[\phi^{2}\right]\right)$ is independent of $g$ : universality

Theorem 2: A.A.-Chandra-Guadagni 2013
$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under action of $p^{\mathbb{Z}}$ instead of just $L^{\mathbb{Z}}$. Moreover, $\mu(\mathrm{g})$ and $\eta_{\phi^{2}}$ independent of RG step $L$.

Theorem 2: A.A.-Chandra-Guadagni 2013
$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under action of $p^{\mathbb{Z}}$ instead of just $L^{\mathbb{Z}}$. Moreover, $\mu(\mathrm{g})$ and $\eta_{\phi^{2}}$ independent of RG step $L$.

Two point functions given as distributions by

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{c_{1}}{|x-y|^{2[\phi]}} \\
\left\langle N\left[\phi^{2}\right](x) N\left[\phi^{2}\right](y)\right\rangle=\frac{c_{2}}{|x-y|^{4[\phi]+\eta_{\phi^{2}}}}
\end{gathered}
$$

Theorem 2: A.A.-Chandra-Guadagni 2013
$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under action of $p^{\mathbb{Z}}$ instead of just $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\eta_{\phi^{2}}$ independent of RG step $L$.

Two point functions given as distributions by

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{c_{1}}{|x-y|^{2[\phi]}} \\
\left\langle N\left[\phi^{2}\right](x) N\left[\phi^{2}\right](y)\right\rangle=\frac{c_{2}}{|x-y|^{4[\phi]+\eta_{\phi^{2}}}}
\end{gathered}
$$

Note $4[\phi]=3-\epsilon$ so $4[\phi]+\eta_{\phi^{2}}=3-\frac{1}{3} \epsilon+o(\epsilon)->$ still $L^{1, \text { loc ! }}$

## Theorem 3: A.A. 2015

Let $\psi_{i}$ denote $\phi$ or $N\left[\phi^{2}\right]$. Then for every mixed correlation $\exists$ smooth function $\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle$ on $\left(\mathbb{Q}_{p}^{3}\right)^{n} \backslash$ Diag which is locally integrable (even on Diag) such that

$$
\begin{gathered}
\left\langle\psi_{1}\left(f_{1}\right) \cdots \psi_{n}\left(f_{n}\right)\right\rangle= \\
\int_{\left(\mathbb{Q}_{p}^{3}\right)^{n} \backslash \text { Diag }}\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle f_{1}\left(z_{1}\right) \cdots f_{n}\left(z_{n}\right) d^{3} z_{1} \cdots d^{3} z_{n}
\end{gathered}
$$

for all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{Q}_{p}^{3}\right)$.

## Theorem 3: A.A. 2015

Let $\psi_{i}$ denote $\phi$ or $N\left[\phi^{2}\right]$. Then for every mixed correlation $\exists$ smooth function $\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle$ on $\left(\mathbb{Q}_{p}^{3}\right)^{n} \backslash$ Diag which is locally integrable (even on Diag) such that

$$
\begin{gathered}
\left\langle\psi_{1}\left(f_{1}\right) \cdots \psi_{n}\left(f_{n}\right)\right\rangle= \\
\int_{\left(\mathbb{Q}_{p}^{3}\right)^{n} \backslash \text { Diag }}\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle f_{1}\left(z_{1}\right) \cdots f_{n}\left(z_{n}\right) d^{3} z_{1} \cdots d^{3} z_{n}
\end{gathered}
$$

for all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{Q}_{p}^{3}\right)$. Moreover the pointwise correlations satisfy the possibly new but certainly nice $L^{1, l o c}$ bound

$$
\begin{gathered}
\left|\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle\right| \leq \\
O(1) \times \prod_{i=1}^{n} \mid z_{i}-\left.\left(\text { nearest neighbor of } z_{i}\right)\right|^{-\left[\psi_{i}\right]}
\end{gathered}
$$

(1) Introduction
(2) Model and results
(3) Key ideas in the proof

Usually rigorous RG for couplings which are constant in space

$$
\int\left\{g: \phi^{4}:(x)+\mu: \phi^{2}:(x)\right\} d^{d} x
$$

Usually rigorous RG for couplings which are constant in space

$$
\int\left\{g: \phi^{4}:(x)+\mu: \phi^{2}:(x)\right\} d^{d} x
$$

We introduced extended RG for space-dependent couplings

$$
\int\left\{g(x): \phi^{4}:(x)+\mu(x): \phi^{2}:(x)\right\} d^{d} x
$$

e.g,. $g(x)=g_{\text {bulk }}+\delta g(x)$, where $\delta g(x)$ is a local perturbation, e.g., a test function.

Usually rigorous RG for couplings which are constant in space

$$
\int\left\{g: \phi^{4}:(x)+\mu: \phi^{2}:(x)\right\} d^{d} x
$$

We introduced extended RG for space-dependent couplings

$$
\int\left\{g(x): \phi^{4}:(x)+\mu(x): \phi^{2}:(x)\right\} d^{d} x
$$

e.g,. $g(x)=g_{\text {bulk }}+\delta g(x)$, where $\delta g(x)$ is a local perturbation, e.g., a test function.
Extended RG is rigorous nonperturbative version of local RG: Wilson-Kogut PR 1974, Drummond-Shore PRD 1979, Jack-Osborn NPB 1990,...
used in generalizations of Zamolodchikov's c-"Theorem", investigations of scale vs. conformal invariance, AdS/CFT,...

## 1st step: rescale to unit lattice

$$
\mathcal{S}_{r, s}^{\mathrm{T}}(f):=\log
$$

$$
\frac{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}: r\right\} d x+\int \phi(x) f(x) d x\right)}{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x\right)}
$$

## 1st step: rescale to unit lattice

$$
\mathcal{S}_{r, s}^{\mathrm{T}}(f):=\log
$$

$$
\begin{gathered}
\frac{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:{ }_{r}\right\} d x+\int \phi(x) f(x) d x\right)}{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x\right)} \\
=\log \frac{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[f](\phi)}{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[0](\phi)}
\end{gathered}
$$

with

$$
\begin{gathered}
\mathcal{I}^{(r, r)}[f](\phi)= \\
\exp \left(-\int_{\Lambda_{s-r}}\left\{g: \phi^{4}:_{0}(x)+\mu: \phi^{2}:_{0}\right\} d^{3} x\right. \\
\left.+L^{(3-[\phi]) r} \int \phi(x) f\left(L^{-r} x\right) d^{3} x\right)
\end{gathered}
$$

## 2nd step: define extended RG

Fluctuation covariance $\Gamma:=C_{0}-C_{1}$.
Corresponding Gaussian measure is law of fluctuation field

$$
\zeta(x)=\sum_{0 \leq k<1} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

L-blocks are independent.

## 2nd step: define extended RG

Fluctuation covariance $\Gamma:=C_{0}-C_{1}$.
Corresponding Gaussian measure is law of fluctuation field

$$
\zeta(x)=\sum_{0 \leq k<1} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

L-blocks are independent. Write

$$
\begin{gathered}
\int \mathcal{I}^{(r, r)}[f](\phi) d \mu_{c_{0}}(\phi)=\iint \mathcal{I}^{(r, r)}[f](\zeta+\psi) d \mu_{\Gamma}(\zeta) d \mu_{C_{1}}(\psi) \\
=\int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu_{C_{0}}(\phi)
\end{gathered}
$$

with new integrand

$$
\mathcal{I}^{(r, r+1)}[f](\phi)=\int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)
$$

In fact, we extract vacuum renormalization, so correct definition is
$\mathcal{I}^{(r, r+1)}[f](\phi)=e^{-\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)$
so that
$\int \mathcal{I}^{(r, r)}[f](\phi) d \mu_{c_{0}}(\phi)=e^{\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu_{c_{0}}(\phi)$

In fact, we extract vacuum renormalization, so correct definition is
$\mathcal{I}^{(r, r+1)}[f](\phi)=e^{-\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)$
so that
$\int \mathcal{I}^{(r, r)}[f](\phi) d \mu_{c_{0}}(\phi)=e^{\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu_{c_{0}}(\phi)$
Then repeat: $\mathcal{I}^{(r, r)} \rightarrow \mathcal{I}^{(r, r+1)} \rightarrow \mathcal{I}^{(r, r+2)} \rightarrow \cdots \rightarrow \mathcal{I}^{(r, s)}$

In fact, we extract vacuum renormalization, so correct definition is
$\mathcal{I}^{(r, r+1)}[f](\phi)=e^{-\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)$
so that
$\int \mathcal{I}^{(r, r)}[f](\phi) d \mu c_{0}(\phi)=e^{\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu c_{0}(\phi)$
Then repeat: $\mathcal{I}^{(r, r)} \rightarrow \mathcal{I}^{(r, r+1)} \rightarrow \mathcal{I}^{(r, r+2)} \rightarrow \cdots \rightarrow \mathcal{I}^{(r, s)}$ Need strong control on

$$
\mathcal{S}^{\mathrm{T}}(f)=\lim _{\substack{r \rightarrow-\infty \\ s \rightarrow \infty}} \sum_{r \leq q<s}\left(\delta b\left(\mathcal{I}^{(r, q)}[f]\right)-\delta b\left(\mathcal{I}^{(r, q)}[0]\right)\right)
$$

Need to use Brydges-Yau lift

$$
\begin{array}{ccc} 
& R G_{\text {ext }} & \\
\vec{V}^{(r, q)} & \longrightarrow & \vec{V}^{(r, q+1)} \\
\downarrow & & \downarrow \\
\mathcal{I}^{(r, q)} & \longrightarrow & \mathcal{I}^{(r, q+1)}
\end{array}
$$

Need to use Brydges-Yau lift

$$
\begin{aligned}
& \vec{V}^{(r, q)} \stackrel{R G_{\text {ext }}}{ } \\
& \downarrow \vec{V}^{(r, q+1)} \\
& \mathcal{I}^{(r, q)} \longrightarrow \\
& \downarrow \\
& \mathcal{I}^{(r, q)}(\phi)= \prod_{\substack{\Delta \in ⿺_{0} \\
\Delta \subset \Lambda_{s-q}}}\left[e^{f_{\Delta} \phi_{\Delta}} \times\right. \\
&\left\{\exp \left(-\beta_{4, \Delta}: \phi_{\Delta}^{4}: c_{0}-\beta_{3, \Delta}: \phi_{\Delta}^{3}: c_{0}-\beta_{2, \Delta}: \phi_{\Delta}^{2}: c_{0}-\beta_{1, \Delta}: \phi_{\Delta}^{1}: c_{0}\right)\right. \\
& \times\left(1+W_{5, \Delta}:\right.\left.\phi_{\Delta}^{5}: c_{0}+W_{6, \Delta}: \phi_{\Delta}^{6}: c_{0}\right) \\
&\left.\left.+R_{\Delta}\left(\phi_{\Delta}\right)\right\}\right]
\end{aligned}
$$

Need to use Brydges-Yau lift

$$
\begin{aligned}
& \vec{V}^{(r, q)} \stackrel{R G_{\text {ext }}}{ } \\
& \underset{\mathcal{I}^{(r, q)}}{\downarrow} \longrightarrow \vec{V}^{(r, q+1)} \\
& \longrightarrow \mathcal{I}^{(r, q+1)} \\
& \mathcal{I}^{(r, q)}(\phi)= \prod_{\substack{\Delta \in \in_{0} \\
\Delta \subset \Lambda_{s-q}}}\left[e^{f_{\Delta} \phi_{\Delta}} \times\right. \\
&\left\{\exp \left(-\beta_{4, \Delta}: \phi_{\Delta}^{4}: c_{0}-\beta_{3, \Delta}: \phi_{\Delta}^{3}: c_{0}-\beta_{2, \Delta}: \phi_{\Delta}^{2}: c_{0}-\beta_{1, \Delta}: \phi_{\Delta}^{1}: c_{0}\right)\right. \\
& \times\left(1+W_{5, \Delta}: \phi_{\Delta}^{5}: c_{0}+W_{6, \Delta}: \phi_{\Delta}^{6}: c_{0}\right) \\
&\left.\left.+R_{\Delta}\left(\phi_{\Delta}\right)\right\}\right]
\end{aligned}
$$

Dynamical variable is $\vec{V}=\left(V_{\Delta}\right)_{\Delta \in \mathbb{L}_{0}}$ with

$$
V_{\Delta}=\left(\beta_{4, \Delta}, \beta_{3, \Delta}, \beta_{2, \Delta}, \beta_{1, \Delta}, W_{5, \Delta}, W_{6, \Delta}, f_{\Delta}, R_{\Delta}\right)
$$

$R G_{\text {ext }}$ acts on space $\mathcal{E}_{\text {ext }}$ which essentially is

$$
\prod_{\Delta \in \mathbb{L}_{0}}\left\{\mathbb{C}^{7} \times C^{9}(\mathbb{R}, \mathbb{C})\right\}
$$

$R G_{\text {ext }}$ acts on space $\mathcal{E}_{\text {ext }}$ which essentially is

$$
\prod_{\Delta \in \mathbb{L}_{0}}\left\{\mathbb{C}^{7} \times C^{9}(\mathbb{R}, \mathbb{C})\right\}
$$

## Stable subspaces

$\mathcal{E}_{\text {bulk }} \subset \mathcal{E}_{\text {ext }}:$ data constant in space $\mathcal{E} \subset \mathcal{E}_{\text {bulk }}$ : even potentials, i.e, $g, \mu$ only and $R$ even function. Let $R G$ be action of $R G_{\text {ext }}$ inside $\mathcal{E}$.

3rd step: stabilize the bulk
Show $\forall q \in \mathbb{Z}$, that

$$
\lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]
$$

exists, i.e.,

$$
\lim _{r \rightarrow-\infty} R G^{q-r}\left(\vec{V}^{(r, r)}[0]\right)
$$

exists.

3rd step: stabilize the bulk
Show $\forall q \in \mathbb{Z}$, that

$$
\lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]
$$

exists, i.e.,

$$
\lim _{r \rightarrow-\infty} R G^{q-r}\left(\vec{V}^{(r, r)}[0]\right)
$$

exists.Bulk evolution is

$$
\left\{\begin{array}{l}
g^{\prime}=L^{\epsilon} g-A_{1} g^{2}+\cdots \\
\mu^{\prime}=L^{\frac{3+\epsilon}{2}} \mu-A_{2} g^{2}-A_{3} g \mu+\cdots \\
R^{\prime}=\mathcal{L}^{(g, \mu)}(R)+\cdots
\end{array}\right.
$$

3rd step: stabilize the bulk
Show $\forall q \in \mathbb{Z}$, that

$$
\lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]
$$

exists, i.e.,

$$
\lim _{r \rightarrow-\infty} R G^{q-r}\left(\vec{V}^{(r, r)}[0]\right)
$$

exists.Bulk evolution is

$$
\begin{cases}g^{\prime} & =L^{\epsilon} g \\ \mu^{\prime} & =L^{\frac{3+\epsilon}{2}} \mu \\ R^{\prime}= & -A_{1} g^{2}+\cdots \\ L^{(g, \mu)}(R) & +\cdots\end{cases}
$$

Tadpole graph with mass insertion

$$
A_{3}=12 L^{3-2[\phi]} \int_{\mathbb{Q}_{p}^{3}} \Gamma(0, x)^{2} d^{3} x
$$

is main culprit for anomalous dimension.

Irwin's proof $->$ stable manifold $W^{s}$
Restrict dynamics to $W^{s}->$ contraction $->$ IR fixed point $v_{*}$.
Construct unstable manifold $W^{u}$ and show intersects $W^{s}$ transversely exactly at $v_{*}$.

Irwin's proof - > stable manifold $W^{\text {s }}$
Restrict dynamics to $W^{s}->$ contraction $->$ IR fixed point $v_{*}$.
Construct unstable manifold $W^{u}$ and show intersects $W^{\text {s }}$ transversely exactly at $v_{*}$.
Here, $\vec{V}(r, r)[0]$ independent of $r$ : strict scaling limit of a fixed lattice theory.
Just a matter of choosing it on $W^{s}->\mu(g)$ critical mass. Thus

$$
\forall q \in \mathbb{Z}, \quad \lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]=v_{*}
$$

Tangent spaces at fixed point: $E^{\mathrm{s}}$ and $E^{\mathrm{u}}$.
$E^{u}=\mathbb{C} e_{u}$, with $e_{u}$ eigenvector of $D_{\nu_{*}} R G$ for eigenvalue $\alpha_{u}=L^{3-2[\phi]} \times Z_{2}=: L^{3-\left[\phi^{2}\right]}$.

## 4th step: control the deviations

Namely, for all $q$ bound the deviations $\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in $r$.

## 4th step: control the deviations

Namely, for all $q$ bound the deviations $\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in $r$.

1) $\sum_{x \in G} \zeta_{x}=0$ a.s. $->$ deviation is 0 for $q$ less than the constancy scale of $f$.

## 4th step: control the deviations

Namely, for all $q$ bound the deviations $\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in $r$.

1) $\sum_{x \in G} \zeta_{x}=0$ a.s. $->$ deviation is 0 for $q$ less than the constancy scale of $f$.
2) deviation resides in unit box at origin for $q$ more than radius of support of $f$ with respect to origin $->$ geometric decay for $q$ large.

## 4th step: control the deviations

Namely, for all $q$ bound the deviations $\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in $r$.

1) $\sum_{x \in G} \zeta_{x}=0$ a.s. $->$ deviation is 0 for $q$ less than the constancy scale of $f$.
2) deviation resides in unit box at origin for $q$ more than radius of support of $f$ with respect to origin $->$ geometric decay for $q$ large. For $\phi^{2}$ source term add

$$
Y_{2} Z_{2}^{r} \int: \phi^{2}: c_{r}(x) j(x) d^{3} x
$$

in potential. $\mathcal{S}_{r, s}^{\mathrm{T}}(f, j)$ depends on two test functions. After rescaling to unit lattice, we get

$$
Y_{2} \alpha_{u}^{r} \int: \phi^{2}: c_{0}(x) j\left(L^{-r} x\right) d^{3} x
$$

to be combined with $\mu$ in the now space-dependent mass $\left(\beta_{2, \Delta}\right)_{\Delta \in \mathbb{I}_{0}}$.

5th step: partial linearization
To repeat previous steps when $j$ is present

## 5th step: partial linearization

To repeat previous steps when $j$ is present need to construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{\mathrm{u}}^{-n} w\right)
$$

for $v \in W^{s}$ and any direction $w$ (primarily needed for $\int: \phi^{2}$ : direction).

## 5th step: partial linearization

To repeat previous steps when $j$ is present need to construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{u}^{-n} w\right)
$$

for $v \in W^{s}$ and any direction $w$ (primarily needed for $\int: \phi^{2}$ : direction).
For fixed $v, \Psi(v, \cdot)$ is parametrization of $W^{u}$ satisfying $\Psi\left(v, \alpha_{\mathrm{u}} w\right)=R G(\Psi(v, w))$.

## 5th step: partial linearization

To repeat previous steps when $j$ is present need to construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{u}^{-n} w\right)
$$

for $v \in W^{s}$ and any direction $w$ (primarily needed for $\int: \phi^{2}$ : direction).
For fixed $v, \Psi(v, \cdot)$ is parametrization of $W^{u}$ satisfying
$\Psi\left(v, \alpha_{\mathrm{u}} w\right)=R G(\Psi(v, w))$.
If no $W^{s}$ direction, i.e., $1 d$ dynamics, then $\Psi$ is a conjugation
$->$ Poincare-Koenigs Theorem.

## 5th step: partial linearization

To repeat previous steps when $j$ is present need to construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{\mathrm{u}}^{-n} w\right)
$$

for $v \in W^{s}$ and any direction $w$ (primarily needed for $\int: \phi^{2}$ : direction).
For fixed $v, \Psi(v, \cdot)$ is parametrization of $W^{u}$ satisfying $\Psi\left(v, \alpha_{\mathrm{u}} w\right)=R G(\Psi(v, w))$.
If no $W^{s}$ direction, i.e., $1 d$ dynamics, then $\Psi$ is a conjugation

- > Poincare-Koenigs Theorem.
$\Psi(v, w)$ is jointly holomorphic in $v$ and $w$.
Essential for probability theory interpretation of $\left(\phi, N\left[\phi^{2}\right]\right)$ as pair of $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$-valued random variables.


## What next?

1) Prove pointwise OPE
2) Proved smeared OPE, i.e., show $N\left[\phi^{2}\right]$ deterministic local function of $\phi$
3) Prove OS positivity: UV cut-off by convolution with compactly supported mollifier + exclusion corridor. Show theory is the same as without corridor $->$ extended RG for boundaries, domain walls, etc.
4) Heteroclinic RG trajectory
5) Investigate conformal invariance
6) Transpose all this to the Euclidean setting: all hinges on developing Euclidean extended RG.
