Quantum Phase Transition in an Interacting Fermionic Chain.

Federico Bonetto

School of Mathematics, Georgia Tech

In memory of a friend.

Work in collaboration with Vieri Mastropietro.

Publications:

- Benfatto G., Gallavotti: JSP 59, 541 (1990).
- Benfatto G., Gallavotti G, Procacci, A, Scoppola B: Comm. Math. Phys. 160, 93 (1994).

Work in collaboration with Vieri Mastropietro.

Publications:

- Benfatto G., Gallavotti: JSP 59, 541 (1990).
- Benfatto G., Gallavotti G, Procacci, A, Scoppola B: Comm. Math. Phys. 160, 93 (1994).
- F. B., V. Mastropietro: Comm. Math. Phys. 172, 57 (1995).
- F. B., V. Mastropietro: MPEJ. 2, 1 (1996).

Work in collaboration with Vieri Mastropietro.

Publications:

- Benfatto G., Gallavotti: JSP 59, 541 (1990).
- Benfatto G., Gallavotti G, Procacci, A, Scoppola B: Comm. Math. Phys. 160, 93 (1994).
- F. B., V. Mastropietro: Comm. Math. Phys. 172, 57 (1995).
- F. B., V. Mastropietro: MPEJ. 2, 1 (1996).
- F. B., V. Mastropietro: Ann. Henry Poincaré (2014)

Introduction: Fermions in a periodic Potential.

Let ψ_{x}^{+}and ψ_{x}^{-}the creation and annihilation operator for a Fermion in one dimension. Consider the Hamiltonian:

$$
H_{\lambda}=-\int_{0}^{L} \psi_{x}^{+} \partial_{x}^{2} \psi_{x}^{-} d x+\int_{0}^{L} c(x) \psi_{x}^{+} \psi_{x}^{-} d x+\lambda \int_{0}^{L} v(x-y) \psi_{x}^{+} \psi_{x}^{-} \psi_{y}^{+} \psi_{y}^{-} d x d y
$$

with

$$
c(x+1)=c(x) \quad v(-x)=v(x), \quad|v(x)| \leq e^{-\kappa|x|}
$$

Introduction: Fermions in a periodic Potential.

Let ψ_{x}^{+}and ψ_{x}^{-}the creation and annihilation operator for a Fermion in one dimension. Consider the Hamiltonian:
$H_{\lambda}=-\int_{0}^{L} \psi_{x}^{+} \partial_{x}^{2} \psi_{x}^{-} d x+\int_{0}^{L} c(x) \psi_{x}^{+} \psi_{x}^{-} d x+\lambda \int_{0}^{L} v(x-y) \psi_{x}^{+} \psi_{x}^{-} \psi_{y}^{+} \psi_{y}^{-} d x d y$
with

$$
c(x+1)=c(x) \quad v(-x)=v(x), \quad|v(x)| \leq e^{-\kappa|x|}
$$

When $\lambda=0$ we can diagonalize the Hamiltonian using Bloch waves, i.e. the solution of the eigenvalue problem

$$
\begin{aligned}
& -\partial_{x}^{2} \phi(k, x)+c(x) \phi(k, x)=\varepsilon(k) \phi(k, x) \\
& \phi(k, x)=e^{i k x} w(k, x) \quad w(k, x+1)=w(k, x+1)
\end{aligned}
$$

Let ψ_{x}^{+}and ψ_{x}^{-}the creation and annihilation operator for a Fermion in one dimension. Consider the Hamiltonian:
$H_{\lambda}=-\int_{0}^{L} \psi_{x}^{+} \partial_{x}^{2} \psi_{x}^{-} d x+\int_{0}^{L} c(x) \psi_{x}^{+} \psi_{x}^{-} d x+\lambda \int_{0}^{L} v(x-y) \psi_{x}^{+} \psi_{x}^{-} \psi_{y}^{+} \psi_{y}^{-} d x d y$
with

$$
c(x+1)=c(x) \quad v(-x)=v(x), \quad|v(x)| \leq e^{-\kappa|x|}
$$

When $\lambda=0$ we can diagonalize the Hamiltonian using Bloch waves, i.e. the solution of the eigenvalue problem

$$
\begin{aligned}
& -\partial_{x}^{2} \phi(k, x)+c(x) \phi(k, x)=\varepsilon(k) \phi(k, x) \\
& \phi(k, x)=e^{i k x} w(k, x) \quad w(k, x+1)=w(k, x+1)
\end{aligned}
$$

Setting

$$
\psi_{x}^{ \pm}=\frac{1}{L} \sum_{k=\frac{2 \pi m}{L}} \phi(k, \pm x) \psi_{k}^{ \pm}
$$

we get

$$
H_{0}=\frac{1}{L} \sum_{k=\frac{2 \pi m}{L}} \epsilon(k) \psi_{k}^{+} \psi_{k}^{-}
$$

The Schwinger Functions.

As usual we define

$$
\begin{aligned}
\langle O\rangle_{L, \beta} & =\frac{\operatorname{Tr} e^{\beta\left(H_{\lambda}-\mu N\right)} O}{\operatorname{Tr} e^{\beta\left(H_{\lambda}-\mu N\right)}} \\
N & =\int \psi_{x}^{+} \psi_{x}^{-} d x
\end{aligned}
$$

and μ is the chemical potential. Moreover we set

$$
\langle O\rangle=\lim _{\beta \rightarrow 0} \lim _{L \rightarrow \infty}\langle O\rangle_{L, \beta} .
$$

As usual we define

$$
\begin{aligned}
\langle O\rangle_{L, \beta} & =\frac{\operatorname{Tr} e^{\beta\left(H_{\lambda}-\mu N\right)} O}{\operatorname{Tr} e^{\beta\left(H_{\lambda}-\mu N\right)}} \\
N & =\int \psi_{x}^{+} \psi_{x}^{-} d x
\end{aligned}
$$

and μ is the chemical potential. Moreover we set

$$
\langle O\rangle=\lim _{\beta \rightarrow 0} \lim _{L \rightarrow \infty}\langle O\rangle_{L, \beta} .
$$

Calling

$$
\psi_{\mathbf{x}}^{ \pm}=e^{\left(H_{\lambda}-\mu N\right) x_{0}} \psi_{x}^{ \pm} e^{-\left(H_{\lambda}-\mu N\right) x_{0}}
$$

where $\mathbf{x}=\left(x_{0}, x\right)$ the 2-points Schwinger function defined as

$$
S_{\lambda, L, \beta}(\mathbf{x}, \mathbf{y})=\left\langle\mathbf{T} \psi_{\mathbf{x}}^{+}, \psi_{\mathbf{y}}^{-}\right\rangle_{L, \beta}
$$

where \mathbf{T} is the time-ordering operator.

Using the Bloch waves we can write

$$
\hat{S}_{0, L, \beta}(\mathbf{k})=\frac{1}{\beta L} \sum_{\mathbf{k} \in \mathcal{D}} \phi(k, x) \phi(k,-y) e^{i i_{0}\left(x_{0}-y_{0}\right)} S_{0, L, \beta}(\mathbf{x}, \mathbf{y})
$$

where

$$
\mathcal{D}=\left\{\mathbf{k}=\left(k_{0}, k\right) \left\lvert\, k=\frac{2 \pi m}{L}\right., k_{0}=\frac{2 \pi}{\beta}\left(n+\frac{1}{2}\right)\right\}
$$

Using the Bloch waves we can write

$$
\hat{S}_{0, L, \beta}(\mathbf{k})=\frac{1}{\beta L} \sum_{\mathbf{k} \in \mathcal{D}} \phi(k, x) \phi(k,-y) e^{i i_{0}\left(x_{0}-y_{0}\right)} S_{0, L, \beta}(\mathbf{x}, \mathbf{y})
$$

where

$$
\mathcal{D}=\left\{\mathbf{k}=\left(k_{0}, k\right) \left\lvert\, k=\frac{2 \pi m}{L}\right., k_{0}=\frac{2 \pi}{\beta}\left(n+\frac{1}{2}\right)\right\}
$$

and

$$
\hat{S}_{0}(k)=\lim _{\beta \rightarrow \infty} \lim _{L \rightarrow \infty} \hat{S}_{0, L, \beta}(k)=\frac{1}{-i k_{0}+\epsilon(k)-\mu} .
$$

The dispersion relation.

The dispersion relation.

$$
\begin{aligned}
& S_{0}(k)=\frac{1}{-i k_{0}+\epsilon(k)-\mu} \simeq \frac{\vartheta(k)}{-i k_{0}+v_{F}\left(k-p_{F}\right)}+\frac{\vartheta(-k)}{-i k_{0}+v_{F}\left(k+p_{F}\right)} \\
& S_{\lambda}(k)=\vartheta(k) \frac{\left(k_{0}^{2}+v_{F}(\lambda)^{2}\left(k+p_{F}(\lambda)\right)^{2}\right)^{\eta(\lambda)}}{-i k_{0}+v_{F}(\lambda)\left(k+p_{F}(\lambda)\right)}(1+R(\lambda))+\ldots
\end{aligned}
$$

The dispersion relation.

$$
\begin{aligned}
& S_{0}(k)=\frac{1}{-i k_{0}+\epsilon(k)-\mu} \simeq \frac{1}{-i k_{0}+\alpha k^{2}+r} \quad r=\varepsilon(\pi)-\mu \\
& S_{\lambda}(k)=\frac{1+R(\lambda)}{-i k_{0}+\alpha k^{2}+r}
\end{aligned}
$$

The dispersion relation.

$$
S_{0}(k)=\frac{1}{-i k_{0}+\epsilon(k)-\mu} \simeq \frac{1}{-i k_{0}-\alpha k^{2}}
$$

$$
S_{\lambda}(k)=? ?
$$

The dispersion relation.

$$
S_{0}(k)=\frac{1}{-i k_{0}+\epsilon(k)-\mu} \simeq \frac{1}{-i k_{0}+\alpha k^{2}}
$$

$$
S_{\lambda}(k)=? ?
$$

The dispersion relation.

$$
S_{0}(k)=\frac{1}{-i k_{0}+\epsilon(k)-\mu}
$$

$$
S_{\lambda}(k)=? ?
$$

To understand what happens when the band is almost filled we can neglect the existence of all band but the condution band.

To understand what happens when the band is almost filled we can neglect the existence of all band but the condution band.

Moreover nothing essentially changes if we assume that, instead of a periodic potential, the Fermions live on a lattice of spacing 1.

To understand what happens when the band is almost filled we can neglect the existence of all band but the condution band.

Moreover nothing essentially changes if we assume that, instead of a periodic potential, the Fermions live on a lattice of spacing 1.
Let thus $x \in\{1,2, \ldots, L\}$ and consider the Hamiltonian

$$
H_{\lambda}=-\sum_{x}\left[\frac{1}{2}\left(a_{x+1}^{+} a_{x}^{-}+a_{x}^{+} a_{x+1}^{-}\right)+h a_{x}^{+} a_{x}^{-}\right]-\lambda \sum_{x, y} v(x-y) a_{x}^{+} a_{x}^{-} a_{y}^{+} a_{y}^{-}
$$

To understand what happens when the band is almost filled we can neglect the existence of all band but the condution band.

Moreover nothing essentially changes if we assume that, instead of a periodic potential, the Fermions live on a lattice of spacing 1.
Let thus $x \in\{1,2, \ldots, L\}$ and consider the Hamiltonian

$$
H_{\lambda}=-\sum_{x}\left[\frac{1}{2}\left(a_{x+1}^{+} a_{x}^{-}+a_{x}^{+} a_{x+1}^{-}\right)+h a_{x}^{+} a_{x}^{-}\right]-\lambda \sum_{x, y} v(x-y) a_{x}^{+} a_{x}^{-} a_{y}^{+} a_{y}^{-}
$$

This Hamiltonian can also be obtained via a Jordan-Wigner transformation from a spin chain model with Hamiltonian

$$
H=-\sum_{x} \frac{1}{2}\left[S_{x}^{1} S_{x+1}^{1}+S_{x}^{2} S_{x+1}^{2}\right]-\lambda \sum_{x, y} v(x-y) S_{x}^{3} S_{y}^{3}-\bar{h} \sum_{x} S_{x}^{3}
$$

where $\left(S_{x}^{1}, S_{x}^{2}, S_{x}^{3}\right)=\frac{1}{2}\left(\sigma_{x}^{1}, \sigma_{x}^{2}, \sigma_{x}^{3}\right)$ are Pauli matrices, \bar{h} is the magnetic field.

Again we can write

$$
a_{x}^{ \pm}=\frac{1}{L} \sum_{k \in \widetilde{\mathcal{D}}} e^{ \pm i k x} \hat{a}_{k}^{ \pm}
$$

where $\widetilde{\mathcal{D}}=\left\{k \left\lvert\, k=\frac{2 \pi m}{L}\right.,-\pi \leq k<\pi\right\}$ and find

$$
H_{0}=\frac{1}{L} \sum_{k \in \overline{\mathcal{D}}} \varepsilon(k) \hat{a}_{k}^{+} \hat{a}_{k}^{-} \quad \varepsilon(k)=-\cos k-h .
$$

Again we can write

$$
a_{x}^{ \pm}=\frac{1}{L} \sum_{k \in \widetilde{\mathcal{D}}} e^{ \pm i k x} \hat{a}_{k}^{ \pm}
$$

where $\widetilde{\mathcal{D}}=\left\{k \left\lvert\, k=\frac{2 \pi m}{L}\right.,-\pi \leq k<\pi\right\}$ and find

$$
H_{0}=\frac{1}{L} \sum_{k \in \overline{\mathcal{D}}} \varepsilon(k) \hat{a}_{k}^{+} \hat{a}_{k}^{-} \quad \varepsilon(k)=-\cos k-h .
$$

The two point Schwinger function is given by

$$
S_{0, L, \beta}(\mathbf{x})=\frac{1}{\beta L} \sum_{\mathbf{k} \in \mathcal{D}} e^{-i \mathbf{k} \mathbf{x}} \hat{S}_{0, \beta, L}(\mathbf{k})
$$

with

$$
\mathcal{D}=\left\{\mathbf{k}=\left(k_{0}, k\right) \left\lvert\, k=\frac{2 \pi m}{L}\right.,-\pi \leq k<\pi, k_{0}=\frac{2 \pi}{\beta}\left(n+\frac{1}{2}\right)\right\}
$$

and

$$
\hat{S}_{0, L, \beta}(\mathbf{k})=\frac{1}{-i k_{0}+\cos k+h} .
$$

To summarize:

- In the metallic phase $|h|<1$ the Schwinger function $\hat{S}_{0}(\mathbf{k})$ is singular in correspondence of the Fermi points $\left(0, \pm p_{F}\right)$. For $|k|$ close to p_{F} we have

$$
\hat{S}_{0}(\mathbf{k}) \sim \frac{1}{-i k_{0}+v_{F}\left(|k|-p_{F}\right)} \quad|k| \simeq p_{F} .
$$

- At criticality when $|h|=1$ the 2-point function $\hat{S}_{0}(\mathbf{k})$ is singular only at $(0,0)$ and

$$
\hat{S}_{0}(\mathbf{k}) \sim \frac{1}{-i k_{0}+\frac{1}{2} k^{2}} \quad k \simeq 0
$$

the elementary excitations do not have a relativistic linear dispersion relation, as in the metallic phase, but a parabolic one.

- Finally in the insulating phase for $|h|>1$ the two point function has no singularities.

To summarize:

- In the metallic phase $|h|<1$ the Schwinger function $\hat{S}_{0}(\mathbf{k})$ is singular in correspondence of the Fermi points $\left(0, \pm p_{F}\right)$. For $|k|$ close to p_{F} we have

$$
\hat{S}_{0}(\mathbf{k}) \sim \frac{1}{-i k_{0}+v_{F}\left(|k|-p_{F}\right)} \quad|k| \simeq p_{F} .
$$

- At criticality when $|h|=1$ the 2-point function $\hat{S}_{0}(\mathbf{k})$ is singular only at $(0,0)$ and

$$
\hat{S}_{0}(\mathbf{k}) \sim \frac{1}{-i k_{0}+\frac{1}{2} k^{2}} \quad k \simeq 0
$$

the elementary excitations do not have a relativistic linear dispersion relation, as in the metallic phase, but a parabolic one.

- Finally in the insulating phase for $|h|>1$ the two point function has no singularities.

We will focus on $h \simeq-1$ and we will write

$$
h=-1+r
$$

Convergence near $r=0$.

Observe that

$$
p_{F}=\arccos (1-r) \simeq \sqrt{r} \quad v_{F}=\sin p_{F} \simeq \sqrt{r}
$$

Observe that

$$
p_{F}=\arccos (1-r) \simeq \sqrt{r} \quad v_{F}=\sin p_{F} \simeq \sqrt{r}
$$

We can again try to use the approximation

$$
S_{0}(k) \simeq \frac{\vartheta(k)}{-i k_{0}+v_{F}\left(k-p_{F}\right)}+\frac{\vartheta(-k)}{-i k_{0}+v_{F}\left(k+p_{F}\right)}
$$

but the rigorous results for this model work only if

$$
|\lambda| \simeq v_{F}
$$

Observe that

$$
p_{F}=\arccos (1-r) \simeq \sqrt{r} \quad v_{F}=\sin p_{F} \simeq \sqrt{r}
$$

We can again try to use the approximation

$$
S_{0}(k) \simeq \frac{\vartheta(k)}{-i k_{0}+v_{F}\left(k-p_{F}\right)}+\frac{\vartheta(-k)}{-i k_{0}+v_{F}\left(k+p_{F}\right)}
$$

but the rigorous results for this model work only if

$$
|\lambda| \simeq v_{F} .
$$

More precesely, the perturbative series in λ discussed by Benfatto yesterday converge in a neighbor of the origin of radius proportional to v_{F}.

By the change of variable $v_{F} k \leftrightarrow k$, one can see that a system with the above propagator is formally equivalent to a system with

$$
v_{F}=1 \quad \tilde{\lambda}=\frac{\lambda}{v_{F}} \simeq \frac{\lambda}{\sqrt{r}}
$$

Thus the effective coupling contant appear to diverge when $r \rightarrow 0$.

By the change of variable $v_{F} k \leftrightarrow k$, one can see that a system with the above propagator is formally equivalent to a system with

$$
v_{F}=1 \quad \tilde{\lambda}=\frac{\lambda}{v_{F}} \simeq \frac{\lambda}{\sqrt{r}}
$$

Thus the effective coupling contant appear to diverge when $r \rightarrow 0$.
On the other hand, the effective coupling for Fermions at the Fermi surface is given by the two processes

By the change of variable $v_{F} k \leftrightarrow k$, one can see that a system with the above propagator is formally equivalent to a system with

$$
v_{F}=1 \quad \tilde{\lambda}=\frac{\lambda}{v_{F}} \simeq \frac{\lambda}{\sqrt{r}}
$$

Thus the effective coupling contant appear to diverge when $r \rightarrow 0$.
On the other hand, the effective coupling for Fermions at the Fermi surface is given by the two processes

that is

$$
\lambda_{0}=\lambda\left(\hat{v}(0)-\hat{v}\left(2 p_{F}\right)\right) \simeq \lambda r .
$$

Thus our system looks formally equivalent to a system with effective coupling

$$
\tilde{\lambda}_{0} \simeq \lambda \sqrt{r}
$$

The problem with this argument is that the linear approximation is valid only very close to the Fermi points, that is

$$
\left|k-p_{F}\right| \simeq \sqrt{r}
$$

Away from the Fermi points the dispersion relation appears quadratic.

The problem with this argument is that the linear approximation is valid only very close to the Fermi points, that is

$$
\left|k-p_{F}\right| \simeq \sqrt{r}
$$

Away from the Fermi points the dispersion relation appears quadratic.
Moreover, the theory with quadratic dispersion relation is, prima facie, non renormalizable so that the assumption that the $\lambda_{0} \simeq \lambda \sqrt{r}$ is not justified.

Theorem

Given the Hamiltonian H_{λ} with $h=-1+r$ with $|r|<1$, there exists $\varepsilon>0$ and $C>0$ (independent from L, β, r) such that, if $|\lambda|<\varepsilon$ then the Fourier transform of $S_{L, \beta}(\mathbf{x})$ can be written in the following way.

Theorem

Given the Hamiltonian H_{λ} with $h=-1+r$ with $|r|<1$, there exists $\varepsilon>0$ and $C>0$ (independent from L, β, r) such that, if $|\lambda|<\varepsilon$ then the Fourier transform of $S_{L, \beta}(\mathbf{x})$ can be written in the following way.
(1) For $r>0$ (metallic phase),

$$
\hat{S}_{L, \beta}(\mathbf{k})=\frac{\left[k_{0}^{2}+\alpha(\lambda)^{2}(\cos k-1+\nu(\lambda))^{2}\right]^{\eta(\lambda)}}{-i k_{0}+\alpha(\lambda)(\cos k-1+\nu(\lambda))}\left(1+\lambda R_{S}(\lambda, \mathbf{k})\right)
$$

where

$$
\begin{align*}
& \nu(\lambda)=r+\lambda r R_{\nu}(\lambda) \quad \alpha(\lambda)=1+\lambda R_{\alpha}(\lambda) \\
& \eta(\lambda)=b \lambda^{2} r+\lambda^{3} r^{\frac{3}{2}} R_{\eta}(\lambda) \tag{1}
\end{align*}
$$

with $b>0$ a constant and $\left|R_{i}\right| \leq C$ for $i=S, \nu, \alpha$ and η.

Theorem

With the same hipothese as above we have:
(2) For $r=0$ (critical point)

$$
\hat{S}_{L, \beta}(\mathbf{k})=\frac{1+\lambda R_{S}(\lambda, \mathbf{k})}{-i k_{0}+\alpha(\lambda)(\cos (k)-1)}
$$

where $\alpha(\lambda)=1+\lambda R_{\alpha}(\lambda)$ and $\left|R_{i}\right| \leq C$ for $i=\alpha, S$.

Theorem

With the same hipothese as above we have:
(2) For $r=0$ (critical point)

$$
\hat{S}_{L, \beta}(\mathbf{k})=\frac{1+\lambda R_{S}(\lambda, \mathbf{k})}{-i k_{0}+\alpha(\lambda)(\cos (k)-1)}
$$

where $\alpha(\lambda)=1+\lambda R_{\alpha}(\lambda)$ and $\left|R_{i}\right| \leq C$ for $i=\alpha, S$.
(3) For $r<0$ (insulating phase)

$$
\left|\hat{S}_{L, \beta}(\mathbf{k})\right| \leq \frac{C}{|r|}
$$

Moreover $\hat{S}(\mathbf{k})=\lim _{\beta \rightarrow \infty} \lim _{L \rightarrow \infty} \hat{S}_{L, \beta}(\mathbf{k})$ exists and is reached uniformly in λ.

Theorem

With the same hipothese as above we have:
(2) For $r=0$ (critical point)

$$
\hat{S}_{L, \beta}(\mathbf{k})=\frac{1+\lambda R_{S}(\lambda, \mathbf{k})}{-i k_{0}+\alpha(\lambda)(\cos (k)-1)}
$$

where $\alpha(\lambda)=1+\lambda R_{\alpha}(\lambda)$ and $\left|R_{i}\right| \leq C$ for $i=\alpha, S$.
(3) For $r<0$ (insulating phase)

$$
\left|\hat{S}_{L, \beta}(\mathbf{k})\right| \leq \frac{C}{|r|}
$$

Moreover $\hat{S}(\mathbf{k})=\lim _{\beta \rightarrow \infty} \lim _{L \rightarrow \infty} \hat{S}_{L, \beta}(\mathbf{k})$ exists and is reached uniformly in λ.

Identical results hold for $h=1-r$ thank to a hole-particle symmetry.

Let

$$
g_{M, L, \beta}(\mathbf{x}-\mathbf{y})=\frac{1}{\beta L} \sum_{\mathbf{k} \in \mathcal{D}} e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})} \frac{\chi_{0}\left(\gamma^{-M}\left|k_{0}\right|\right)}{-i k_{0}+\cos k+h}
$$

where

$$
\chi_{0}(t)=\stackrel{\substack{\chi_{0} \\ \sim}}{\text { - }}
$$

Let

$$
\mathcal{D}_{\beta}=\mathcal{D} \cap \operatorname{supp} \chi_{0}\left(\gamma^{-M}\left|k_{0}\right|\right)=\left\{\mathbf{k} \in \mathcal{D}| | k_{0} \mid<\gamma^{M+1}\right\}
$$

We consider the anticommuting Grassmannian variables

$$
\left\{\psi_{\mathbf{k}}^{ \pm}\right\}_{\mathbf{k} \in \mathcal{D}_{\beta}}
$$

that generate a Grasmannian Algebra \mathcal{G}.

On \mathcal{G} we define the Grassmann integration, that is the the linear operator, defined as

$$
\int\left[\prod_{\mathbf{k} \in \mathcal{D}_{\beta}} d \psi_{\mathbf{k}}^{+} d \psi_{\mathbf{k}}^{-}\right] \prod_{\mathbf{k} \in \mathcal{D}_{\beta}} \psi_{\mathbf{k}}^{-} \psi_{\mathbf{k}}^{+}=1
$$

while

$$
\int\left[\prod_{\mathbf{k} \in \mathcal{D}_{\beta}} d \psi_{\mathbf{k}}^{+} d \psi_{\mathbf{k}}^{-}\right] Q\left(\psi^{-}, \psi^{+}\right)=0
$$

if the monomial $Q\left(\psi^{-}, \psi^{+}\right)$does not contains all of the variables $\left\{\psi_{\mathbf{k}}^{ \pm}\right\}_{\mathbf{k} \in \mathcal{D}_{\beta}}$.

On \mathcal{G} we define the Grassmann integration, that is the the linear operator, defined as

$$
\int\left[\prod_{\mathbf{k} \in \mathcal{D}_{\beta}} d \psi_{\mathbf{k}}^{+} d \psi_{\mathbf{k}}^{-}\right] \prod_{\mathbf{k} \in \mathcal{D}_{\beta}} \psi_{\mathbf{k}}^{-} \psi_{\mathbf{k}}^{+}=1
$$

while

$$
\int\left[\prod_{\mathbf{k} \in \mathcal{D}_{\beta}} d \psi_{\mathbf{k}}^{+} d \psi_{\mathbf{k}}^{-}\right] Q\left(\psi^{-}, \psi^{+}\right)=0
$$

if the monomial $Q\left(\psi^{-}, \psi^{+}\right)$does not contains all of the variables $\left\{\psi_{\mathbf{k}}^{ \pm}\right\}_{\mathbf{k} \in \mathcal{D}_{\beta}}$.
We define the Grassmanian fields

$$
\psi_{\mathbf{x}}^{ \pm}=\frac{1}{\beta L} \sum_{\mathbf{k} \in \mathcal{D}_{\beta}} e^{ \pm i \mathbf{k} \mathbf{x}} \psi_{\mathbf{k}}^{ \pm} \quad \mathbf{x} \in \Gamma_{\beta} \times \Lambda
$$

while the Gaussiam Grassmann measure is defined as

$$
P(d \psi)=\left[\prod_{\mathbf{k} \in \mathcal{D}_{\beta}} \beta L d \psi_{\kappa}^{-} d \psi_{\mathbf{k}}^{+} \hat{g}^{(\leq M)}(\mathbf{k})\right] \exp \left\{-\frac{1}{\beta L} \sum_{\mathbf{k} \in \mathcal{D}_{\beta}}\left(\hat{g}^{(\leq M)}(\mathbf{k})\right)^{-1} \psi_{\mathbf{k}}^{+} \psi_{\mathbf{k}}^{-}\right\}
$$

We introduce the generating functional $\mathcal{W}_{M}(\phi)$ defined in terms of the following Grassmann integral

$$
e^{-\mathcal{W}_{M}(\phi)}=\int P(d \psi) e^{-\mathcal{V}(\psi)+(\psi, \phi)}
$$

where

$$
\begin{align*}
(\psi, \phi) & =\int d \mathbf{x}\left[\psi_{\mathbf{x}}^{+} \phi_{\mathbf{x}}^{-}+\psi_{\mathbf{x}}^{-} \phi_{\mathbf{x}}^{+}\right] \tag{2}\\
\mathcal{V}(\psi) & =\lambda \int d \mathbf{x} d \mathbf{y} v(\mathbf{x}-\mathbf{y}) \psi_{\mathbf{x}}^{+} \psi_{\mathbf{x}}^{-} \psi_{\mathbf{y}}^{+} \psi_{\mathbf{y}}^{-}+\bar{\nu} \int d \mathbf{x} \psi_{\mathbf{x}}^{+} \psi_{\mathbf{x}}^{-} \tag{3}
\end{align*}
$$

Here

$$
\int d \mathbf{x} \quad \text { stands for } \quad \sum_{x \in \Lambda} a \sum_{x_{0} \in \Gamma_{\beta}}
$$

and $v(\mathbf{x}-\mathbf{y})=\delta\left(x_{0}-y_{0}\right) v(x-y)$.

Calling $\lim _{M \rightarrow \infty} g_{M, L, \beta}(\mathbf{x})=g_{L, \beta}(\mathbf{x})$ and we observe that

$$
g_{L, \beta}(\mathbf{x})=S_{0, L, \beta}(\mathbf{x})
$$

wherever $S_{0, L, \beta}(\mathbf{x})$ is continuous.

Calling $\lim _{M \rightarrow \infty} g_{M, L, \beta}(\mathbf{x})=g_{L, \beta}(\mathbf{x})$ and we observe that

$$
g_{L, \beta}(\mathbf{x})=S_{0, L, \beta}(\mathbf{x})
$$

wherever $S_{0, L, \beta}(\mathbf{x})$ is continuous.
Finally we define

$$
S_{L, \beta}^{M}(\mathbf{x}-\mathbf{y})=\left.\frac{\partial^{2}}{\partial \phi_{\mathbf{x}}^{+} \partial \phi_{\mathbf{y}}^{-}} \mathcal{W}_{M}(\phi)\right|_{\phi=0} .
$$

Calling $\lim _{M \rightarrow \infty} g_{M, L, \beta}(\mathbf{x})=g_{L, \beta}(\mathbf{x})$ and we observe that

$$
g_{L, \beta}(\mathbf{x})=S_{0, L, \beta}(\mathbf{x})
$$

wherever $S_{0, L, \beta}(\mathbf{x})$ is continuous.
Finally we define

$$
S_{L, \beta}^{M}(\mathbf{x}-\mathbf{y})=\left.\frac{\partial^{2}}{\partial \phi_{\mathbf{x}}^{+} \partial \phi_{\mathbf{y}}^{-}} \mathcal{W}_{M}(\phi)\right|_{\phi=0} .
$$

The above Grassmann integral can be used to compute the thermodynamical properties of the model with Hamiltonian H_{λ}.

The starting point of the analysis is the following decomposition of the propagator

$$
g_{M, L, \beta}(\mathbf{x})=g^{(>0)}(\mathbf{x})+g^{(\leq 0)}(\mathbf{x})
$$

where

$$
g^{(\leq 0)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k x} \times} \frac{\chi_{0}\left(\gamma^{-M}\left|k_{0}\right|\right) \chi_{\leq 0}(\mathbf{k})}{-i k_{0}+\cos k+h}
$$

Here

$$
\chi_{\leq 0}(\mathbf{k})=\chi_{0}\left(\sqrt{k_{0}^{2}+(\cos k-1+r)^{2}}\right) .
$$

Observe that $\chi_{\leq 0}(\mathbf{k})$ is a smooth version of the characteristic function of the set

$$
A_{0}=\left\{\mathbf{k}| |-i k_{0}+(\cos k-1+r) \mid \leq 1\right\} .
$$

The starting point of the analysis is the following decomposition of the propagator

$$
g_{M, L, \beta}(\mathbf{x})=g^{(>0)}(\mathbf{x})+g^{(\leq 0)}(\mathbf{x})
$$

where

$$
g^{(\leq 0)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k x} \times} \frac{\chi_{0}\left(\gamma^{-M}\left|k_{0}\right|\right) \chi_{\leq 0}(\mathbf{k})}{-i k_{0}+\cos k+h}
$$

Here

$$
\chi_{\leq 0}(\mathbf{k})=\chi_{0}\left(\sqrt{k_{0}^{2}+(\cos k-1+r)^{2}}\right) .
$$

Observe that $\chi_{\leq 0}(\mathbf{k})$ is a smooth version of the characteristic function of the set

$$
A_{0}=\left\{\mathbf{k}| |-i k_{0}+(\cos k-1+r) \mid \leq 1\right\} .
$$

By using the addition property of Grassmann integrations we can write

$$
e^{-\mathcal{W}(\phi)}=\int P\left(d \psi^{(\leq 0)}\right) \int P\left(d \psi^{(\leq 0)}\right) e^{-\mathcal{V}\left(\psi^{(>0)}+\psi^{(>0)}\right)+\left(\psi^{(>0)}+\psi^{(\leq 0)}, \phi\right)} .
$$

After integrating the field $\psi^{(>0)}$ one obtains

$$
e^{-\mathcal{W}(\phi)}=e^{-\beta L F_{0}} \int P\left(d \psi^{(\leq 0)}\right) e^{-\mathcal{V}^{(0)}\left(\psi^{(\leq 0}, \phi\right)}
$$

where

$$
\mathcal{V}^{(0)}(\psi, \phi)=\sum_{n+m \geq 1} \int d \underline{\mathbf{x}} \int d \underline{\mathbf{y}} \prod_{i=1}^{n} \psi_{\mathbf{x}_{i}}^{\varepsilon_{i}} \prod_{j=1}^{m} \phi_{\mathbf{x}_{j}}^{\sigma_{j}} W_{n, m}^{(0)}(\underline{\mathbf{x}}, \underline{\mathbf{y}})
$$

where $\underline{\mathbf{x}}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ and $\underline{\mathbf{y}}=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}\right)$.

After integrating the field $\psi^{(>0)}$ one obtains

$$
e^{-\mathcal{W}(\phi)}=e^{-\beta L F_{0}} \int P\left(d \psi^{(\leq 0)}\right) e^{-\mathcal{V}^{(0)}\left(\psi^{(\leq 0}, \phi\right)}
$$

where

$$
\mathcal{V}^{(0)}(\psi, \phi)=\sum_{n+m \geq 1} \int d \underline{\mathbf{x}} \int d \underline{\mathbf{y}} \prod_{i=1}^{n} \psi_{\mathbf{x}_{i}}^{\varepsilon_{i}} \prod_{j=1}^{m} \phi_{\mathbf{x}_{j}}^{\sigma_{j}} W_{n, m}^{(0)}(\underline{\mathbf{x}}, \underline{\mathbf{y}})
$$

where $\underline{\mathbf{x}}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ and $\underline{\mathbf{y}}=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{m}\right)$.
We know that $W_{n, m}(\underline{\mathbf{x}}, \underline{\mathbf{y}})$ are given by convergent power series in λ for λ small enough and they decay faster than any power in any coordinate difference. Finally, the limit $M \rightarrow \infty$ of $\mathcal{V}^{(0)}(\psi, \phi)$ exists and is reached uniformly in β, L.

Thus we are left with the integration over $\psi^{(\leq 0)}$. The idea in order to to perform this integration is to decompose $\psi_{\mathbf{x}}^{(\leq 0)}$ as

$$
\psi_{\mathbf{x}}^{(\leq 0)}=\sum_{h=0}^{-\infty} \psi_{\mathbf{x}}^{(h)}
$$

where $\psi_{\mathbf{x}}^{(h)}$ depends only on the momenta \mathbf{k} such that

$$
\left|-i k_{0}+\cos k-1+r\right| \simeq \gamma^{h} .
$$

Thus we are left with the integration over $\psi^{(\leq 0)}$. The idea in order to to perform this integration is to decompose $\psi_{\mathbf{x}}^{(\leq 0)}$ as

$$
\psi_{\mathbf{x}}^{(\leq 0)}=\sum_{h=0}^{-\infty} \psi_{\mathbf{x}}^{(h)}
$$

where $\psi_{\mathbf{x}}^{(h)}$ depends only on the momenta \mathbf{k} such that

$$
\left|-i k_{0}+\cos k-1+r\right| \simeq \gamma^{h} .
$$

To do this, consider the sets

$$
A_{h}=\left\{\mathbf{k}\left|\gamma^{h-1} \leq\left|i k_{0}+(\cos (k)-1+r)\right| \leq \gamma^{h}\right\}\right.
$$

and write

$$
\hat{g}^{(h)}(\mathbf{k})=\frac{I_{A_{h}}(\mathbf{k})}{i k_{0}+(\cos (k)-1+r)}
$$

where $I_{A_{h}}$ is the characteristic function of A_{h}.

We can also define

$$
g^{(h)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k} \mathbf{x}} \hat{g}^{(h)}(\mathbf{k})
$$

so that

$$
g^{(\leq 0)}(\mathbf{x})=\sum_{h \leq 0} g^{(h)}(\mathbf{x})
$$

We can also define

$$
g^{(h)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k} \mathbf{x}} \hat{g}^{(h)}(\mathbf{k})
$$

so that

$$
g^{(\leq 0)}(\mathbf{x})=\sum_{h \leq 0} g^{(h)}(\mathbf{x})
$$

The index h is called the scale of the field $\psi^{(h)}$. When $r>0$, two different regimes naturally appear in the analysis, separated by an energy scale depending on r and defined as

$$
h^{*}=\inf \left\{h\left|\gamma^{h+1}>|r|\right\} .\right.
$$

$$
h>h^{*}:\left|A_{h}\right|=\gamma^{\frac{3}{2} h}
$$

$$
\begin{aligned}
& \hat{g}^{(h)}(\mathbf{k}) \simeq \gamma^{-h} \hat{\tilde{g}}\left(\gamma^{-h} k_{0}, \gamma^{-\frac{h}{2}} k\right) \\
& g^{(h)}(\mathbf{x}) \simeq \gamma^{\frac{h}{2}} \tilde{g}\left(\gamma^{h} x_{0}, \gamma^{\frac{h}{2}} x\right) .
\end{aligned}
$$

-品

Behavior of the scales: $\gamma=2$ and $r=0.27$.

$$
h>h^{*}:\left|A_{h}\right|=\gamma^{\frac{3}{2} h}
$$

$$
\begin{aligned}
& \hat{g}^{(h)}(\mathbf{k}) \simeq \gamma^{-h} \hat{\tilde{g}}\left(\gamma^{-h} k_{0}, \gamma^{-\frac{h}{2}} k\right) \\
& g^{(h)}(\mathbf{x}) \simeq \gamma^{\frac{h}{2}} \tilde{g}\left(\gamma^{h} x_{0}, \gamma^{\frac{h}{2}} x\right) .
\end{aligned}
$$

$h=h^{*}$: transition scale, both scaling are good.

$\mapsto Q \subset$

$$
h<h^{*}:\left|A_{h}\right|=\gamma^{2 h}
$$

$$
\begin{array}{ll}
\hat{g}^{(h)}(\mathbf{k})=\hat{g}_{-1}^{(h)}(\mathbf{k})+\hat{g}_{-1}^{(h)}(\mathbf{k}) \quad & \hat{g}_{\omega}^{(h)} \simeq \gamma^{-h} \hat{\bar{g}}\left(\gamma^{-h} k_{0}, v_{F} \gamma^{-h} k\right) \\
& g_{\omega}^{(h)} \simeq v_{F}^{-1} \gamma^{h} \bar{g}\left(\gamma^{h} x_{0}, v_{F}^{-1} \gamma^{h} k\right)
\end{array}
$$

$$
h<h^{*}:\left|A_{h}\right|=\gamma^{2 h}
$$

$$
\begin{array}{ll}
\hat{g}^{(h)}(\mathbf{k})=\hat{g}_{-1}^{(h)}(\mathbf{k})+\hat{g}_{-1}^{(h)}(\mathbf{k}) \quad & \hat{g}_{\omega}^{(h)} \simeq \gamma^{-h} \hat{\bar{g}}\left(\gamma^{-h} k_{0}, v_{F} \gamma^{-h} k\right) \\
& g_{\omega}^{(h)} \simeq v_{F}^{-1} \gamma^{h} \bar{g}\left(\gamma^{h} x_{0}, v_{F}^{-1} \gamma^{h} k\right)
\end{array}
$$

$$
h<h^{*}:\left|A_{h}\right|=\gamma^{2 h}
$$

$$
\begin{array}{ll}
\hat{g}^{(h)}(\mathbf{k})=\hat{g}_{-1}^{(h)}(\mathbf{k})+\hat{g}_{-1}^{(h)}(\mathbf{k}) \quad & \hat{g}_{\omega}^{(h)} \simeq \gamma^{-h} \hat{\bar{g}}\left(\gamma^{-h} k_{0}, v_{F} \gamma^{-h} k\right) \\
& g_{\omega}^{(h)} \simeq v_{F}^{-1} \gamma^{h} \bar{g}\left(\gamma^{h} x_{0}, v_{F}^{-1} \gamma^{h} k\right)
\end{array}
$$

We saw that after the ultraviolet integration we have

$$
e^{-\mathcal{W}(0)}=e^{-\beta L F_{0}} \int P\left(d \psi^{(\leq 0)}\right) e^{-\mathcal{V}^{(0)}\left(\psi^{(\leq 0)}\right)}
$$

where

$$
P\left(d \psi^{(\leq 0)}\right) \quad \longleftrightarrow \quad g^{(\leq 0)}(\mathbf{k})
$$

with

$$
g^{(\leq 0)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k} \mathbf{x}} \frac{\chi_{\leq 0}(\mathbf{k})}{D_{0}(\mathbf{k})} \quad \chi_{<0}(\mathbf{k})=\chi_{0}\left(\gamma\left|D_{0}(\mathbf{k})\right|\right)
$$

and

$$
D_{0}(\mathbf{k})=\left|-i k^{0}+(\cos (k)-1+r)\right|
$$

Moreover $\mathcal{V}^{(0)}\left(\psi^{(\leq 0)}\right)=\mathcal{V}^{(0)}(\psi, 0)$ is the effective potential on scale 0 and can be written has

$$
\mathcal{V}^{(0)}(\psi)=\sum_{n \geq 1} \int d \underline{\mathbf{x}} \int d \underline{\mathbf{y}} W_{2 n}^{(0)}(\underline{\mathbf{x}}, \underline{\mathbf{y}}) \prod_{i=1}^{n} \psi_{\mathbf{x}_{i}}^{+} \psi_{\mathbf{y}_{i}}^{-}=\sum_{n \geq 1} \mathcal{V}_{2 n}^{(0)}(\psi)
$$

With a dimensional analysis of the perturbation theory we get:

- $\mathbf{n}=\mathbf{1}, \mathbf{2}$: relevant;
- $\mathbf{n}=3$: marginal;
- $\mathbf{n}>3$: irrelevant;

We define

$$
\mathcal{V}^{(0)}=\mathcal{L}_{1} \mathcal{V}^{(0)}+\mathcal{R}_{1} \mathcal{V}^{(0)}
$$

with $\mathcal{R}_{1}=1-\mathcal{L}_{1}$ and \mathcal{R}_{1} is defined in the following way;
(1) for $n \geq 4$

$$
\mathcal{R}_{1} \mathcal{V}_{2 n}^{(0)}=\mathcal{V}_{2 n}^{(0)} ;
$$

(2) for $n=3,2$

$$
\begin{aligned}
& \mathcal{R}_{1} \mathcal{V}_{4}^{(0)}(\psi)=\int \prod_{i=1}^{4} d \mathbf{x}_{i} W_{4}^{(0)}(\underline{\mathbf{x}}) \psi_{\mathbf{x}_{1}}^{+} D_{\mathbf{x}_{2}, \mathbf{x}_{1}}^{+} \psi_{\mathbf{x}_{3}}^{-} D_{\mathbf{x}_{4}, \mathbf{x}_{3}}^{-} \\
& \mathcal{R}_{1} \mathcal{V}_{6}^{(0)}(\psi)=\int \prod_{i=1}^{6} d \mathbf{x}_{i} W_{6}^{(0)}(\underline{\mathbf{x}}) \psi_{\mathbf{x}_{1}}^{+} D_{\mathbf{x}_{2}, \mathbf{x}_{1}}^{+} D_{\mathbf{x}_{3}, \mathbf{x}_{1}}^{+} \psi_{\mathbf{x}_{4}}^{-} D_{\mathbf{x}_{5}, \mathbf{x}_{4}}^{-} D_{\mathbf{x}_{6}, \mathbf{x}_{4}}^{-}
\end{aligned}
$$

where

$$
D_{\mathbf{x}_{2}, \mathbf{x}_{1}}^{\varepsilon}=\psi_{\mathbf{x}_{2}}^{\varepsilon}-\psi_{\mathbf{x}_{1}}^{\varepsilon}
$$

(3) For $n=1$

$$
\mathcal{R}_{1} \mathcal{V}_{2}^{(0)}(\psi)=\int d \mathbf{x}_{1} d \mathbf{x}_{2} W_{2}^{(0)}(\underline{\mathbf{x}}) \psi_{\mathbf{x}_{1}}^{+} H_{\mathbf{x}_{1}, \mathbf{x}_{2}}^{-}
$$

where

$$
\begin{aligned}
H_{\mathbf{x}_{1}, \mathbf{x}_{2}}^{-}= & \psi_{\mathbf{x}_{2}}^{-}-\psi_{\mathbf{x}_{1}}^{-}-\left(x_{0,1}-x_{0,2}\right) \partial_{0} \psi_{\mathbf{x}_{1}}^{-}-\left(x_{1}-x_{2}\right) \tilde{\partial}_{1} \psi_{\mathbf{x}_{1}}^{-}- \\
& \frac{1}{2}\left(x_{1}-x_{2}\right)^{2} \tilde{\Delta}_{1} \psi
\end{aligned}
$$

and

$$
\begin{aligned}
& \tilde{\partial}_{1} \psi_{\mathbf{x}}^{-}=\frac{1}{2}\left(\psi_{\mathbf{x}+(0,1)}^{-}-\psi_{\mathbf{x}-(0,1)}^{-}\right)=\int d \mathbf{k} i \sin k e^{i \mathbf{k x}} \hat{\psi}_{\mathbf{k}}^{-} \\
& \tilde{\Delta}_{1} \psi_{\mathbf{x}}^{-}=\psi_{\mathbf{x}+(0,1)}^{-}-2 \psi_{\mathbf{x}}^{-}+\psi_{\mathbf{x}-(0,1)}^{-}=2 \int d \mathbf{k}(\cos k-1) e^{i \mathbf{k} \mathbf{x}} \hat{\psi}_{\mathbf{k}}^{-}
\end{aligned}
$$

As a consequence of the above definitions, calling

$$
\hat{W}_{2}^{(0)}(\mathbf{k})=\int d \mathbf{x} e^{i \mathbf{k x}} W_{2}^{(0)}(\mathbf{x})
$$

we get

$$
\begin{aligned}
\mathcal{L}_{1} \mathcal{V}^{(0)}= & \hat{W}_{2}^{(0)}(0) \int d \mathbf{x} \psi_{\mathbf{x}}^{+} \psi_{\mathbf{x}}^{-}+\partial_{0} \hat{W}_{2}^{(0)}(0) \int d \mathbf{x} \psi_{\mathbf{x}}^{+} \partial_{0} \psi_{\mathbf{x}}^{-}+ \\
& \frac{1}{2} \partial_{1}^{2} \hat{W}_{2}^{(0)}(0) \int d \mathbf{x} \psi_{\mathbf{x}}^{+} \tilde{\Delta}_{1} \psi_{\mathbf{x}}^{-}
\end{aligned}
$$

where we have used that
i. $g^{(0)}\left(k_{0}, k\right)=g^{(0)}\left(k_{0},-k\right)$, so that we get

$$
\partial_{1} \hat{W}_{2}^{(0)}(0)=0
$$

ii. There are no terms in $\mathcal{L}_{1} \mathcal{V}^{(0)}$ with four or six fermionic fields, as

$$
\psi_{\mathbf{x}_{1}}^{\varepsilon} D_{\mathbf{x}_{2}, \mathbf{x}_{1}}^{\varepsilon}=\psi_{\mathbf{x}_{1}}^{\varepsilon} \psi_{\mathbf{x}_{2}}^{\varepsilon}
$$

and therefore

$$
\mathcal{R}_{1} \mathcal{V}_{4}^{(0)}=\mathcal{V}_{4}^{(0)} \quad \mathcal{R}_{1} \mathcal{V}_{6}^{(0)}=\mathcal{V}_{6}^{(0)} .
$$

Since $\mathcal{L}_{1} \mathcal{V}^{(0)}$ is quadratic in the fields, we can include it in the free integration finding

$$
e^{-\mathcal{W}(0)}=e^{-\beta L\left(F_{0}+e_{0}\right)} \int \tilde{P}\left(d \psi^{(\leq 0)}\right) e^{-\mathcal{R}_{1} \mathcal{V}^{(0)}\left(\psi^{(\leq 0)}\right)}
$$

where the propagator of $\tilde{P}\left(d \psi^{(\leq 0)}\right)$ is now

$$
\tilde{g}^{(\leq 0)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k x}} \frac{\chi \leq 0(\mathbf{k})}{D_{-1}(\mathbf{k})}
$$

with

$$
D_{-1}(\mathbf{k})=-i k_{0}\left(1+z_{-1}\right)+\left(1+\alpha_{-1}\right)(\cos k-1)+r+\gamma^{-1} \mu_{-1}
$$

and

$$
\begin{align*}
z_{-1} & =z_{0}+\chi_{\leq 0}(\mathbf{k}) \partial_{0} \hat{W}_{2}^{(0)}(0) \quad \alpha_{-1}=\alpha_{0}+\chi_{\leq 0}(\mathbf{k}) \partial_{1}^{2} \hat{W}_{2}^{(0)}(0) \tag{4}\\
\gamma^{-1} \mu_{-1} & =\mu_{0}+\chi_{\leq 0}(\mathbf{k}) \hat{W}_{2}^{(0)}(0) \tag{5}
\end{align*}
$$

where $z_{0}=\alpha_{0}=\mu_{0}=0$.

We can now write

$$
\tilde{g}^{(\leq 0)}(\mathbf{x})=g^{(\leq-1)}(\mathbf{x})+\tilde{g}^{(0)}(\mathbf{x})
$$

where

$$
g^{(\leq-1)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k x}} \frac{\chi_{\leq-1}(\mathbf{k})}{D_{-1}(\mathbf{k})} \quad \chi_{<-1}(\mathbf{k})=\chi_{0}\left(\gamma\left|D_{-1}(\mathbf{k})\right|\right)
$$

and

$$
\tilde{g}^{(0)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k} x} \frac{f_{0}(\mathbf{k})}{D_{-1}(\mathbf{k})} \quad f_{0}(\mathbf{k})=\chi_{\leq 0}(\mathbf{k})-\chi \leq-1(\mathbf{k}) .
$$

and define the new integrations

$$
\begin{array}{rll}
\tilde{P}\left(d \psi^{(0)}\right) & \longleftrightarrow & \tilde{g}^{(0)}(\mathbf{x}) \\
P\left(d \psi^{(\leq-1)}\right) & \longleftrightarrow & \tilde{g}^{(\leq-1)}(\mathbf{x})
\end{array}
$$

Using again additivity we get

$$
\begin{aligned}
e^{-\mathcal{W}(0)} & =e^{-\beta L\left(F_{0}+e_{0}\right)} \int P\left(d \psi^{(\leq-1)}\right) \int \tilde{P}\left(d \psi^{(0)}\right) e^{-\mathcal{R}_{1} \mathcal{V}^{(0)}\left(\psi^{(\leq 0)}\right)}= \\
& =e^{-\beta L F_{-1}} \int P\left(d \psi^{(\leq-1)}\right) e^{-\mathcal{V}^{(-1)}\left(\psi^{(\leq-1)}\right)}
\end{aligned}
$$

where

$$
e^{-\beta L \tilde{e}_{0}-\mathcal{V}^{(-1)}\left(\psi^{(\leq-1)}\right)}=\int \tilde{P}\left(d \psi^{(0)}\right) e^{-\mathcal{R}_{1} \mathcal{V}^{(0)}\left(\psi^{(\leq 0)}\right)}
$$

and $F_{-1}=F_{0}+e_{0}+\tilde{e}_{0}$.

At the h step (i.e. at scale h) we start with the integration

$$
e^{-\mathcal{W}(0)}=e^{-\beta L F_{h}} \int P\left(d \psi^{(\leq h)}\right) e^{-\mathcal{V}^{(h)}\left(\psi^{(\leq h)}\right)}
$$

where

$$
P\left(d \psi^{(0)}\right) \quad \longleftrightarrow \quad g^{(\leq h)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k} \mathbf{x}} \frac{\chi_{\leq h}(\mathbf{k})}{D_{h}(\mathbf{k})}
$$

with

$$
\begin{aligned}
D_{h}(\mathbf{k}) & =-i k_{0}\left(1+z_{h}\right)+\left(1+\alpha_{h}\right)(\cos k-1)+r+\gamma^{h} \mu_{h} \\
\chi_{\leq h}(\mathbf{k}) & \left.=\chi_{0}\left(\gamma^{-h} a_{0}^{-1}\left|D_{h}(\mathbf{k})\right|\right)\right) .
\end{aligned}
$$

Finally

$$
\mathcal{V}^{(h)}(\psi)=\sum_{n \geq 1} \int d \underline{\mathbf{x}} \int d \underline{\mathbf{y}} W_{2 n}^{(h)}(\underline{\mathbf{x}}, \underline{\mathbf{y}}) \prod_{i=1}^{n} \psi_{\mathbf{x}_{i}}^{+} \psi_{\mathbf{y}_{i}}^{-}=\sum_{n \geq 1} \mathcal{V}_{2 n}^{(h)}(\psi)
$$

Again we can wirte

$$
\mathcal{V}^{(h)}=\mathcal{L}_{1} \mathcal{V}^{(h)}+\mathcal{R}_{1} \mathcal{V}^{(h)}
$$

where

$$
\begin{aligned}
\mathcal{L}_{1} \mathcal{V}^{(h)}= & \hat{W}_{2}^{(h)}(0) \int d \mathbf{x} \psi_{\mathbf{x}}^{+} \psi_{\mathbf{x}}^{-}+\partial_{0} \hat{W}_{2}^{(h)}(0) \int d \mathbf{x} \psi_{\mathbf{x}}^{+} \partial_{0} \psi_{\mathbf{x}}^{-}+ \\
& \frac{1}{2} \partial_{1}^{2} \hat{W}_{2}^{(h)}(0) \int d \mathbf{x} \psi_{\mathbf{x}}^{+} \tilde{\Delta}_{1} \psi_{\mathbf{x}}^{-}
\end{aligned}
$$

Moving the relevant part of the effective potential into the integration we get

$$
e^{-\mathcal{W}(0)}=e^{-\beta L\left(F_{h}+e_{h}\right)} \int \tilde{P}\left(d \psi^{(\leq h)}\right) e^{-\mathcal{R} \mathcal{V}^{(h)}\left(\psi^{(\leq h)}\right)}
$$

where the propagator of

$$
\tilde{P}\left(d \psi^{(\leq h)}\right) \quad \longleftrightarrow \quad \tilde{g}^{(\leq h)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k} \mathbf{x}} \frac{\chi_{\leq h}(\mathbf{k})}{D_{h-1}(\mathbf{k})}
$$

and the running coupling constants are defined recursively by

$$
\begin{aligned}
& z_{h-1}=z_{h}+\chi_{\leq h}(\mathbf{k}) \partial_{0} \hat{W}_{2}^{(h)}(0) \quad \alpha_{h-1}=\alpha_{h}+\chi_{\leq h}(\mathbf{k}) \partial_{1}^{2} \hat{W}_{2}^{(h)}(0) \\
& \mu_{h-1}=\gamma \mu_{h}+\chi_{\leq h}(\mathbf{k}) \gamma^{-h} \hat{W}_{2}^{(h)}(0)
\end{aligned}
$$

Finally we can write

$$
e^{-\mathcal{W}(0)}=e^{-\beta L\left(F_{h}+e_{h}\right)} \int P\left(d \psi^{(\leq h-1)}\right) \int \tilde{P}\left(d \psi^{(h)}\right) e^{-\mathcal{R}_{1} \mathcal{V}^{(h)}\left(\psi^{(\leq h)}\right)}
$$

where

$$
\tilde{P}\left(d \psi^{(h)}\right) \quad \longleftrightarrow \quad \tilde{g}^{(h)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k} \mathbf{x}} \frac{f_{h}(\mathbf{k})}{D_{h-1}(\mathbf{k})}
$$

and $f_{h}(\mathbf{k})=\chi_{\leq h}(\mathbf{k})-\chi_{\leq h-1}(\mathbf{k})$; thus

$$
e^{-\beta L \bar{e}_{h}-\mathcal{V}^{h-1}}=\int \tilde{P}\left(d \psi^{(h)}\right) e^{-\mathcal{R}_{1} \mathcal{V}^{(h)}\left(\psi^{(\leq h)}\right)}
$$

To show that the above procedure is well defined we need a precise estimates on the propagator.

Lemma

Assume that there exists a constant $K>0$ such that

$$
\left|z_{h}\right|,\left|\alpha_{h}\right|,\left|\mu_{h}\right|<K|\lambda|
$$

for $h \geq h^{*}$. Then for $\left|x_{0}\right| \leq \beta / 2$, every N and λ small enough we have

$$
\left|\partial_{0}^{n_{0}} \tilde{\partial}_{1}^{n_{1}} \tilde{g}^{(h)}(\mathbf{x})\right| \leq C_{N} \frac{\gamma^{\frac{h}{2}}}{1+\left[\gamma^{h}\left|x_{0}\right|+\gamma^{\frac{h}{2}}|x|\right]^{N}} \gamma^{h\left(n_{0}+n_{1} / 2\right)}
$$

with C_{N} independent from K.

Lemma

There exists a constants $\lambda_{0}>0$, independent of β, L and r, such that the kernels $W_{l}^{(h)}$ in the domain $|\lambda| \leq \lambda_{0}$, are analytic function of λ and satisfy for $h \geq h^{*}$

$$
\frac{1}{\beta L} \int d \underline{\mathbf{x}} d \underline{\mathbf{y}}\left|W_{2 l}^{(h)}(\underline{\mathbf{x}}, \underline{\mathbf{y}})\right| \leq \gamma^{h\left(\frac{3}{2}-\frac{1}{2}\right)} \gamma^{\vartheta h}(C|\lambda|)^{\max (1, l-1)}
$$

with $\vartheta=\frac{1}{4}$.

Observe that for $h=h^{*}$ we get

$$
\frac{1}{\beta L} \int d \underline{\mathbf{x}} d \underline{\mathbf{y}}\left|W_{2 l}^{\left(h^{*}\right)}(\underline{\mathbf{x}}, \underline{\mathbf{y}})\right| \leq(C|\lambda|)^{\max (1, l-1)} r^{\frac{3}{2}-\frac{1}{2}}
$$

that is a generalization of the condition for the effective coupling since we get

$$
\frac{1}{\beta L} \int d \underline{\mathbf{x}} d \underline{\mathbf{y}}\left|W_{4}^{\left(h^{*}\right)}(\underline{\mathbf{x}}, \underline{\mathbf{y}})\right| \leq C \lambda r^{\frac{1}{2}}
$$

We have now to consider the integration of the scales with $h<h^{*}$, that is

$$
\left.e^{-\mathcal{W}(0)}=e^{-\beta L F_{h^{*}}} \int P\left(d \psi^{\left(\leq h^{*}\right)}\right) e^{-\nu^{\left(h^{*}\right)}\left(\psi^{(} \leq h^{*}\right)}\right)
$$

where

$$
P\left(d \psi^{\left(\leq h^{*}\right)}\right) \quad \longleftrightarrow \quad g^{\left(\leq h^{*}\right)}(\mathbf{x})
$$

with

$$
g^{\left(\leq h^{*}\right)}(\mathbf{x})=\int d \mathbf{k} \frac{\chi_{\leq h^{*}}(\mathbf{k})}{-i k_{0}\left(1+z_{h^{*}}\right)+\left(1+\alpha_{h^{*}}\right)(\cos k-1)+r+\gamma^{h^{*}} \mu_{h^{*}}}
$$

We first extract a counterterm to fix the fermi surface

$$
\begin{aligned}
& \int P\left(d \psi^{\left(\leq h^{*}\right)}\right) e^{-\mathcal{V}^{\left(h^{*}\right)}\left(\psi\left(\leq h^{*}\right)\right.}= \\
& \quad \int \tilde{P}\left(d \psi^{\left(\leq h^{*}\right)}\right) e^{-\mathcal{V}^{\left(h^{*}\right)}\left(\psi^{\left(\leq h^{*}\right)}\right)-\gamma^{h^{*}} \nu_{h^{*}} \int d x \psi_{\mathrm{x}}^{\left(\leq h^{*}\right)+} \psi_{\mathrm{x}}^{\left(\leq n^{*}\right)-}}
\end{aligned}
$$

where

$$
\tilde{P}\left(d \psi^{\left(\leq h^{*}\right)}\right) \quad \longleftrightarrow \quad g^{\left(\leq h^{*}\right)}(\mathbf{x})
$$

with

$$
g^{\left(\leq h^{*}\right)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k} \mathbf{x}} \frac{\chi_{\leq h^{*}}(\mathbf{k})}{-i k_{0}\left(1+z_{h^{*}}\right)+\left(1+\alpha_{h^{*}}\right)\left(\cos k-\cos p_{F}\right)}
$$

and

$$
\left(1+\alpha_{h^{*}}\right) \cos p_{F}=\left(1+\alpha_{h^{*}}\right)-r-\gamma^{h^{*}} \mu_{h^{*}}+\gamma^{h^{*}} \nu_{h^{*}}
$$

The strategy of the analysis is the following:
(1) we will perform a multiscale analysis. In this analysis we will have to chose $\nu_{h^{*}}=O(\lambda)$ as function of p_{F} and λ to obtain a convergent expansion.
(2) at the end of the above construction we will use the above relation between p_{F} and $\nu_{h^{*}}$ to obtain the Fermi momentum p_{F} as function of λ and r.

We can now write

$$
\chi_{\leq h^{*}}(\mathbf{k})=\chi_{\leq h^{*}, 1}(\mathbf{k})+\chi_{\leq h^{*},-1}(\mathbf{k})
$$

where

$$
\chi_{\leq h^{*}, \omega}(\mathbf{k})=\tilde{\vartheta}\left(\omega \frac{k}{p_{F}}\right) \chi_{\leq h^{*}}(\mathbf{k})
$$

where $\omega= \pm 1, \tilde{\vartheta}$ is a smooth function such that $\tilde{\vartheta}(k)=1$ for $k>\frac{1}{2}$ and $\tilde{\vartheta}(k)=0$ for $k<-\frac{1}{2}$ and

$$
\tilde{\vartheta}(k)+\tilde{\vartheta}(-k)=1
$$

for every k.
Thus we can write

$$
g^{\left(\leq h^{*}\right)}(\mathbf{x})=\sum_{\omega= \pm 1} e^{i \omega \rho_{F} x} g_{\omega}^{\left(\leq h^{*}\right)}(\mathbf{x})
$$

where

$$
g_{\omega}^{\left(\leq h^{*}\right)}(\mathbf{x})=\int d \mathbf{k} e^{i\left(\mathbf{k}-\omega \mathbf{p}_{F}\right) \mathbf{x}} \frac{\chi \leq h^{*}, \omega(\mathbf{k})}{-i k_{0}\left(1+z_{h^{*}}\right)+\left(1+\alpha_{h^{*}}\right)\left(\cos k-\cos p_{F}\right)}
$$

with $\mathbf{p}_{F}=\left(0, p_{F}\right)$.

A new localization operation is defined in the following way

$$
\begin{gathered}
\mathcal{L}_{2} \int d \underline{\mathbf{x}} W_{4}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right) \prod_{i=1}^{4} \psi_{\mathbf{x}_{\mathbf{i}}, \omega_{i}}^{\varepsilon_{i}}=\hat{W}_{4}(0) \int d \mathbf{x} \psi_{\mathbf{x}, 1}^{+} \psi_{\mathbf{x}, 1}^{-} \psi_{\mathbf{x},-1}^{+} \psi_{\mathbf{x},-1}^{-} \\
\mathcal{L}_{2} \int d \underline{\mathbf{x}} W_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \psi_{\mathbf{x}_{1}, \omega}^{+} \psi_{\mathbf{x}_{\mathbf{2}}, \omega}^{-}=\hat{W}_{2}(0) \int \psi_{\mathbf{x}, \omega}^{+} \psi_{\mathbf{x}, \omega}^{-} d \mathbf{x}+ \\
\partial_{1} \hat{W}_{2}(0) \int \bar{\psi}_{\mathbf{x}, \omega}^{+} \Delta_{1} \psi_{\mathbf{x}, \omega}^{-} d \mathbf{x}+\partial_{0} \hat{W}_{2}(0) \int \psi_{\mathbf{x}, \omega}^{+} \partial_{0} \psi_{\mathbf{x}, \omega}^{-} d \mathbf{x}
\end{gathered}
$$

where

$$
\bar{\Delta}_{1} f(\mathbf{x})=2 \int d \mathbf{k}\left(\cos k-\cos p_{F}\right) e^{i \mathbf{k} \mathbf{x}} \hat{f}(\mathbf{k}) \quad \text { if } \quad f(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k} \mathbf{x}} \hat{f}(\mathbf{k})
$$

After the integration of the scale $\psi^{\left(h^{*}\right)}, . . \psi^{(h)}$ we get

$$
e^{-\mathcal{W}(0)}=e^{-\beta L F_{h}} \int P_{Z_{h}}\left(d \psi^{(\leq h)}\right) e^{-\mathcal{V}^{(h)}\left(\sqrt{Z_{h}} \psi^{(\leq h)}\right)}
$$

where

$$
P_{Z_{h}}\left(d \psi^{(\leq h)}\right) \quad \longleftrightarrow \quad \frac{g_{\omega}^{(\leq h)}}{Z_{h}}
$$

with

$$
g_{\omega}^{(\leq h)}(\mathbf{x})=\int d \mathbf{k} e^{i\left(\mathbf{k}-\omega \mathbf{p}_{F}\right)} \frac{\chi_{\leq n, \omega}(\mathbf{k})}{-\left(1+z_{h^{*}}\right) i k_{0}+\left(1+\alpha_{h^{*}}\right)\left(\cos k-\cos p_{F}\right)}
$$

where

$$
\chi_{\leq h, \omega}(\mathbf{k})=\tilde{\vartheta}\left(\omega \frac{k}{p_{F}}\right) \chi_{0}\left(a_{0} \gamma^{-h}\left|\left(1+z_{h^{*}}\right) i k_{0}-\left(1+\alpha_{h^{*}}\right)\left(\cos k-\cos p_{F}\right)\right|\right) .
$$

We can now write

$$
\int P_{Z_{h}}\left(d \psi^{(\leq h)}\right) e^{-\mathcal{V}^{(h)}\left(\sqrt{Z_{h} \psi^{(\leq h)}}\right)}=\int \tilde{P}_{Z_{h-1}}\left(d \psi^{(\leq h)}\right) e^{-\tilde{\mathcal{V}}^{(h)}\left(\sqrt{z_{h}} \psi^{(\leq h)}\right)}
$$

where

$$
\begin{align*}
\mathcal{L}_{2} \tilde{\mathcal{V}}^{(h)}(\psi)= & \ln _{h} \int d \mathbf{x} \psi_{\mathbf{x}, 1}^{+} \psi_{1, \mathbf{x}}^{-} \psi_{\mathbf{x},-1}^{+} \psi_{-1, \mathbf{x}}^{-}+\left(a_{h}-z_{h}\right) \sum_{\omega} \int d \mathbf{x} \psi_{\omega, \mathbf{x}}^{+} \Delta_{1} \psi_{\omega, \mathbf{x}}^{-}+ \\
& n_{h} \int d \mathbf{x} \psi_{\omega, \mathbf{x}}^{+} \psi_{\omega, \mathbf{x}}^{-} \tag{6}
\end{align*}
$$

while $\tilde{P}_{h}\left(d \psi^{(\leq h)}\right)$ is the integration with propagator identical to $g_{\omega}^{(\leq h)}(\mathbf{x})$ but with $\chi_{\leq h, \omega}(\mathbf{k})$ replaced by $\frac{\chi_{\leq h, \omega}(\mathbf{k})}{Z_{h-1}(\mathbf{k})}$ with

$$
\tilde{Z}_{h-1}(\mathbf{k})=Z_{h}+\chi_{\leq h, \omega}(\mathbf{k}) Z_{h} Z_{h}
$$

Setting $Z_{h-1}=\tilde{Z}_{h-1}(0)$, we can finally write

$$
\begin{aligned}
& \left.\int P_{Z_{h}}\left(d \psi^{(\leq h)}\right) e^{-\mathcal{V}^{(h)}\left(\sqrt{Z_{h} \psi}(\leq h)\right.}\right)= \\
& \quad e^{-\beta L e_{h}} \int P_{Z_{h-1}}\left(d \psi^{(\leq h-1)}\right) \int \tilde{P}_{Z_{h-1}}\left(d \psi^{(h)}\right) e^{-\overline{\mathcal{V}}^{(h)}\left(\sqrt{Z_{h-1}} \psi^{(\leq h)}\right)}
\end{aligned}
$$

where

$$
\tilde{P}_{Z_{h-1}} \quad \longleftrightarrow \frac{\tilde{g}_{\omega}^{(h)}}{Z_{h-1}}
$$

with

$$
\tilde{g}_{\omega}^{(h)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{x}\left(\mathbf{k}-\omega \mathbf{p}_{F}\right)} \frac{\tilde{f}_{h, \omega}(\mathbf{k})}{-\left(1+z_{h^{*}}\right) i k_{0}+\left(1+\alpha_{h^{*}}\right)\left(\cos k-\cos p_{F}\right)}
$$

and

$$
\tilde{f}_{h, \omega}(\mathbf{k})=Z_{h-1}\left[\frac{\chi_{\leq h, \omega}(\mathbf{k})}{\tilde{Z}_{h-1}(\mathbf{k})}-\frac{\chi_{\leq h-1, \omega}(\mathbf{k})}{Z_{h-1}}\right]
$$

Finally we have

$$
\overline{\mathcal{V}}^{(h)}\left(\psi^{(\leq h)}\right)=\tilde{\mathcal{V}}^{(h)}\left(\sqrt{\frac{Z_{h}}{Z_{h-1}}} \psi^{(\leq h)}\right)
$$

so that

$$
\begin{array}{r}
\mathcal{L}_{2} \tilde{\mathcal{V}}^{h}=\lambda_{h} \int d \mathbf{x} \psi_{\mathbf{x}, 1}^{+} \psi_{1, \mathbf{x}}^{-} \psi_{\mathbf{x},-1}^{+} \psi_{-1, \mathbf{x}}^{-}+\delta_{h} \sum_{\omega} \int d \mathbf{x} \psi_{\omega, \mathbf{x}}^{+} \Delta_{1} \psi_{\omega, \mathbf{x}}+ \\
\gamma^{h} \nu_{h} \sum_{\omega} \int d \mathbf{x} \psi_{\omega, \mathbf{x}}^{+} \psi_{\omega, \mathbf{x}}
\end{array}
$$

with

$$
\gamma^{h} \nu_{h}=\frac{Z_{h}}{Z_{h-1}} n_{h} \quad \delta_{h}=\frac{Z_{h}}{Z_{h-1}}\left(a_{h}-Z_{h}\right) \quad \lambda_{h}=\left(\frac{Z_{h}}{Z_{h-1}}\right)^{2} I_{h}
$$

We can now integrate the field $\psi^{(h)}$

$$
\int \tilde{P}_{Z_{h-1}}\left(d \psi^{(h)}\right) e^{-\overline{\mathcal{V}}^{(h)}\left(\sqrt{Z_{h-1}} \psi^{(\leq h)}\right)}=e^{-\beta L \tilde{e}_{h}-\mathcal{V}^{(h-1)}\left(\sqrt{Z_{h-1}} \psi^{(\leq h-1)}\right)}
$$

so that the procedure can be iterated.

The propagator.
Again we need precise estimates on the propagator.

Lemma

For $h \leq h^{*}$, every N and λ small enough we have

$$
\left|\partial_{0}^{n_{0}} \partial_{1}^{n_{1}} \tilde{g}_{\omega}^{(h)}(\mathbf{x})\right| \leq C_{N} \frac{v_{F}^{-1} \gamma^{h}}{1+\left[\gamma^{h}\left|x_{0}\right|+v_{F}^{-1} \gamma^{h}|x|\right]^{N}} \gamma^{h\left(n_{0}+n_{1}\right)} v_{F}^{-n_{1}}
$$

with $v_{F}=\sin \left(p_{F}\right)=O\left(r^{\frac{1}{2}}\right)$.
Assume now that, given $h<h^{*}$ we have

$$
\left|\lambda_{k}\right|,\left|\delta_{k}\right| \leq C v_{F}|\lambda| \quad\left|\nu_{k}\right| \leq C|\lambda| \quad h^{*} \geq k>h
$$

then we have

Lemma

There exists a constants $\lambda_{0}>0$, independent of β, L and r, such that the kernels $W_{21}^{(h)}$ are analytic functions of λ for $|\lambda| \leq \lambda_{0}$. Moreover they satisfy

$$
\frac{1}{\beta L} \int d \underline{\mathbf{x}} d \underline{\mathbf{y}}\left|W_{2 /}^{(h)}(\underline{\mathbf{x}}, \underline{\mathbf{y}})\right| \leq \gamma^{h(2-l)} v_{F}^{I-1}(C|\lambda|)^{\max (1, l-1)}
$$

We need to prove by induction that, for $h \leq h^{*}$ and $\vartheta=\frac{1}{4}$ we have

$$
\left|\lambda_{h}\right| \leq C|\lambda| r^{\frac{1}{2}+\vartheta}, \quad\left|\delta_{h}\right| \leq C|\lambda| r^{\frac{1}{2}+\vartheta} \quad\left|\nu_{h}\right| \leq C|\lambda| \gamma^{\vartheta h}
$$

It is not hard to check that this is true for $h=h^{*}$.

We need to prove by induction that, for $h \leq h^{*}$ and $\vartheta=\frac{1}{4}$ we have

$$
\left|\lambda_{h}\right| \leq C|\lambda| r^{\frac{1}{2}+\vartheta}, \quad\left|\delta_{h}\right| \leq C|\lambda| r^{\frac{1}{2}+\vartheta} \quad\left|\nu_{h}\right| \leq C|\lambda| \gamma^{\vartheta h}
$$

It is not hard to check that this is true for $h=h^{*}$.
The main observation is that we can decompose the propagator as

$$
\tilde{g}_{\omega}^{(h)}(\mathbf{x})=g_{\omega, L}^{(h)}(\mathbf{x})+r_{\omega}^{(h)}(\mathbf{x})
$$

where

$$
g_{\omega, L}^{(h)}(\mathbf{x})=\int d \mathbf{k} e^{i \mathbf{k x}} \frac{\tilde{f}_{h}(\mathbf{k})}{-i k_{0}+\omega V_{F} k}
$$

and

$$
\left|r_{\omega}^{(h)}(\mathbf{x})\right| \leq\left(\frac{\gamma^{h}}{v_{F}}\right)^{3} \frac{C_{N}}{1+\gamma^{h}\left(\left|x_{0}\right|+v_{F}^{-1}|x|\right)^{N}} .
$$

The flow of ν_{h} is given by

$$
\nu_{h-1}=\gamma \nu_{h}+\beta_{\nu}^{(h)}\left(\vec{v}_{h}, \ldots, \vec{v}_{h^{*}}\right)
$$

where $\vec{v}_{h}=\left(\lambda_{h}, \delta_{h}, \nu_{h}\right)$. Using the decomposition of the propagator we can write

$$
\beta_{\nu}^{(h)}=\bar{\beta}_{\nu}^{(h)}+\beta_{\nu, R}^{(h)}
$$

where

$$
\bar{\beta}_{\nu}^{(h)}=0 \quad \beta_{\nu, R}^{(h)}=O\left(\lambda \gamma^{\vartheta h}\right)
$$

Thus by iteration

$$
\nu_{h-1}=\gamma^{-h+h^{*}}\left[\nu_{h^{*}}+\sum_{k=h}^{h^{*}} \gamma^{k-h^{*}} \beta_{\nu}^{(k)}\right] .
$$

and we can choose $\nu_{h^{*}}$ so that

$$
\nu_{h^{*}}=-\sum_{k=-\infty}^{h^{*}} \gamma^{k-h^{*}} \beta_{\nu}^{(k)}
$$

This implies that

$$
\nu_{h-1}=\gamma^{-h+h^{*}}\left[-\sum_{k=-\infty}^{h} \gamma^{k-h^{*}} \beta_{\nu}^{(k)}\right]
$$

and $\left|\nu_{h}\right| \leq C|\lambda| \gamma^{\vartheta h}$.

The flow equations for λ_{h} and δ_{h} with $h<h^{*}$ are

$$
\begin{aligned}
\lambda_{h-1} & =\lambda_{h}+\beta_{\lambda}^{(h)}\left(\vec{v}_{h}, \ldots, \vec{v}_{h^{*}}\right) \\
\delta_{h-1} & =\delta_{h}+\beta_{\delta}^{(h)}\left(\vec{v}_{h}, \ldots, \vec{v}_{h^{*}}\right)
\end{aligned}
$$

Again we can use decomposition of the propagator and decompose the beta function for $\alpha=\lambda, \delta$ as

$$
\beta_{\alpha}^{(h)}\left(\vec{v}_{h}, \ldots, \vec{v}_{h^{*}}\right)=\bar{\beta}_{\alpha}^{(h)}\left(\lambda_{h}, \delta_{h}, \ldots, \lambda_{0}, \delta_{0}\right)+\beta_{\alpha, R}^{(h)}\left(\vec{v}_{h}, \ldots, \vec{v}_{h^{*}}\right)
$$

where $\bar{\beta}_{\alpha}^{(h)}$ contains only propagators $g_{\omega, L}^{(h)}(\mathbf{x})$ and end-points to which is associated λ_{k}, δ_{k}.
The dimensional gains give us:

$$
\left|\beta_{\alpha, R}^{(h)}\right| \leq C v_{F} \lambda^{2} \gamma^{\vartheta h}
$$

It is easy to see that

$$
\begin{align*}
& \bar{\beta}_{\lambda}^{(h)}\left(\lambda_{h}, \delta_{h}, \ldots, \lambda_{h^{*}}, \delta_{h^{*}}\right)=v_{F} \hat{\beta}_{\lambda}^{(h)}\left(\frac{\lambda_{h}}{v_{F}}, \frac{\delta_{h}}{v_{F}}, \ldots, \frac{\lambda_{h^{*}}}{v_{F}}, \frac{\delta_{h^{*}}}{v_{F}}\right) \tag{7}\\
& \bar{\beta}_{\delta}^{(h)}\left(\lambda_{h}, \delta_{h}, \ldots, \lambda_{h^{*}}, \delta_{h^{*}}\right)=v_{F} \hat{\beta}_{\delta}^{(h)}\left(\frac{\lambda_{h}}{v_{F}}, \frac{\delta_{h}}{v_{F}}, \ldots, \frac{\lambda_{h^{*}}}{v_{F}}, \frac{\delta_{h^{*}}}{v_{F}}\right) \tag{8}
\end{align*}
$$

where $\hat{\beta}_{\lambda}^{(h)}\left(\lambda_{d}, \delta_{h}, . ., \lambda, \delta_{0}\right)$ is the beta function of a Luttinger model with $v_{F}=1$.

The following crucial result, called asymptotic vanishing of the beta function,

$$
\left|\hat{\beta}_{\lambda}^{(h)}\left(\lambda_{d}, \delta_{h}, . ., \lambda_{h^{*}}, \delta_{h^{*}}\right)\right| \leq C\left[\max \left(\left|\lambda_{k}\right|,\left|\delta_{k}\right|\right)\right]^{2} \gamma^{\vartheta\left(h-h^{*}\right)}
$$

Assuming by induction that $\left|\lambda_{k}\right|,\left|\delta_{k}\right| \leq 2|\lambda| r^{\frac{1}{2}+\vartheta}$ for $k \geq h$ we get

$$
\left|\bar{\beta}_{\alpha}^{(h)}\left(\lambda_{h}, \delta_{h}, \ldots, \lambda_{h^{*}}, \delta_{h^{*}}\right)\right| \leq 4 C v_{F} \lambda^{2} r^{1+2 \vartheta} \gamma^{\vartheta h} v_{F}^{-2} r^{-\vartheta} \leq 4 C v_{F} \lambda^{2} \gamma^{\vartheta h} r^{\vartheta}
$$

Thus

$$
\left|\lambda_{h-1}\right| \leq\left|\lambda_{h^{*}}\right|+\sum_{k=h}^{h^{*}} 4 C v_{F} \lambda^{2} \gamma^{\vartheta h} r^{\vartheta} \leq 2|\lambda| r^{\frac{1}{2}+2 \vartheta}
$$

and the same is true for δ_{h}.

Moreover we have

$$
\frac{Z_{h-1}}{Z_{h}}=1+\beta_{z}^{(h)}
$$

so that

$$
\gamma^{\eta}=1+\beta^{-\infty}\left(\frac{\lambda_{-\infty}}{v_{F}}\right)
$$

where $\beta^{-\infty}$ is the beta function with $v_{F}=1$; therefore

$$
Z_{h}=\gamma^{-\eta\left(h-h^{*}\right)}(1+\boldsymbol{A}(\lambda))
$$

with $|A(\lambda)| \leq C|\lambda|$. Observe that $\eta=O\left(\lambda^{2} r^{4 \vartheta}\right)$, hence is vanishing as $r \rightarrow 0$ as $O\left(\lambda^{2} r\right)$.

Thank You.

