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Introduction: Fermions in a periodic Potential.

Let ) and 15 the creation and annihilation operator for a Fermion in one
dimension. Consider the Hamiltonian:

L L L
Hy = — / o Py dx + / OO by dx + A / V(X — Y)Y by dxdy
0 0 0

with
c(x+1)=c(x) v(—x) = v(x), lv(x)| ge”“‘*‘,
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Introduction: Fermions in a periodic Potential.

Let ) and 15 the creation and annihilation operator for a Fermion in one
dimension. Consider the Hamiltonian:

L L L
Hy = — / o Py dx + / OO by dx + A / V(X — Y)Y by dxdy
0 0 0

with
c(x+1)=c(x) v(—x) = v(x), lv(x)| ge”“‘*‘,

When X = 0 we can diagonalize the Hamiltonian using Bloch waves, i.e. the
solution of the eigenvalue problem

— 330(k, x) + c(x)¢(k, x) = (k) (K, X)
o(k, x) = e w(k, x) w(k,x +1) = w(k,x + 1)
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Introduction: Fermions in a periodic Potential.

Let ) and 15 the creation and annihilation operator for a Fermion in one
dimension. Consider the Hamiltonian:

L L L
. / U 2 oy + / OO s dx + A / V(X — V)i by iy by dlxdy
0 0 0
with
cx+1)=c(x) v(=x)=v(x), lv(x)| < e ",

When X = 0 we can diagonalize the Hamiltonian using Bloch waves, i.e. the
solution of the eigenvalue problem

— 330(k, x) + c(x)¢(k, x) = (k) (K, X)
o(k, x) = e w(k, x) w(k,x +1) = w(k,x + 1)

Setting

l\ \

Z ok, )i

we get
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The Schwinger Functions.

As usual we define
Tr e3(Hx—uN) o
(O)is = S gatm—nn)
N= [ viurax
and . is the chemical potential. Moreover we set

(0) = lim_lim (O).5.

B—0L—oc0
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The Schwinger Functions.

As usual we define
Tr e3(Hx—uN) o

(O)is = S gatm—nn)

N= [ viurax
and . is the chemical potential. Moreover we set
(©0) = fim, m (O
Calling
1/in — e(HA*HN)XOin e (Fx—1N)x
where x = (xo, X) the 2-points Schwinger function defined as
Saes(X,y) = (Tox vy )ip

where T is the time-ordering operator.
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Using the Bloch waves we can write

A 1 i B
Soa(k) = 57 > alk x)o(k, ~y)e'o S 5(x.y)
keD
where ) ) 1
m™m T
D= {k= k) [k = 2% o = 2 (n+ )]
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Using the Bloch waves we can write

A 1 Lo
So,,5(K) = AL > ok, x)p(k, —y)e oIS, | 5(x,y)
keD
where 5 5 ]
™m vy
and ;
So(k) = B“—>moo leoo SO La(k) = —iko + (k) —
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The dispersion relation.

e(k)
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The dispersion relation.

e(k)
o
—T ™ k
_ 1 N I(k) 9(—k)
500 = S k)~ = Tko+ ve(k —pr) T —iko + ve(k + pr)
ooy (B VEO)P (K + pe(2)?)" )
Sa(k) = 9(k) °7IKO+VF(A)(HPF(A)) (1+RM) +... @%%g
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The dispersion relation.

e(k)

1 1
So(k) = et —n = Tio take 17 r=e(m—u

14+ RM) 7%
Si(k) = “iko + ak? + 1 (@<
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The dispersion relation.

e(k)

So(K) = e e = = Tike — ok
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The dispersion relation.

e(k)

1 1
So(k) = “iko+e(kK) = —iko + ak?

Sa(k) = 72 @%%g
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The dispersion relation.

e(k)

> o=
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Almost Filled band

To understand what happens when the band is almost filled we can neglect
the existence of all band but the condution band.
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Almost Filled band

To understand what happens when the band is almost filled we can neglect
the existence of all band but the condution band.

Moreover nothing essentially changes if we assume that, instead of a
periodic potential, the Fermions live on a lattice of spacing 1.
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Almost Filled band

To understand what happens when the band is almost filled we can neglect
the existence of all band but the condution band.

Moreover nothing essentially changes if we assume that, instead of a
periodic potential, the Fermions live on a lattice of spacing 1.

Let thus x € {1,2,..., L} and consider the Hamiltonian

1 _ _ _ _ _
Ha=-Y" {E(aj+1 a, +ara, )+ haiax} —A> vix-y)aia aya,

X X,y
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Almost Filled band

To understand what happens when the band is almost filled we can neglect
the existence of all band but the condution band.

Moreover nothing essentially changes if we assume that, instead of a
periodic potential, the Fermions live on a lattice of spacing 1.

Let thus x € {1,2,..., L} and consider the Hamiltonian

1 _ _ _ _ _
Hy = — Z {E(aj+1 a, +ajag. )+ haiax} - )\Z v(x — y)ay ay a, a,

x X,y

This Hamiltonian can also be obtained via a Jordan-Wigner transformation
from a spin chain model with Hamiltonian

H=->5 [S1Sl+1+828’f+1]—>\2v(x ¥)S; th3

X X,y

where (S}, S%, S3) = (o}, 0%, 0%) are Pauli matrices, h is the magnetic field.
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Again we can write
+_ 1 ik g+
a =7 Ze a,
keD

where D = {k |k = 2™ 7 < k < 7} and find

Ho= 1> e(k)aa e(k) = —cosk — h.

ke

~l—=
9
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Again we can write

+_ 1 ik pt
a =7 Ze a;
keD
where D = {k |k = 2™ 7 < k < 7} and find
1 o
Ho= | kz;js(k)a;ak (k) = —cosk — h.
S

The two point Schwinger function is given by

1 —ikx &
So,,8(X) = AL > e ™8 5.1(K)

keD
with
2mm 2 1
= = = 7 - < -5 2
D {k (o, k) [k === —m<k<m ko 6(n+2)}
and 1 %
SotaK) = i cosk+ A Gt~
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Beahviour for A =0

To summarize:
e In the metallic phase |h| < 1 the Schwinger function (k) is singular in
correspondence of the Fermi points (0, £pr). For |k| close to pr we have

1

S~ e K — )

‘k‘ >~ PF.

@ At criticality when |h| = 1 the 2-point function So(k) is singular only at

(0,0) and
1

T ik + 1K2
the elementary excitations do not have a relativistic linear dispersion
relation, as in the metallic phase, but a parabolic one.

@ Finally in the insulating phase for |h| > 1 the two point function has no
singularities.

So(k) k~0
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Beahviour for A =0

To summarize:
e In the metallic phase |h| < 1 the Schwinger function (k) is singular in
correspondence of the Fermi points (0, £pr). For |k| close to pr we have

1

S~ e K — )

‘k‘ >~ PF.

@ At criticality when |h| = 1 the 2-point function So(k) is singular only at

(0,0) and
1

T ik + 1K2
the elementary excitations do not have a relativistic linear dispersion
relation, as in the metallic phase, but a parabolic one.

@ Finally in the insulating phase for |h| > 1 the two point function has no
singularities.

So(k) k~0

We will focus on h ~ —1 and we will write

h=—-1+r %
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Convergence near r = 0.

Observe that

pr = arccos(1 — r) ~+/r VE = Ssinpr ~/r
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Convergence near r = 0.

Observe that
pr = arccos(1 — r) ~+/r VE = Ssinpr ~/r

We can again try to use the approximation

O(k) I(=k)

So(k) ~ — -
o) = etk —pr) T Tk T vk T )

but the rigorous results for this model work only if

|)\| ~ VF.
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Convergence near r = 0.

Observe that
pr = arccos(1 — r) ~+/r VE = Ssinpr ~/r

We can again try to use the approximation

O(k) I(=k)

So(k) ~ — -
o) = etk —pr) T Tk T vk T )

but the rigorous results for this model work only if
|)\| ~ VF.

More precesely, the perturbative series in \ discussed by Benfatto yesterday
converge in a neighbor of the origin of radius proportional to ve.

2
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Heuristic Analysis near r = 0.

By the change of variable vek < k, one can see that a system with the above
propagator is formally equivalent to a system with

ve =1 S\ZA"‘i

VF_ﬁ

Thus the effective coupling contant appear to diverge when r — 0.



Heuristic Analysis near r = 0.

By the change of variable vek < k, one can see that a system with the above
propagator is formally equivalent to a system with

v A A
ve=1 A= — o~ —
F v N/
Thus the effective coupling contant appear to diverge when r — 0.
On the other hand, the effective coupling for Fermions at the Fermi surface is
given by the two processes
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Heuristic Analysis near r = 0.

By the change of variable vek < k, one can see that a system with the above
propagator is formally equivalent to a system with

ve =1 S\ZA"‘i

VF B ﬁ
Thus the effective coupling contant appear to diverge when r — 0.

On the other hand, the effective coupling for Fermions at the Fermi surface is
given by the two processes

R

that is

Xo = A(V(0) — ¥(2pF)) ~ Ar.
Thus our system looks formally equivalent to a system with effective coupling

Xo ~ \W/T. %
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The problem with this argument is that the linear approximation is valid only
very close to the Fermi points, that is

|k — prl =~ Vr

Away from the Fermi points the dispersion relation appears quadratic.
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The problem with this argument is that the linear approximation is valid only
very close to the Fermi points, that is

|k — prl =~ Vr
Away from the Fermi points the dispersion relation appears quadratic.

Moreover, the theory with quadratic dispersion relation is, prima facie, non
renormalizable so that the assumption that the \g ~ \\/r is not justified.
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Momentum regions.

e(k)

—Prl PF
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Momentum regions.

e(k)

ultrav. —pPrl PF ultrav.
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Momentum regions.

e(k)

ultrav. —Prl PF ultrav.
infrar.
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Results: main theorem.

Theorem

Given the Hamiltonian Hx with h = —1 + r with |r| < 1, there exists e > 0 and
C > 0 (independent from L, 3, r) such that, if |\| < e then the Fourier
transform of S s(X) can be written in the following way.
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Results: main theorem.

Theorem

Given the Hamiltonian Hx with h = —1 + r with |r| < 1, there exists e > 0 and
C > 0 (independent from L, 3, r) such that, if |\| < e then the Fourier
transform of S s(X) can be written in the following way.

@ Forr > 0 (metallic phase),

. _ [KE + a(M)?(cos k — 1+ v(N)F]"™
Stp(K) = O_,'ko +a(M)(cosk — 1+ v(N))

(1 + ARs(A, k)

v(\) =r + MR.(N)  a(d) =1+ ARa(N)
1(\) =bA%r + N3r2R,(\) )

with b > 0 a constant and |R;| < C fori = S,v,« and .
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With the same hipothese as above we have:

@ Forr = 0 (critical point)

. 3 1+ ARs(\, k)
Sup(k) = a(/\)(ios(k) -1)

where a(X) =1+ AR.(X) and |R;| < C fori = a, S.
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With the same hipothese as above we have:

@ Forr = 0 (critical point)

. 3 1+ ARs(\, k)
Sup(k) = a(/\)(f:os(k) -1)

where a(X) =1+ AR.(X) and |R;| < C fori = a, S.

@ Forr < 0 (insulating phase)

. c
|SL,6(K)[ < "

Moreover S(K) = lims_ lim;_. 5. 5(K) exists and is reached uniformly in
A
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With the same hipothese as above we have:

@ Forr = 0 (critical point)

. 3 1+ ARs(\, k)
Sup(k) = a(/\)(f:os(k) -1)

where a(X) =1+ AR.(X) and |R;| < C fori = a, S.

@ Forr < 0 (insulating phase)

. c
|SL,6(K)[ < "

Moreover S(K) = lims_ lim;_. 5. 5(K) exists and is reached uniformly in
A

Identical results hold for h =1 — r thank to a hole-particle symmetry.
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Grassmann Variables.

Let M
= N ke xo(rMkol)

uLp(X—y) = 5Lkezpe —iko +cosk+ h

where
Xo
xo(t) =
e

Let

Dy =D Nsuppxo(y "[ko|) = {k € D||ko| < """}
We consider the anticommuting Grassmannian variables
{wlit}ke'Dﬁ

that generate a Grasmannian Algebra G.

F. Bonetto bonetto@math.gatech.edu Quantum Phase Transition in an Interacting Fermionic Chain.



On G we define the Grassmann integration, that is the the linear operator,

defined as
[T avian] IT wow =1

keDg keDg

while

J LTI avian]aw vt =0

keDg

if the monomial Q(+»~, 1) does not contains all of the variables {w,f TkeDy-
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On G we define the Grassmann integration, that is the the linear operator,
defined as
[T avian] IT wow =1
keDg keDg

while

J LTI avian]aw vt =0

keDg
if the monomial Q(+»~, 1) does not contains all of the variables {w,f TkeDy-

We define the Grassmanian fields

o = BL > ey xelzxA

keDg

while the Gaussiam Grassmann measure is defined as

Pav) = [ T sLov due =" 0] exp{—~ 3= (@ k) wivi }
keDg

keDg
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We introduce the generating functional Wy (¢) defined in terms of the
following Grassmann integral

o Wm(®) _ /p(dw)efvwmw,@
where
(6,6 = [ i o5 + s o] @)
V() = A [ axayvx-yyisuuey 4o [t @)

Here

/dx stands for Za Z

XEN  Xx€lg

and v(Xx —y) = d(xo — yo)v(x — y).
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Calling limy— oo gm,1,5(X) = gr,s(X) and we observe that

91,5(X) = So,L,5(X)

wherever Sy | s(x) is continuous.
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Calling limy— oo gm,1,5(X) = gr,s(X) and we observe that

9,5(X) = So,.,5(X)
wherever Sy | s(x) is continuous.

Finally we define

82
Sls(x—y) = ST 00 Wi(9)]g=0-
Yy
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Calling limy— oo gm,1,5(X) = gr,s(X) and we observe that

9.5(X) = So.1,5(x)
wherever Sy | s(x) is continuous.
Finally we define
82

SMH(X—V) = W
x 0Py

Wu(®)lp=0-

The above Grassmann integral can be used to compute the thermodynamical
properties of the model with Hamiltonian H,.
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Ultraviolet Integration.

The starting point of the analysis is the following decomposition of the

propagator
am5(x) = g0 (x) + g (x)
where
9= (x /dke"‘" xo(v M [kol)x <o (k)
—iko +cosk + h
Here

x<o(K) = xo (\/kg +(cosk —1+ r)2) .

Observe that x<o(k) is a smooth version of the characteristic function of the
set
={K||—iko + (cosk —1+r)| < 1}.
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Ultraviolet Integration.

The starting point of the analysis is the following decomposition of the

propagator
am5(x) = g0 (x) + g (x)
where
9= (x /dke"‘" xo(v M [kol)x <o (k)
—iko +cosk+h
Here

x<o(K) = xo (\/kg + (cosk —1+ r)2) .
Observe that x<o(k) is a smooth version of the characteristic function of the

set
={k||—iko+ (cosk —1+r) <1}

By using the addition property of Grassmann integrations we can write

—W(9) — /P(dw(go)) / P(dw(go))e—V(¢(>0)+1/)(>0))+(w(>0)+¢(§0)7¢).
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After integrating the field 1> one obtains
e W@ _ e—BLFO/P(dw(go))e_v(o)(w(ﬁo’w

where

O(p,0) = 3 /dx/dwa [+ WO (x.y)

n+m>1

where X = (X1,...,X,) andy = (Y1, .., ¥Ym)-
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After integrating the field 4>% one obtains
o W) _ e—BLFO/P(dw(SO))e_V(O)(w(SU’w

where

O(p,0) = 3 /dx/dwa [+ WO (x.y)

n+m>1
where X = (X1,...,X,) andy = (Y1, .., ¥Ym)-

We know that W, (X, y) are given by convergent power series in X for A
small enough and they decay faster than any power in any coordinate
difference. Finally, the limit M — oo of V(9 (4, ¢) exists and is reached
uniformly in 3, L.
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Multiscale Decomposition.

Thus we are left with the integration over ¢(=%. The idea in order to to
perform this integration is to decompose w,((go) as

=% = _Z ne
h=0

where w,((h) depends only on the momenta k such that

|—iko +cosk — 1 +r| ~ 4"
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Multiscale Decomposition.

Thus we are left with the integration over ¢(=%. The idea in order to to
perform this integration is to decompose w,((go) as

=% = _Z ne
h=0

where w,((h) depends only on the momenta k such that
|—iko +cosk — 1 +r| ~ 4"

To do this, consider the sets

An = {K|y"" < |iky + (cos(k) — 1+ r)| <~"}

and write I (K)
A(h) K) = Ap
970 = G (cos(k) T+ 1)
where I, is the characteristic function of As. ;
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We can also define
g0 = [ ake*g" ()

so that

9= =3 d"(x)

h<0
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We can also define
g0 = [ ake*g" ()

so that

9= =3 d"(x)

h<0

The index his called the scale of the field /. When r > 0, two different
regimes naturally appear in the analysis, separated by an energy scale
depending on r and defined as

h* =inf{h|~y"" > |r|}.
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Behavior of the scales: v =2 and r = 0.27.

h> h*: |Ap| =~ 2"
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Behavior of the scales: v =2 and r = 0.27.

h> h*: |Ap| =~ 2"

A
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Behavior of the scales: v =2 and r = 0.27.

h = h*: transition scale, both scaling are good.

Az A
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Behavior of the scales: v =2 and r = 0.27.

h < h*: |Ap| = 2"

a7k =gk +a" k) 8P =Gy ko, vy k)

h ~1_h=/_h —1_h
o ~ vi ' "3(v"x0, v '4"k)

NA3 Aol A
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Behavior of the scales: v =2 and r = 0.27.

h < h*: |Ap| = 2"

§7k) = a" k) + 8" k) 9 ~ "Gy ko, vey k)

h ~1_h=/_h —1_h
o ~ vi ' "3(v"x0, v '4"k)

4A3 Ag A1
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Behavior of the scales: v =2 and r = 0.27.

h < h*: |Ap| = 2"

§7k) = a" k) + 8" k) 9 ~ "Gy ko, vey k)

h ~1_h=/_h —1_h
o ~ vi ' "3(v"x0, v '4"k)

O Oy
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The first Regime

We saw that after the ultraviolet integration we have

e*W(O) — e*BLFo / P(dw(ﬁo))efv(o)(w(ﬁo))

where
p(dw(SO)) PREEN g(SO)(k)
with k
9=9(x / dke 'kxX<0( x<o(K) = xo (7 Do (K)|)
and
Do(k) = | — ik® + (cos(k) — 1 +1)|
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Moreover V(O (4(=9) = O (4, 0) is the effective potential on scale 0 and can
be written has

VO () =Y / dx / dy WO x,y) [ ey, = S V().
i=1

n>1 n>1

With a dimensional analysis of the perturbation theory we get:

@ n =1 2: relevant;
@ n = 3: marginal;
@ n > 3:irrelevant;
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Localization

We define
VO = £V 4+ RO

with R4 = 1 — £4 and R4 is defined in the following way;

Q@ forn>4 o o
RVZn_V2n'
Q forn=3,2

V(O) /de, X)UJ; Dy x; xs Dy g
R+ V(O) / H ax; W, X)d’; D;rz X4 D;gvh wx4 D’Z’wx4 D;B’x“

where

Dy xi = x, — U,

F. Bonetto bonetto@math.gatech.edu Quantum Phase Transition in an Interacting Fermionic Chain.



@ Forn=1
RVO(4) = / dxr dxe W ()05 Hi s,

where

Hys e =t — U, — (Xo,1 = X0,2) 0%, — (X1 — Xa) By, —
%()ﬁ — %)? By
and

N - o
Yy = §(¢x+(o,1) —e0.1)) = /dklsm ke"*4j,

Ay =01y — 2Ux +Us_o1) =2 / dk(cos k — 1)e™*,
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As a consequence of the above definitions, calling
W (k) = / dxe™ W% (x)
we get
£V =IO (0) / dxist i + B0 WO(0) / dxs Bute +
SO [ oxii By

where we have used that

i. g9k, k) = 99 (ko, —k), so that we get

W (0) =0
ii. There are no terms in £;V(© with four or six fermionic fields, as

Vi Do i = Ux, U,

RVP VO R =V %

and therefore
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Since £V is quadratic in the fields, we can include it in the free integration
finding
WO _ e—ﬁL(FoJreo)/P(dw(go))e—R1v(0)(¢(So))

where the propagator of P(d(=?) is now

g(SO)(X) :/dkeikx )Bf:)g:g

with
D_1(k) = —iko(1 +z_1) + (1 + a_q)(cosk — 1) +r+~""pu_;
and
7.1 =2+ x<o(K)B WSV (0) a1 = a0+ x<o(K)FWV(0) (4)
v ot =po + x<o(K) WSV (0) (5)

where zop = ag = o = 0.
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We can now write
Q(SO)(X) — g(S—U(x) + Q(O)(x)

where
9= 0 = [ oot s 1 ) xe1(K) = xo (71D-1(K)])
and
©)(x) = / dke™ D”if'g() (k) = x<o(k) — x<_1(K).

and define the new integrations
Pa®)  «— g9
P(dw(gq)) PR Q(S*U(x)
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Using again additivity we get
efw(o) :efBL(Fweo)/P(dw(gq))/p(dw(o))e,mv(m(w(gm) _
:e—ﬂLF71 /P(dw(§—1))e—]}(*ﬂ(w(ﬁfﬂ)

where
_BLE— V(= (<=1 = _ =, p(0)((£0)
o BLé—V (v )—/P(dw(o))e Ry V(O ((=0))

andF71:Fo+eo+éo.
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At the h step (i.e. at scale h) we start with the integration

e*W(O) — e*BLFh / P(dw(gh))ef\}(h)(d,(ih))

where
P(dv®) s / dke™ Xl;hh(k
with
Di(k) = —iko(1 4+ z) + (1 + an)(cos k — 1)+ r +~"un
x<n(k) = xo0 (v"a5 " 1Da(K)]))
Finally

Z/dx/dy Y, y) [T vy, =D ViR ()

n>1 i=1 n>1
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Again we can wirte
Vv = £,y 4+ RO

where

,C1V(h) — 0)/0’)(1/))( Py —|—80 0)/0'X1/)i50’¢x

1 _
581 Wi (0) / axeby Aqipy
Moving the relevant part of the effective potential into the integration we get

o~ W) _ g~ BL(Fy+er) / Py =My RV =)

where the propagator of

P(av=My s / dke™* g:i 0

and the running coupling constants are defined recursively by

Zh_1 = zn + x<n(K)B WS (0)  an_t = an + x<n(k)F W"(0)
fin—1 = vin + x<n(k)y "W (0) /ﬂ%
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Finally we can write
WO _ efﬂL(F,ﬁeh)/P(dw(ghfﬂ)/I"D(dw(h))ef7z1y(h)(w(§h))

where
f,,(k

Pay™y / dke™ By (K

and fh(k) = XSh(k) — XSh—1(k); thus

_Ble,—ph—1 ~ — (h) (qp(<h)
o BLen—V :/p(d¢<h>)e RV (=N
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To show that the above procedure is well defined we need a precise
estimates on the propagator.

Lemma

Assume that there exists a constant K > 0 such that
|z’7|7 |ah|7 |Nh| < K|)‘|

for h > h*. Then for |xo| < 3/2, every N and A small enough we have

h

%8757 (x)| < Cn et /2)
1+ [l + 72 1x]1M

with Cn independent from K.
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Lemma

There exists a constants Ao > 0, independent of 3, L and r, such that the
kernels W,(") in the domain |\| < Xo, are analytic function of \ and satisfy for
h> h*

1 3_ 1 (6]l —
ﬁ/ dxdy| WP (x, y)| < +"(E=2)4 7" (C|a)mexC=D

with 9 = 1.

Observe that for h = h* we get
gt [ AW ()| < (O
that is a generalization of the condition for the effective coupling since we get

ﬁ / dxay| W) (x,y)| < CAr?
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The second region: Anomalous scaling

We have now to consider the integration of the scales with h < h*, that is
e WO — g=FLFh /P(dw(gh*))e’v(h*)(w(gh*))
where X X
PAyS") e o)
with

* « k)
(=) (%) = /dk i X<h (
I ®) —iko(1 4+ zn) + (1 + ap=)(cOSk — 1) + 1+ " pp-
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We first extract a counterterm to fix the fermi surface
/p(dw(sm)e—v("*wih*’) _

/p(dw(gh*))efv(h*)(w(gh*))ivh* Ui fdw)((Sh*Hw)((Sh*)—

where B X i
Pap=") = g5

with

x<n-(K)
14 zp«) 4+ (1 + an-)(cos k — cos pr)

(<h*) _ ikx
g (x)_/dke kol

and
(14 an-)cospr = (1 —&-ah*)—r—*yh Ihh* +’yh Up

F. Bonetto bonetto@math.gatech.edu Quantum Phase Transition in an Interacting Fermionic Chain.



The strategy of the analysis is the following:

@ we will perform a multiscale analysis. In this analysis we will have to
chose vy~ = O()\) as function of pr and ) to obtain a convergent
expansion.

@ at the end of the above construction we will use the above relation

between pr and vp+ to obtain the Fermi momentum pr as function of A
and r.
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We can now write
x<h(K) = x<n=,1(K) + x<n,—1(K)

where P
e oll) = 7 () e ()
PF
where w = =1, J is a smooth function such that J(k) = 1 for k > 1 and
J(k) =0fork < —1 and
O(k) + I(—k) =1

for every k.
Thus we can write

<h* Z elprX <h) )

w==+1
where
(<h)( /dke i(k—cwpr )X X< w(K)
v —iko(1 + zn+) + (1 + an=)(cos k — cos pr)
with pr = (0, pr). @%
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A new localization operation is defined in the following way
4 ~
Lo / axXWa(X1, %X, X3, Xa) | [ ¥ o, =Wa(0) / Xy 1P 1P — 1Pk, -1
i=1

EZ/dXWZ(xth)w;,ww)(_z,w :WQ(O)/wawx_,wdx—i_
0, Wa(0) / Bt o Aty dX-+80 Wa(0) / U oty dX
where

Aqf(x) =2 / dk(cos k — cos pr)e™* (k) if f(x) = / dke™F(k)
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After the integration of the scale v, ..)(" we get

WO _ e—ﬁLFh/PZh(d¢(§h))e_y(h)(ﬁ¢(§h))

where
g(gsh)
Py, (dy(=") — 2
h
with
e k)
(<h) (x :/dke"“ wpF) X<hw(
9.7 (x) —(1+ zn+)iko + (1 + ap=)(cos k — cos pr)
where

~ k _ ,
X<hw(K) =1 (wﬁ) xo(@07y (1 + zn+ )iko — (1 + an)(cos k — cos pr)|).
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We can now write
_yp(h <h ~ _p(h) <h
/ch(di/)(gh))e VD (\/Zyp(<M) :/pth(dw(éh))e VO (\/Zpp(<M)
where

£V () = [ i 07k (o= 20) S [ ol aB it

Np / dxq/):,xw;,x
(6)
while P,(dy(<") is the integration with propagator identical to g{="(x) but

: X<hw(kK) oo
with x<h...(K) replaced by 70 with

Zn-1(K) = Zn + X<nw(K)Znzn
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Setting Z,_1 = Z,_1(0), we can finally write
/ch(dw(sh))efv(h)(\/zi"’/’(gh)) =

e / PZh—1 (dw(gh_ﬂ) / "32;,_1 (d¢(h))6_9(h)( Vv 2=

where
. g&h)
Pz, — Z
with
: (ke . (K)
(h) X) = dkelx(k wPpE) h,
) / —(1 + zp=)iko + (1 + an-)(cos k — cos pr)
and

X<hw(K) — x<h1.w0(K)
Zh_1(K) Zh-1

o (K) = Zn—1
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Finally we have

- -~ Z
V(h)(w(ﬁh)) —p ( Zhh1 ¢(<h)>

so that

£V =M [ ki i 07 00 S [ AROL Bt

VthZ/dxqﬁI,xww,x

with

h Zn Zn ( Zn )2
= n onh = an— 2 Ap = /
VVh = 5 h Zh—1( h— Zh) h z ) b

We can now integrate the field ("

/ By (e P WA ) _ gmsten 002wl <)

so that the procedure can be iterated.
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The propagator.

Again we need precise estimates on the propagator.

For h < h*, every N and X\ small enough we have

—1_h

~ Ve Y h(np+n4) ,,—

|95°07" &L” (x)| < Cw F—— YT Ve
1+ [y"[X0] + ve X

with ve = sin(pg) = O(r?).

Assume now that, given h < h* we have
[ Xkl 10| < CVe|A]  |vk] < CJA| h*>k>h

then we have

There exists a constants Ao > 0, independent of 8, L and r, such that the
kernels Wz(/h) are analytic functions of X for |\| < \o. Moreover they satisfy

1 ) h(2—1), J—1 max(1,/—1) %
< ’ . 1
ﬂL/ddeIWZ, (X, W)l <™ v (ClA) e
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The flow of the runing coupling constants.

We need to prove by induction that, for h < h* and ¥ = } we have

Aal < CINFE*?, (54 < CIAIrE™? || < CIAIY""

It is not hard to check that this is true for h = h*.
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The flow of the runing coupling constants.

We need to prove by induction that, for h < h* and ¥ = } we have

Aal < CINFE*?, (54 < CIAIrE™? || < CIAIY""
It is not hard to check that this is true for h = h*.

The main observation is that we can decompose the propagator as

30 (x) = g7, (x) + 1" (x)

where

E’:T
N

kx )
/dke —/k0+vak

and

h) A" Cn
i (x)| < i
VF 1+ y"(|x0| + v ' [x|)V
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The flow of vy is given by
—1 = yvn+ B (Vay .., Vi)

where Vi, = (An, 6n, vn). Using the decomposition of the propagator we can
write

h a(h h
B = B + Bk
where ~
B =0 Bin=00"")

Thus by iteration

h*
Uho 1 :,yfh#»h [Vh* +Z'Yk7h 5](/}()]

and we can choose v+ so that

k—h*
Vpr = — vy 1/

k=—o0

—h+h*
Vh—1 = E '}’ 1_/
k=—o0 _
@ 7

This implies that

and |va| < CIAIY".
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The flow equations for A, and , with h < h™ are
Mt = Ao+ B (Vny ..oy Vi)
Oh—1 = 0n+ ﬁgh)(\_/'h, ceey V)

Again we can use decomposition of the propagator and decompose the beta
function fora = A, § as

th)(vh7 sty Vh*) = Bg’)(Aha 5h7 Has) A07 60) + Bgz)ﬁ(‘_/ha iaS] Vh*)
where BSP contains only propagators gL’t)L(x) and end-points to which is

associated Ak, 0.
The dimensional gains give us:

|57 ] < CveA*y""

It is easy to see that

5 —y g (An On  Ane On

6/\ (Ahaéha '”a>\h 76h ) _VFﬁ,\ (VF’ VF"”’ Ve ) Ve (7)

3(h) _y g (A On Ame On

66 (Ahaéhv (X3} Ah 76h ) 7VFﬂ5 (VF7 VF7"7 Ve ’ Ve (8)
where 3&”)()\(1, dh, .-, A,00) is the beta function of a Luttinger model with G

VF:1.

F. Bonetto bonetto@math.gatech.edu Quantum Phase Transition in an Interacting Fermionic Chain.



The following crucial result, called asymptotic vanishing of the beta function,
1B Ny Gy - Ane, 0 )| < Clmax(|Ael, [0k ])]2y ")
Assuming by induction that | A/, [6«| < 2|)\|r%+’9 for k > h we get
1B (A, Oy ooy Ane, 61e )| < 4CVENPT 27"y 2217 < 4CVENZY""r”
Thus
o

Ano1] < e+ 3 4CveN2y""r” < 2|A|re 27
k=h

and the same is true for dp.
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Moreover we have
Zh—1

Zh

7":14_5*00 ()\7700)

VF

=1+6"

so that

where 8~ is the beta function with ve = 1; therefore
Zh =~ (1 4 AN)

with |A()\)| < C|)\|. Observe that = O(A\?r*?), hence is vanishing as r — 0
as O(N\°r).
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Thank You.
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