Constructive Renormalization Group :
A conference in memory of Pierluigi Falco
9-11 june 2015, INFN - Laboratori Nazionali di Frascati

Anomaly cancellation to all orders in chiral abelian gauge theories

A perturbative analysis based on (Bi)flow equations
Christoph Kopper and Benjamin Lévêque

Benjamin Lévêque, 1986-2014

Centre de physique théorique de l'Ecole polytechnique

I. Introduction

In (perturbative) gauge theories physical consistency is linked to local gauge symmetry. If quantum contributions violate gauge symmetry, the theory generally becomes inconsistent. Such contributions are called anomalies.

I. Introduction

In (perturbative) gauge theories physical consistency is linked to local gauge symmetry. If quantum contributions violate gauge symmetry, the theory generally becomes inconsistent. Such contributions are called anomalies.
In the standard model anomalies are potentially present due to the existence of chiral fermions whose couplings involve the Dirac matrix γ_{5}. They potentially give rise to the Adler- or ABJ-anomaly linked to the Feynman amplitude of the triangle diagram

- absent in QED
- linearly UV divergent by power counting in $d=4$
- does not have a relevant local part

Textbooks on quantum field theory : "The triangle is to some degree arbitrary"

Textbooks on quantum field theory:
"The triangle is to some degree arbitrary"
If present the triangle leads to unitarity-violating contributions in the standard model.

Textbooks on quantum field theory :
"The triangle is to some degree arbitrary"
If present the triangle leads to unitarity-violating contributions in the standard model.

Way out in practice :
for a given fermion species of charge q (w.r.t. the external gauge field considered) the triangle contribution is proportional to $q^{3} \Rightarrow$

If $\sum_{\text {Quarks }}\left(q_{1} q_{2} q_{3}+q_{1} q_{2} q_{3}+q_{1} q_{2} q_{3}\right)+\sum_{\text {Leptons }} q_{1} q_{2} q_{3}=0$ there is
"Anomaly cancellation"

What happens in higher orders?

Adler 1968, Adler-Bardeen 1969
Zee 1972, Lowenstein-Schroer 1972, Costa-Marinucci-Tonin 1976, Bandelloni-Becchi-Blasi-Collina 1980

Fujikawa 1979

Anselmi 2014
"Non-renormalization of the anomaly"
"no anomaly in 1-loop order \Rightarrow no anomaly at all"
II. Chiral abelian gauge theory and the anomaly
II. Chiral abelian gauge theory and the anomaly

ACTION OF THE MODEL:

$$
\mathcal{S}_{c l}=\int d^{4} x\left(\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\sum_{j} \bar{\psi}_{j}\left(i \not \partial+q_{j} \gamma_{5} \mathcal{A}_{\mu}\right) \psi_{j}\right)
$$

II. Chiral abelian gauge theory and the anomaly

ACTION OF THE MODEL:

$$
\begin{gathered}
\mathcal{S}_{c l}=\int d^{4} x\left(\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\sum_{j} \bar{\psi}_{j}\left(i \not \partial+q_{j} \gamma_{5} A_{\mu}\right) \psi_{j}\right) \\
\mathcal{S}_{\text {g.f. }}=\int d^{4} x \frac{1}{2 \alpha}(\partial \cdot A)^{2}
\end{gathered}
$$

II. Chiral abelian gauge theory and the anomaly

ACTION OF THE MODEL:

$$
\begin{array}{r}
\mathcal{S}_{c l}=\int d^{4} \times\left(\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\sum_{j} \bar{\psi}_{j}\left(i \not \partial+q_{j} \gamma_{5} A_{\mu}\right) \psi_{j}\right) \\
\mathcal{S}_{g . f .}=\int d^{4} \times \frac{1}{2 \alpha}(\partial \cdot A)^{2} \\
\mathcal{S}_{\text {c.t. }}=\int d^{4} \times\left[\sum_{j}\left(z_{1 j} \bar{\psi}_{j} q_{j} \gamma_{5} A_{\mu} \psi_{j}+z_{2 j} \bar{\psi}_{j} i \not \partial \psi_{j}\right)+z_{3} \frac{\mu^{2}}{2} A^{2}\right. \\
\left.\quad+z_{4} \frac{1}{4} F_{\mu \nu} F^{\mu \nu}+z_{5} \frac{1}{2 \alpha}(\partial \cdot A)^{2}+z_{6} \frac{1}{4!}\left(A^{2}\right)^{2}\right] .
\end{array}
$$

The classical theory is invariant w.r.t chiral local gauge transformations :

$$
\begin{gathered}
A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} u(x), \quad u \in \mathcal{S}\left(\mathbb{R}^{4}\right) \\
\psi_{j}(x) \rightarrow e^{i q_{j} \gamma_{5} u(x)} \psi_{j}(x), \quad \bar{\psi}_{j}(x) \rightarrow \bar{\psi}_{j}(x) e^{i q_{j} \gamma_{5} u(x)}
\end{gathered}
$$

The classical theory is invariant w.r.t chiral local gauge transformations :

$$
\begin{gathered}
A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} u(x), \quad u \in \mathcal{S}\left(\mathbb{R}^{4}\right) \\
\psi_{j}(x) \rightarrow e^{i q_{j} \gamma_{5} u(x)} \psi_{j}(x), \quad \bar{\psi}_{j}(x) \rightarrow \bar{\psi}_{j}(x) e^{i q_{j} \gamma_{5} u(x)}
\end{gathered}
$$

If unbroken this symmetry leads to relations among the correlation functions called Ward-Identities

The classical theory is invariant w.r.t chiral local gauge transformations :

$$
\begin{gathered}
A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} u(x), \quad u \in \mathcal{S}\left(\mathbb{R}^{4}\right) \\
\psi_{j}(x) \rightarrow e^{i q_{j} \gamma_{5} u(x)} \psi_{j}(x), \quad \bar{\psi}_{j}(x) \rightarrow \bar{\psi}_{j}(x) e^{i q_{j} \gamma_{5} u(x)}
\end{gathered}
$$

If unbroken this symmetry leads to relations among the correlation functions called Ward-Identities

We will study the theory with the aid of the flow equations with UV-cutoff Λ_{0} and $I R$ - ($=$ Wilson-) cutoff Λ on the propagators. We choose

$$
\sigma_{\Lambda, \Lambda_{0}}(p)=\exp \left(-\frac{p^{2}}{\Lambda_{0}^{2}}\right)-\exp \left(-\frac{p^{2}}{\Lambda^{2}}\right)
$$

We will study the theory with the aid of the flow equations with UV-cutoff Λ_{0} and IR- (= Wilson-) cutoff Λ on the propagators. We choose

$$
\sigma_{\Lambda, \Lambda_{0}}(p)=\exp \left(-\frac{p^{2}}{\Lambda_{0}^{2}}\right)-\exp \left(-\frac{p^{2}}{\Lambda^{2}}\right)
$$

\Rightarrow The Ward-Identities are violated due to the cutoffs independently of potential anomalies

We will study the theory with the aid of the flow equations with UV-cutoff Λ_{0} and IR- (= Wilson-) cutoff Λ on the propagators. We choose

$$
\sigma_{\Lambda, \Lambda_{0}}(p)=\exp \left(-\frac{p^{2}}{\Lambda_{0}^{2}}\right)-\exp \left(-\frac{p^{2}}{\Lambda^{2}}\right)
$$

\Rightarrow The Ward-Identities are violated due to the cutoffs independently of potential anomalies

Choosing the one-particle irreducible correlation functions

$$
\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}
$$

m : \# external bosons, n : \# external fermions, L : loop order
to describe the theory we obtain the following

General form of the violated Ward-Identities :

$$
\begin{aligned}
& \underbrace{\Omega_{m+1, n}^{\wedge, \Lambda_{0}}\left(p_{[m+n]}\right)}_{=0 \text { if WW's hold }}=p_{1} \cdot \Gamma_{m+1, n}^{\Lambda, \Lambda_{0}}\left(p_{[m+n]}\right)
\end{aligned}
$$

III. The Flow Equations
III. The Flow Equations

The (Wilson-Wegner-Polchinski) flow equations for the connected amputated Schwinger functions

III. The Flow Equations

The (Wilson-Wegner-Polchinski) flow equations for the connected amputated Schwinger functions

$$
\begin{aligned}
& \partial_{\Lambda} \mathcal{L}_{m, n, L}^{\Lambda, \Lambda_{0}}=\ldots \int_{k} \dot{C}_{F}^{\Lambda}(k) \mathcal{L}_{m, n+2, L-1}^{\Lambda, \Lambda_{0}}+\ldots \int_{k} \dot{C}_{B}^{\wedge}(k) \mathcal{L}_{m+2, n, L-1}^{\Lambda, \Lambda_{0}}+ \\
& \sum \ldots \mathcal{L}_{m^{\prime}, n^{\prime}, L^{\prime}}^{\wedge, \Lambda_{0}} \dot{C}_{F}^{\wedge} \mathcal{L}_{m^{\prime \prime}, n^{\prime \prime}, L^{\prime \prime}}^{\Lambda, \Lambda_{0}}+\left.\sum \ldots \mathcal{L}_{m^{\prime}, n^{\prime}, L^{\prime}}^{\Lambda, \Lambda_{0}} \dot{C}_{B}^{\wedge} \mathcal{L}_{m^{\prime \prime}, n^{\prime \prime}, L^{\prime \prime}}^{\wedge, \Lambda_{0}}\right|_{\text {sum rules }}
\end{aligned}
$$

III. The Flow Equations

The (Wilson-Wegner-Polchinski) flow equations for the connected amputated Schwinger functions

$$
\partial_{\Lambda} \mathcal{L}_{m, n, L}^{\Lambda, \Lambda_{0}}=\ldots \int_{k} \dot{C}_{F}^{\wedge}(k) \mathcal{L}_{m, n+2, L-1}^{\Lambda, \Lambda_{0}}+\ldots \int_{k} \dot{C}_{B}^{\wedge}(k) \mathcal{L}_{m+2, n, L-1}^{\Lambda, \Lambda_{0}}+
$$

$$
\sum \ldots \mathcal{L}_{m^{\prime}, n^{\prime}, L^{\prime}}^{\Lambda, \Lambda_{0}} \dot{C}_{F}^{\wedge} \mathcal{L}_{m^{\prime \prime}, n^{\prime \prime}, L^{\prime \prime}}^{\Lambda, \Lambda_{0}}+\left.\sum \ldots \mathcal{L}_{m^{\prime}, n^{\prime}, L^{\prime}}^{\wedge, \Lambda_{0}} \dot{C}_{B}^{\wedge} \mathcal{L}_{m^{\prime \prime}, n^{\prime \prime}, L^{\prime \prime}}^{\Lambda, \Lambda_{0}}\right|_{\text {sum rules }}
$$

Example: contributions to the flow of $\mathcal{L}_{1,2}$
rewritten for the one-particle irreducible functions

$$
\partial_{\Lambda} \Gamma_{m, n, L}^{\wedge, \Lambda_{0}}=\left.\sum_{k} \sum_{m_{i}, n_{i}, L_{i}} \ldots \prod_{i<k}\left(\Gamma_{m_{i}, n_{i}, L_{i}}^{\wedge, \Lambda_{0}} C_{i}^{\Lambda, \Lambda_{0}}\right) \Gamma_{m_{k}, n_{k}, L_{k}}^{\wedge, \Lambda_{0}} \dot{C}_{k}^{\wedge}\right|_{\text {sum rules }}
$$

Example: contribution to the flow of $\Gamma_{4,4} ; \Gamma_{3}$ is of loop order 0

From the FE we deduce inductively in the loop order L the following properties of the one-particle irreducible Schwinger functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ of chiral abelian gauge theory (for suitable renormalization conditions) :

From the FE we deduce inductively in the loop order L the following properties of the one-particle irreducible Schwinger functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ of chiral abelian gauge theory (for suitable renormalization conditions) :

1. The 1 PI Schwinger functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ for $\Lambda>0$ are uniformly bounded in the cutoff Λ_{0}, and the theory is renormalizable by power counting. The limit $\Lambda_{0} \rightarrow \infty$ exists.

From the FE we deduce inductively in the loop order L the following properties of the one-particle irreducible Schwinger functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ of chiral abelian gauge theory (for suitable renormalization conditions) :

1. The 1PI Schwinger functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ for $\Lambda>0$ are uniformly bounded in the cutoff Λ_{0}, and the theory is renormalizable by power counting. The limit $\Lambda_{0} \rightarrow \infty$ exists.
2. For $\Lambda \rightarrow 0$ the functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ have finite limits if the external momentum configuration is nonexceptional.

From the FE we deduce inductively in the loop order L the following properties of the one-particle irreducible Schwinger functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ of chiral abelian gauge theory (for suitable renormalization conditions) :

1. The 1PI Schwinger functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ for $\Lambda>0$ are uniformly bounded in the cutoff Λ_{0}, and the theory is renormalizable by power counting. The limit $\Lambda_{0} \rightarrow \infty$ exists.
2. For $\Lambda \rightarrow 0$ the functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ have finite limits if the external momentum configuration is nonexceptional.
3. In this case the functions $\Gamma_{m, n, L}^{0, \infty}$ can be bounded by tree type amplitudes up to logarithmic corrections.

From the FE we deduce inductively in the loop order L the following properties of the one-particle irreducible Schwinger functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ of chiral abelian gauge theory (for suitable renormalization conditions) :

1. The 1PI Schwinger functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ for $\Lambda>0$ are uniformly bounded in the cutoff Λ_{0}, and the theory is renormalizable by power counting. The limit $\Lambda_{0} \rightarrow \infty$ exists.
2. For $\Lambda \rightarrow 0$ the functions $\Gamma_{m, n, L}^{\Lambda, \Lambda_{0}}$ have finite limits if the external momentum configuration is nonexceptional.
3. In this case the functions $\Gamma_{m, n, L}^{0, \infty}$ can be bounded by tree type amplitudes up to logarithmic corrections.

This proves weak renormalizability of the theory, independently of the presence of the triangle anomaly

Example : tree for a six-point function : $m+n=6$.

Example : tree for a six-point function : $m+n=6$.
The corresponding bound is of the form

$$
\frac{1}{\sup \left(\left|p_{1}+p_{2}\right|, \Lambda\right)^{\theta_{1}}} \frac{1}{\sup \left(\left|p_{3}+p_{4}\right|, \Lambda\right)^{\theta_{2}}} \frac{1}{\sup \left(\left|p_{5}+p_{6}\right|, \Lambda\right)^{\theta_{3}}}
$$

$$
\times \mathcal{P}_{2 L}\left(\log _{+} \frac{\Lambda}{\mu}, \log _{+} \frac{\sup \left|p_{i}\right|}{\sup \{\Lambda, \inf \{\eta(p), \mu\}\}}\right)
$$

$\sum \theta_{i}=4-m-3 / 2 n ; \mu$ is the renormalization scale; $\eta(p)$ is the smallest strict subsum of external momenta

There is a corresponding system of
Flow Equations for one particle-irreducible functions with insertion of a composite operator $\mathcal{O}(x)$

There is a corresponding system of
Flow Equations for one particle-irreducible functions with insertion of a composite operator $\mathcal{O}(x)$

$$
\partial_{\Lambda} \Gamma_{\mathcal{O}(x), m, n, L}^{\Lambda, \Lambda_{0}}=
$$

$$
\sum_{k_{1}}^{\prime} \sum_{m_{i}, n_{i}, L_{i}}^{\prime} \cdots \prod_{i \leq k_{1}}\left(\Gamma_{m_{i}, n_{i}, L_{i}}^{\Lambda, \Lambda_{0}} C_{i}^{\Lambda, \Lambda_{0}}\right)\left[\sum_{m_{O}, n_{O}, L_{O}}^{\prime} \Gamma_{\mathcal{O}(x), m_{O}, n_{O}, L_{0}}^{\wedge, \Lambda_{0}}\right]
$$

$$
\left.\sum_{k_{2}}^{\prime} \sum_{m_{j}, n_{j}, L_{j}}^{\prime} \cdots \prod_{j \leq k_{2}}\left(C_{j}^{\wedge, \Lambda_{0}} \Gamma_{m_{j}, n_{j}^{\prime}, L_{j}}^{\wedge, \Lambda_{0}}\right) \dot{C}_{F / B}^{\wedge}\right|_{\text {sum rules }}
$$

There is a corresponding system of
Flow Equations for one particle-irreducible functions with insertion of a composite operator $\mathcal{O}(x)$

$$
\partial_{\Lambda} \Gamma_{\mathcal{O}(x), m, n, L}^{\Lambda, \Lambda_{0}}=
$$

$$
\begin{aligned}
\sum_{k_{1}}^{\prime} & \sum_{m_{i}, n_{i}, L_{i}}^{\prime} \ldots \prod_{i \leq k_{1}}\left(\Gamma_{m_{i}, n_{i}, L_{i}}^{\wedge, \Lambda_{0}} C_{i}^{\wedge, \Lambda_{0}}\right)\left[\sum_{m_{O}, n_{O}, L_{O}}^{\prime} \Gamma_{\mathcal{O}(x), m_{O}, n_{O}, L_{O}}^{\Lambda, \Lambda_{0}}\right] \\
& \left.\sum_{k_{2}}^{\prime} \sum_{m_{j}, n_{j}, L_{j}}^{\prime} \ldots \prod_{j \leq k_{2}}\left(C_{j}^{\wedge, \Lambda_{0}} \Gamma_{m_{j}, n_{j}^{\prime}, L_{j}}^{\wedge, \Lambda_{0}}\right) \dot{C}_{F / B}^{\Lambda}\right|_{\text {sum rules }}
\end{aligned}
$$

This system is linear with respect to the inserted functional $\Gamma_{\mathcal{O}(x)}^{\wedge, \Lambda_{0}}$
IV. Anomalies and the Flow Equations

IV. Anomalies and the Flow Equations

- It can be shown that the violations of the Ward identities for $\Lambda=0, \Omega_{m . n}^{0, \Lambda_{0}}$, are the moments of an operator insertion functional of dimension 5 . This functional corresponds to the violation of BRST-invariance in the regularized functional integral of the theory considered.

IV. Anomalies and the Flow Equations

- It can be shown that the violations of the Ward identities for $\Lambda=0, \Omega_{m . n}^{0, \Lambda_{0}}$, are the moments of an operator insertion functional of dimension 5. This functional corresponds to the violation of BRST-invariance in the regularized functional integral of the theory considered.
- If the relevant part of $\Omega^{0, \Lambda_{0}}$ (in the sense of the renormalization group) can be made vanish - by choosing appropriate renormalization conditions for the $\Gamma_{m, n, L}^{0, \Lambda_{0}}$ - we can show with the aid of the operator inserted Flow equations

$$
\begin{aligned}
& \lim _{\Lambda_{0} \rightarrow \infty} \Omega_{m, n, L}^{0, \Lambda_{0}}=0 \quad \text { (RestitutionTheorem) } \\
\Rightarrow \quad & \text { the Ward identities are restored for } \Lambda_{0} \rightarrow \infty
\end{aligned}
$$

THE TRIANGLE ANOMALY

THE TRIANGLE ANOMALY

The one-loop triangle $\Gamma_{3,0}^{0, \Lambda_{0}}\left(p_{[3]}\right)$ has no relevant local content: By general symmetry considerations the lowest order local term of order three in A_{μ} is in fact of dimension six : $\partial \cdot A \varepsilon_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma}$. Correspondingly one verifies explicitly that $\Gamma_{3,0, L=1}^{0, \Lambda_{0}}\left(p_{[3]}\right)$ is of order three in the external momenta.

THE TRIANGLE ANOMALY

The one-loop triangle $\Gamma_{3,0}^{0, \Lambda_{0}}\left(p_{[3]}\right)$ has no relevant local content: By general symmetry considerations the lowest order local term of order three in A_{μ} is in fact of dimension six: $\partial \cdot A \varepsilon_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma}$. Correspondingly one verifies explicitly that $\Gamma_{3,0, L=1}^{0, \Lambda_{0}}\left(p_{[3]}\right)$ is of order three in the external momenta.
$\Omega_{3,0}^{0, \Lambda_{0}}\left(p_{[3]}\right)$ can however have a local relevant contribution
We find for a single fermion species of charge q :

$$
\lim _{\Lambda_{0} \rightarrow \infty} \Omega_{3,0, L=1}^{0, \Lambda_{0}}\left(p_{[3]}\right)_{\mu_{2}, \mu_{3}}=\frac{q^{3}}{2 \pi^{2}} \varepsilon_{\mu_{2} \mu_{3} \rho \sigma} p_{2}^{\rho} p_{3}^{\sigma}
$$

We thus have

$$
\left.\left.\Omega_{3,0}^{0, \Lambda_{0}}\left(p_{[3]}\right)\right|_{r e l} \equiv p_{1} \cdot \Gamma_{3,0}^{0, \Lambda_{0}}\left(p_{[3]}\right)\right|_{\text {rel }} \neq 0
$$

and there does not exist a local counter term for $\Gamma_{3,0}^{0, \Lambda_{0}}\left(p_{[3]}\right)$ to annihilate the relevant part of $\left.\Omega_{3,0}^{0, \Lambda_{0}}\left(p_{[3]}\right)\right|_{\text {rel }}$

We thus have

$$
\left.\left.\Omega_{3,0}^{0, \Lambda_{0}}\left(p_{[3]}\right)\right|_{r e l} \equiv p_{1} \cdot \Gamma_{3,0}^{0, \Lambda_{0}}\left(p_{[3]}\right)\right|_{\text {rel }} \neq 0
$$

and there does not exist a local counter term for $\Gamma_{3,0}^{0, \Lambda_{0}}\left(p_{[3]}\right)$ to annihilate the relevant part of $\left.\Omega_{3,0}^{0, \Lambda_{0}}\left(p_{[3]}\right)\right|_{\text {rel }}$

$$
\Rightarrow
$$

If $\Gamma_{3,0}^{0, \Lambda_{0}} \neq 0$ at one-loop order, the Ward identities cannot be restored and gauge invariance is lost.
IV. Biflow and restoration of the Ward identities under the condition $\sum_{j} q_{j}^{3}=0$

IV. Biflow and restoration of the Ward identities under the condition $\sum_{j} q_{j}^{3}=0$

Consider separately the bosonic and the fermionic flow.

IV. Biflow and restoration of the Ward identities under the condition $\sum_{j} q_{j}^{3}=0$

Consider separately the bosonic and the fermionic flow.
We are interested in the situation where $\Lambda_{F}<\Lambda_{B}$. In this case we obtain similar bounds as before, replacing $\Lambda \rightarrow \Lambda_{B}$ in terms growing with Λ and replacing $\Lambda \rightarrow \Lambda_{F}$ in terms growing with $1 / \Lambda$.

IV. Biflow and restoration of the Ward identities

 under the condition $\sum_{j} q_{j}^{3}=0$
Consider separately the bosonic and the fermionic flow.

We are interested in the situation where $\Lambda_{F}<\Lambda_{B}$. In this case we obtain similar bounds as before, replacing $\Lambda \rightarrow \Lambda_{B}$ in terms growing with Λ and replacing $\Lambda \rightarrow \Lambda_{F}$ in terms growing with $1 / \Lambda$.

For the tree of the previous example :

$$
\begin{gathered}
\frac{1}{\sup \left(\left|p_{1}+p_{2}\right|, \Lambda_{F}\right)^{\theta_{1}}} \frac{1}{\sup \left(\left|p_{3}+p_{4}\right|, \Lambda_{F}\right)^{\theta_{2}}} \frac{1}{\sup \left(\left|p_{5}+p_{6}\right|, \Lambda_{F}\right)^{\theta_{3}}} \\
\quad \times \mathcal{P}_{2 L}\left(\log _{+} \frac{\Lambda_{B}}{\mu}, \log _{+} \frac{\sup \left|p_{i}\right|}{\sup \left\{\Lambda_{F}, \inf \{\eta(p), \mu\}\right\}}\right)
\end{gathered}
$$

We are in particular interested in the limit $\Lambda_{F} \rightarrow 0, \Lambda_{0 F} \rightarrow \infty$ since we can show that the Ward Identities can already be restored in this limit without taking $\Lambda_{B} \rightarrow 0, \Lambda_{0 B} \rightarrow \infty$.

Note that in this limit "Ward's Ward identity" already holds independently of the bosonic cutoffs.

We are in particular interested in the limit $\Lambda_{F} \rightarrow 0, \Lambda_{0 F} \rightarrow \infty$ since we can show that the Ward Identities can already be restored in this limit without taking $\Lambda_{B} \rightarrow 0, \Lambda_{0 B} \rightarrow \infty$.

Note that in this limit "Ward's Ward identity" already holds independently of the bosonic cutoffs.
To be safe on the infrared side we consider the theory on a torus of side length L in position space, with antiperiodic boundary conditions for the fermions.

We proceed inductively in the loop order L

- Show that for appropriate renormalization conditions

$$
\Omega_{m, n, L}^{\Lambda_{0 B}, \Lambda_{O B}, 0, \infty}=0
$$

For $\Lambda_{B}=\Lambda_{0 B}$ the bosonic propagator vanishes. So one has to show that diagrams with one fermionic loop including the coupling constant and fermionic wave function counter terms $z_{1}\left(\Lambda_{0 B}, \infty\right)$ and $z_{2}\left(\Lambda_{0 B}, \infty\right)$, vanish when contracted with one external momentum p_{1}.

- Show that for appropriate renormalization conditions

$$
\Omega_{m, n, L}^{\Lambda_{0 B}, \Lambda_{O B}, 0, \infty}=0
$$

For $\Lambda_{B}=\Lambda_{0 B}$ the bosonic propagator vanishes. So one has to show that diagrams with one fermionic loop including the coupling constant and fermionic wave function counter terms $z_{1}\left(\Lambda_{0 B}, \infty\right)$ and $z_{2}\left(\Lambda_{0 B}, \infty\right)$, vanish when contracted with one external momentum p_{1}.
The proof is based on "Ward's Ward identity" once it has been shown inductively that the theory can be renormalized such that
the counter terms $z_{1}\left(\Lambda_{0 B}, \infty\right)$ and $z_{2}\left(\Lambda_{0 B}, \infty\right)$ are equal (which is a particular Ward identity).

- Show that for appropriate renormalization conditions

$$
\Omega_{m, n, L}^{\Lambda_{0 B}, \Lambda_{O B}, 0, \infty}=0
$$

For $\Lambda_{B}=\Lambda_{0 B}$ the bosonic propagator vanishes. So one has to show that diagrams with one fermionic loop including the coupling constant and fermionic wave function counter terms $z_{1}\left(\Lambda_{0 B}, \infty\right)$ and $z_{2}\left(\Lambda_{0 B}, \infty\right)$, vanish when contracted with one external momentum p_{1}.
The proof is based on "Ward's Ward identity" once it has been shown inductively that the theory can be renormalized such that
the counter terms $z_{1}\left(\Lambda_{0 B}, \infty\right)$ and $z_{2}\left(\Lambda_{0 B}, \infty\right)$ are equal (which is a particular Ward identity).
Remember that the contracted (generalized) triangle is finite for $\Lambda_{0 F} \rightarrow \infty$, and the sum of the triangle contributions vanishes if $\sum q_{j}^{3}=0$.

- Show that

$$
\Omega_{m, n}^{\wedge_{B}, \Lambda_{0 B}, 0, \infty}=0
$$

- Show that

$$
\Omega_{m, n}^{\wedge_{B}, \Lambda_{0 B}, 0, \infty}=0
$$

Proof:
Write the bosonic flow equations for the contributions to

$$
\Omega_{m, n}^{\Lambda_{B}, \Lambda_{0 B}, 0, \Lambda_{0 F}}
$$

Sum over these contributions to obtain

$$
\partial_{\Lambda_{B}} \Omega_{m, n, L}^{\Lambda_{B}, \Lambda_{0 B}, 0, \infty}=\ldots
$$

On the r.h.s. of the FE there appear 3 types of terms

On the r.h.s. of the FE there appear 3 types of terms
a) Terms having an additional external boson carrying momentum p_{1}, which then is attached to some $\Gamma_{m^{\prime}, n^{\prime}, L^{\prime}}^{\Lambda_{B}, \Lambda_{B}, 0, \infty}$. This new channel is then contracted with the 4 -momentum p_{1}. So the result is

$$
\Gamma_{m^{\prime}, n^{\prime}, L^{\prime}}^{\Lambda_{B}, \Lambda_{0 B}, 0, \infty} \rightarrow p_{1} \cdot \Gamma_{m^{\prime}+1, n^{\prime}, L^{\prime}}^{\Lambda_{B}, \Lambda_{0 B}, 0, \infty}
$$

On the r.h.s. of the FE there appear 3 types of terms
a) Terms having an additional external boson carrying momentum p_{1}, which then is attached to some $\Gamma_{m^{\prime}, n^{\prime}, L^{\prime}}^{\Lambda_{B}, \Lambda_{0}, 0, \infty}$. This new channel is then contracted with the 4 -momentum p_{1}. So the result is

$$
\Gamma_{m^{\prime}, n^{\prime}, L^{\prime}}^{\Lambda_{B}, \Lambda_{0 B}, 0, \infty} \rightarrow p_{1} \cdot \Gamma_{m^{\prime}+1, n^{\prime}, L^{\prime}}^{\Lambda_{B}, \Lambda_{0 B}, 0, \infty}
$$

b) Terms where the momentum of one external fermion -each of them appearing in some $\Gamma_{m^{\prime}, n^{\prime}, L^{\prime}}^{\Lambda_{B}, \Lambda_{0 B}, 0, \infty}$ - is increased by p_{1}. The corresponding spinor index is contracted with γ_{5} and multiplied by the corresponding charge q^{\prime} :

$$
\Gamma_{m^{\prime}, n^{\prime}, L^{\prime}}^{\Lambda_{B}, \Lambda_{0 B}, 0, \infty}\left(\ldots, p^{\prime}, \ldots\right) \rightarrow q^{\prime} \Gamma_{m^{\prime}+1, n^{\prime}, L^{\prime}}^{\Lambda_{B}, \Lambda_{0 B}, 0, \infty}\left(\ldots, p^{\prime}+p_{1}, \ldots\right) \gamma_{5}
$$

c) Terms where the additional external boson is attached directly to a fermionic line producing a new vertex of loop order 0 with the corresponding charge

$$
\frac{1}{\not p} \rightarrow \frac{1}{\not p} q \gamma_{5} \not p_{1} \frac{1}{\not p+p_{1}}
$$

c) Terms where the additional external boson is attached directly to a fermionic line producing a new vertex of loop order 0 with the corresponding charge

$$
\frac{1}{\not p} \rightarrow \frac{1}{\not p} q \gamma_{5} \not p_{1} \frac{1}{\not p+\not p_{1}}
$$

We realize that the sum of a) and b) reproduces $\Omega_{m^{\prime}, n^{\prime}, L^{\prime}}^{\Lambda_{B}, \Lambda_{0 B}, 0, \infty}$ unless $\Omega_{m^{\prime}, n^{\prime}, L^{\prime}}^{\Lambda_{B}, 0, \infty}$ is linked to the chain via a fermionic propagator. In this case the term where the momentum of this propagator is shifted, is lacking.

In this last case consider contribution c) and use Ward's Ward identity :

$$
\begin{gathered}
\Gamma(\ldots,-p) \frac{1}{\not p} \gamma_{5} p_{1} \frac{1}{\not p+p_{1}} \Gamma\left(p+p_{1}, \ldots\right)= \\
\Gamma\left(\ldots,-p-p_{1}+p_{1}\right) \gamma_{5} \frac{1}{\not p+\not p_{1}} \Gamma\left(p+p_{1}, \ldots\right)+\Gamma(\ldots,-p) \frac{1}{\not p} \gamma_{5} \Gamma\left(p+p_{1}, \ldots\right)
\end{gathered}
$$

In this last case consider contribution c) and use Ward's Ward identity :

$$
\begin{gathered}
\Gamma(\ldots,-p) \frac{1}{\bar{p}} \gamma_{5} \phi_{1} \frac{1}{\dot{p}+p_{1}} \Gamma\left(p+p_{1}, \ldots\right)= \\
\Gamma\left(\ldots,-p-p_{1}+p_{1}\right) \gamma_{5} \frac{1}{\dot{p}+\dot{p}_{1}} \Gamma\left(p+p_{1}, \ldots\right)+\Gamma(\ldots,-p) \frac{1}{\frac{p}{p}} \gamma_{5} \Gamma\left(p+p_{1}, \ldots\right)
\end{gathered}
$$

Regrouping contributions to the flow of Ω

The two terms from Ward's Ward identity are the lacking terms from the previous sum of a) and $b) \Rightarrow \Omega^{\Lambda_{B}, \Lambda_{0 B}, 0, \infty}$ is reproduced on the r.h.s. of the FE
\Rightarrow The bosonic FE for Ω is linear in Ω

The two terms from Ward's Ward identity are the lacking terms from the previous sum of a) and $b) \Rightarrow \Omega^{\wedge_{B}, \Lambda_{0 B}, 0, \infty}$ is reproduced on the r.h.s. of the FE
\Rightarrow The bosonic FE for Ω is linear in Ω
Boundary conditions: $\Omega_{m, n, L}^{\Lambda_{O B}, \Lambda_{O B}, 0, \infty}=0$ (see above)

The two terms from Ward's Ward identity are the lacking terms from the previous sum of a) and $b) \Rightarrow \Omega^{\wedge_{B}, \Lambda_{0 B}, 0, \infty}$ is reproduced on the r.h.s. of the FE
\Rightarrow The bosonic FE for Ω is linear in Ω
Boundary conditions: $\Omega_{m, n, L}^{\Lambda_{O B}, \Lambda_{O B}, 0, \infty}=0$ (see above)
Inductive assumption : $\Omega_{m^{\prime}, n^{\prime}, L^{\prime}}^{\wedge_{B}, \Lambda_{O B}, 0, \infty}=0$ for $L^{\prime}<L$

The two terms from Ward's Ward identity are the lacking terms from the previous sum of a) and $b) \Rightarrow \Omega^{\wedge_{B}, \Lambda_{0 B}, 0, \infty}$ is reproduced on the r.h.s. of the FE
\Rightarrow The bosonic FE for Ω is linear in Ω
Boundary conditions: $\Omega_{m, n, L}^{\Lambda_{0 B}, \Lambda_{0 B}, 0, \infty}=0$ (see above)
Inductive assumption : $\Omega_{m^{\prime}, n^{\prime}, L^{\prime}}^{\wedge_{B}, \Lambda_{O B}, 0, \infty}=0$ for $L^{\prime}<L$

$$
\Rightarrow \quad \Omega_{m, n, L}^{\Lambda_{B}, \Lambda_{0 B}, 0, \Lambda_{0 F}}=0 \quad \text { at loop order } L
$$

The two terms from Ward's Ward identity are the lacking terms from the previous sum of a) and $b) \Rightarrow \Omega^{\Lambda_{B}, \Lambda_{0 B}, 0, \infty}$ is reproduced on the r.h.s. of the FE
\Rightarrow The bosonic FE for Ω is linear in Ω
Boundary conditions: $\Omega_{m, n, L}^{\Lambda_{O B}, \Lambda_{O B}, 0, \infty}=0$ (see above)
Inductive assumption : $\Omega_{m^{\prime}, n^{\prime}, L^{\prime}}^{\wedge_{B}, \Lambda_{O B}, 0, \infty}=0$ for $L^{\prime}<L$

$$
\Rightarrow \quad \Omega_{m, n, L}^{\Lambda_{B}, \Lambda_{0 B}, 0, \Lambda_{0 F}}=0 \quad \text { at loop order } L
$$

To resume :
Chiral abelian gauge theory is a renormalizable gauge theory to all orders of perturbation theory if $\sum_{j} q_{j}^{3}=0$.

