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Graphene

Monoatomic layer of graphite. Isolated for the first time in 2004 (Geim &

Novoselov, Nobel prize 2010). First realization of a “2d crystal”.

BA

~a2

~a1

~δ1

~δ2

~δ3

Superposition of 2 triangular
lattices ΛA, ΛB .

Each site corresponds to a carbon
atom.

For neutral graphene, 1 electron
per site (in average).
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Noninteracting theory

BA

~a2

~a1

~δ1

~δ2

~δ3
~x

In Fock space: H(0) = −t
∑
~x∈ΛA

∑
j=1,2,3

∑
σ=↑↓

a+
~x,σb

−
~x+~δj ,σ

+ h.c.

a±, b± = fermionic creation/annihilation operators.
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Noninteracting theory

H(0) = −t
∑
~x∈ΛA

∑
j=1,2,3

∑
σ=↑↓

a+
~x,σb

−
~x+~δj ,σ

+ h.c.

=

∫
T2

∑
σ=↑↓

(
â+
~k,σ

b̂+~k,σ

)( 0 −tΩ(~k)∗

−tΩ(~k) 0

)(
â−~k,σ
b̂−~k,σ

)

≡
∫
T2

∑
σ=↑↓

(
â+
~k,σ

b̂+~k,σ

)
H(0)(~k)

(
â−~k,σ
b̂−~k,σ

)

Ω(~k) =
∑
j=1,2,3 e

i~k(~δj−~δ1).

Spectrum: σ(H(0)(~k)) = {−t|Ω(~k)|, t|Ω(~k)|}.

Ω(~k) = 0 ⇐⇒ ~k = ~k±F , Ω(~k′ + ~k±F ) ' (3/2)(ik′1 ± k′2) +O(|~k′|2)

Close to ~k±F , “relativistic” Hamiltonian:

H(0)(~k) ' H(0)
rel (~k) =

(
0 −v(ik′1 ± k′2)

−v(−ik′1 ± k′2) 0

)
, v =

3t

2
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â−~k,σ
b̂−~k,σ

)

Ω(~k) =
∑
j=1,2,3 e

i~k(~δj−~δ1). Spectrum: σ(H(0)(~k)) = {−t|Ω(~k)|, t|Ω(~k)|}.

Ω(~k) = 0 ⇐⇒ ~k = ~k±F , Ω(~k′ + ~k±F ) ' (3/2)(ik′1 ± k′2) +O(|~k′|2)

Close to ~k±F , “relativistic” Hamiltonian:

H(0)(~k) ' H(0)
rel (~k) =

(
0 −v(ik′1 ± k′2)

−v(−ik′1 ± k′2) 0

)
, v =

3t

2

M. Porta (UZH) Universality in graphene 4 / 26



Introduction IQHE in the Haldane model Universality of conductivity in graphene Conclusions

Noninteracting theory

H(0) = −t
∑
~x∈ΛA

∑
j=1,2,3

∑
σ=↑↓

a+
~x,σb

−
~x+~δj ,σ

+ h.c.

=

∫
T2

∑
σ=↑↓

(
â+
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â−~k,σ
b̂−~k,σ

)

≡
∫
T2

∑
σ=↑↓

(
â+
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Emergent “relativistic” theory

Close to ~k±F , the low-energy excitations are well described by 2 + 1 dim.
massless Dirac fermions (v ' c/300).

The “relativistic” nature of the charge carriers in graphene gives rise to
remarkable transport properties.
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Example: Optical conductivity

Linear response. Weak ~E(ω),

Ji(ω) '
∑
j=1,2

σij(ω)Ej(ω)

Optical regime. ~ω � kBT .

Prediction? Neglect lattice,
disorder, interactions.
Green-Kubo:

σ11 := lim
ω→0+

lim
T→0

σ11(iω) =
e2

h

π

2

How to measure it?

light transmittance =
1(

1 + 2π
c σ11(ω)

)2

Striking agreement with experiments:

Figure: Nair et al., Science ’08
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Integer Quantum Hall effect

Graphene is an ideal compound for integer quantum Hall effect.

In general, in d = 2 at T = 0, if the Fermi energy lies in a gap and the
system is exposed to a transverse magnetic field:

σ11 = 0 , σ12 =
e2

h
· ν , ν ∈ Z .

Figure: The resistivity matrix R = σ−1 in a Quantum Hall system.
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Integer Quantum Hall effect

Graphene is an ideal compound for integer quantum Hall effect.

In general, in d = 2 at T = 0, if the Fermi energy lies in a gap and the
system is exposed to a transverse magnetic field:

σ11 = 0 , σ12 =
e2

h
· ν , ν ∈ Z .

For noninteracting systems, the quantization of σ12 has a deep topological
explanation (Avron-Seiler-Simon ’83, Bellissard-Van Elst-Schulz Baldes ’94...)

σ12 = iTrP≤µ
[
[P≤µ, x1], [P≤µ, x2]

]
∈ Z

where P≤µ = projector over energy levels ≤ µ.

Today. Simple graphene-like model for IQHE, the Haldane model. For free
particles, the “topological phase diagram” can be explicitly computed.

Goal. Stability of IQHE in presence of weak many-body interactions.
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IQHE and the Haldane model

Haldane, ’88. Graphene (spinless) + staggered potential + nnn hopping.

H(0)
H = −t1

∑
j=1,2,3

∑
~x∈ΛA

a+
~x b
−
~x+~δj

+ b+
~x+~δj

a−~x

+M
[ ∑
~x∈ΛA

a+
~x a
−
~x −

∑
~x∈ΛB

b+~x b
−
~x

]
− t2

∑
α=±
j=1,2,3

[ ∑
~x∈ΛA

eiαφa+
~x a
−
~x+α~γj

+
∑
~x∈ΛB

e−iαφb+~x b
−
~x+α~γj

]

Black: t2e
iφ. Red: t2e

−iφ

Zero net flux.

~γ1

M −M

~γ3

~γ2

~δ1

~δ2

~δ3
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IQHE and the Haldane model

M breaks inversion, φ breaks time-reversal.

Graphene’s cones split. Gaps: ∆± = |m±|, with m± = M ± 3
√

3t2 sinφ

Figure: Gapped spectrum.
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Phase diagram of the Haldane model

M breaks inversion, φ breaks time-reversal.

Graphene’s cones split. Gaps: ∆± = |m±|, with m± = M ± 3
√

3t2 sinφ

IQHE without net external flux: σ12 = e2

2h

[
sgn(m+)− sgn(m−)

]
.

Figure: ν = 1
2 [sgn(m+)− sgn(m−)] (Haldane ’88).
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Phase diagram of the Haldane model

M breaks inversion, φ breaks time-reversal.

Graphene’s cones split. Gaps: ∆± = |m±|, with m± = M ± 3
√

3t2 sinφ

IQHE without net external flux: σ12 = e2

2h

[
sgn(m+)− sgn(m−)

]
.

Figure: Experimental realization, Esslinger group, ETHZ (Nature ’14)

M. Porta (UZH) Universality in graphene 12 / 26



Introduction IQHE in the Haldane model Universality of conductivity in graphene Conclusions

The interacting Haldane model
Quantization of the Hall conductivity
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The interacting Haldane model

Let Λ = ΛA ∪ ΛB . We consider:

HH = H(0)
H + UV

V =
1

2

∑
~x,~y∈Λ

n~x n~y v(~x− ~y) .

with:

n~x =

{
a+
~x a
−
~x ~x ∈ ΛA

b+~x b
−
~x ~x ∈ ΛB

v(~x) is assumed to be short-ranged, with Fourier transform v̂(~p) in C∞.

The grandcanonical Gibbs state is:

〈·〉β,Λ =
Tr e−β(HH−µN )·
Tr e−β(HH−µN )

with N =
∑
~x∈Λ n~x = number operator.
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Current operator and Green-Kubo formula

The current operator is defined as:

~J := i
[
HH , dΓΛ(~x)

]
= i
[
H(0)

H , dΓΛ(~x)
]

dΓΛ(~x) :=
∑
~x∈ΛA

~x a+
~x a
−
~x +

∑
~x∈ΛB

~x b+~x b
−
~x .

The conductivity matrix is defined starting from Green-Kubo formula:

σij := − 1

A
lim
p0→0

∂

∂p0
K̂ij(p0)

with A = 3
√

3/2 = area of the hexagonal cell and

K̂ij(p0) = lim
β, |Λ|→∞

1

β|Λ|

∫ β

0

dx0

∫ β

0

dy0 e
ip0(x0−y0)

〈
T{Ji(x0) ;Jj(y0)}

〉
β,Λ

~J(x0) = e(HH−µN )x0 ~Je−(HH−µN )x0 , T = fermionic time ordering.
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QHE for interacting systems

Hastings-Michalakis ’15. Rigorous proof of quantization of σ12 for general
interacting systems, under the assumptions:

1 The interacting ground state is nondegenerate;
2 ∃ gap separating interacting ground state and first excited state.

These assumptions might be very hard to prove in translation invariant,
interacting systems.

Earlier (nonrigorous) approaches, based on effective field theory description:

Wen ’90, Fröhlich et al. ’91, Zhang ’92, ... Fröhlich-Werner ’14.

(Powerful ideas based on gauge invariance and Ward identities, extensions to
fractional Quantum Hall effect and topological insulators).

Our approach is close in spirit to these last ones, and in particular to:

Coleman-Hill ’85: no corrections beyond 1-loop to the “topological mass” in QED2+1.
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Stability of IQHE in the interacting Haldane model

Theorem (Giuliani - Mastropietro - P., ’15.)

Let M/t2, φ be away from the critical lines. Let µ be in a spectral gap of H(0)
H .

Then, there exists U0 > 0 such that:

1) K̂ij(p) is analytic in |U | ≤ U0, and C∞ in p ∈ R× T2;

2) The conductivity matrix (σij)i,j=1,2 is given by (restoring e and h):

σ11 = σ22 = 0 , σ12 = −σ21 =
e2

2h

[
sgn(m+)− sgn(m−)

]
,

with m± = M ± 3
√

3t2 sinφ.
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Remarks

Our result provides the first rigorous proof of quantization for the Hall
conductivity for an interacting system, without extra assumptions.

Point 1) is a standard application of fermionic cluster expansion and
multiscale analysis. Methods developed in the last 30 years by:

Brydges-Battle-Federbush, Gawedzki-Kupiainen, Lesniewski, Benfatto-Gallavotti,
Feldman-Knörrer-Trubowitz, Magnen-Rivasseau-Sénéor, Benfatto-Mastropietro...

Recall: away from the critical line, the theory is massive.

Point 2), that is the universality of σij , is based on Ward identities.
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Sketch of the proof

Let p = (p0, ~p) ∈ R× T2. Starting point:

K̂ij(p)− K̂(0)
ij (p) =

∫ U

0

dU ′
∂

∂U ′
K̂ij(p) =

∑
k≥1

Uk

k!
K̂

(k)
ij (p)

Evaluating the derivative we get, for k ≥ 1:

K̂
(k)
i,j (p) =

1

2

∫
dq

(2π)3
v̂(~q)K̂

(k−1)
i,j,0,0(p,−p,q)

+

k−1∑
m=0

(
k − 1

m

)
v̂(~0)K̂

(m)
i,j,0(p,−p)K̂

(k−1−m)
0 (0)

+

k−1∑
m=0

(
k − 1

m

)
v̂(~p)K̂

(m)
i,0 (p)K̂

(k−1−m)
j,0 (−p)

with:

K̂i,j,0,0(p) =
〈
T{Ĵi,p ; Ĵj,−p ; ρ̂q ; ρ̂−q}

〉
, ρ̂q = n̂Aq + eiq·δ1 n̂Bq .
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Sketch of the proof

Let p = (p0, ~p) ∈ R× T2. Starting point:

K̂ij(p)− K̂(0)
ij (p) =

∫ U

0

dU ′
∂

∂U ′
K̂ij(p) =

∑
k≥1

Uk

k!
K̂

(k)
ij (p)

(k) = +

+

q

i j i j

0

i j

0 0

i j

p p p p

p

p

p

(k−1)

(m)

(k−1−m)

(k−1−m) (m)

p p

0 0 0

0
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Ward identities

Being σij analytic for |U | ≤ U0, to prove universality it is sufficient to show:

σ
(k)
ij = − 2

3
√

3
lim
p0→0

∂

∂p0
K̂

(k)
i,j (p0,~0) = 0 , ∀k ≥ 1 .

Continuity equation:

∂x0
ρ̂~p (x0) =

[
HH, ρ̂~p (x0)

]
=
∑
i=1,2

pi · Ĵi,~p (x0) .

It implies the following Ward identity, for all n ≥ 0:∑
µ=0,1,2

pµK̂
(n)
µ,0 (p) = 0⇒ K̂

(n)
i,0 (p) = −

∑
µ=0,1,2

pµ
∂

∂pi
K̂

(n)
µ,0 (p) .

Similarly: K̂
(n)
i,j,0,0(p,−p,q) = O(p2), K̂

(n)
i,j,0(p,−p) = O(p2).
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i,j,0(p,−p) = O(p2).
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Sketch of the proof

K̂
(n)
i,0 (p) = O(p) , K̂

(n)
i,j,0(p,−p) = O(p2) , K̂

(n)
i,j,0,0(p,−p,q) = O(p2) .

This implies:

K̂
(k)
i,j (p) =

1

2

∫
dq

(2π)3
v̂(~q)K̂

(k−1)
i,j,0,0(p,−p,q)

+

k−1∑
m=0

(
k − 1

m

)
v̂(~0)K̂

(m)
i,j,0(p,−p)K̂

(k−1−m)
0 (0)

+

k−1∑
m=0

(
k − 1

m

)
v̂(~p)K̂

(m)
i,0 (p)K̂

(k−1−m)
j,0 (−p)

= O(p2) .

Therefore:

lim
p0→0

∂

∂p0
K̂

(k)
i,j (p0,~0) = 0 ∀k ≥ 1 .
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Universality of conductivity in interacting graphene
(Related to Hall transitions in the Haldane model)
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Critical line

So far, we discussed the universality of (σij)i,j=1,2 away from the boundary.

Figure: The spectral gap closes at the critical line.

If naively estimated, the radius of convergence U0 goes to zero as m± → 0.

To study the boundary, one needs renormalization group.

Open problem. Transport properties on the (renormalized) boundary?
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Graphene as a gapless limit of the Haldane model

Consider the points M = 0, φ = 0, π. In this situation, the Hamiltonian is:

H̃H = −t1
∑

j=1,2,3

∑
~x∈ΛA

a+
~x b
−
~x+~δj

+ b+
~x+~δj

a−~x

− t2
∑
α=±
j=1,2,3

[ ∑
~x∈ΛA

a+
~x a
−
~x+α~γj

+
∑
~x∈ΛB

b+~x b
−
~x+α~γj

]
+ UV

The model is now gapless.

The standard graphene model can be obtained as

Hgraphene = lim
t2→0

H̃H .

In this limit, particle-hole symmetry: a± → a∓, b± → −b∓. It implies
half-filling, which is the relevant choice for neutral graphene.

Giuliani-Mastropietro ’10. Analyticity of graphene’s ground state correlations,
for U small.
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Universality of conductivity in interacting graphene

Theorem (Giuliani-Mastropietro-P., 2012)

Let φ = 0, π, M = t2 = 0, assume half-filling. The conductivity matrix
(σij)i,j=1,2 is analytic for U small. Moreover, it is given by (restoring e and h):

σij := − 2

3
√

3
lim

p0→0+

1

p0

[
K̂ij(p0)− K̂ij(0)

]
=
e2

h

π

4
δij .

Proof based on RG + WIs. Crucial: interaction irrelevant in the RG sense.

It is easy to see that K̂ii(p0) = K̂ii(−p0).

If K̂ii was differentiable then σii = 0; it is not!

Idea. “Extract” the nondifferentiable part from K̂ij , use WIs to prove that it
gives rise to a universal σij .

First proof of universality of conductivity for a 2d interacting system.
Analogous universality results in 1d: Benfatto-Falco-Mastropietro ’10-’15.
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Conclusions

We discussed the universality properties of transport coefficients of
interacting graphene-like models. We proved:

1 the stability of IQHE for the interacting Haldane model against weak
many-body interactions.

2 the universality of the conductivity matrix in interacting graphene.

Open problems:

1 Renormalization of the transition line in the Haldane model?

2 Transport properties on the renormalized transition line?

3 More general systems?

4 Weak disorder?

Ludwig et al. ’94: Random 2d massless Dirac fermions ≡ marginal SUSY QFT.
Mastropietro ’13: perturbative renormalization of marginal disorder (random U(1)
gauge field)
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Thank you!
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