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Jürg Fröhlich, ETH Zurigo

Frascati, June, 2015



Credits and Contents

Numerous useful discussions with: Ph. Blanchard, Bohmians (Dürr,
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1. Introduction – Some basic questions and claims

In our courses, we tend to describe quantum-mechanical systems,
S , as pairs of a Hilbert space, H, and of a propagator,
(U(t, s))t,s2R, describing time evolution. Unfortunately, these data
hardly encode any invariant information about S that would enable
one to draw conclusions about its physical properties, and they
give the erroneous impression that quantum theory might be a
deterministic theory.
!Fundamental questions and problems:

I What do we have to add to the usual formalism of quantum
theory to arrive at a mathematical structure that – through
interpretation – can be given physical meaning, without the
intervention of “observers”?

I Where does intrinsic randomness in quantum theory come
from, given the deterministic character of the Schrödinger
equation? Does it di↵er from classical randomness?



Introduction - ctd.

I What is the meaning of states and of “observables” in
quantum mechanics? Do we understand the time evolution of
states of quantum systems, and what does it have to do with
solutions of the Schrödinger equation?

I What do we mean by an isolated system in quantum
mechanics, and why may this be an important notion*? How
may one prepare a system in a prescribed state?
*Because only for isolated systems we know how to describe
the time evolution of “observables”!

Basic claims:
I The quantum-mechanical state does not describe “what is”.

It is merely a mathematical device enabling one to make bets
about what is likely to happen in the future.



Introduction – ctd.

I Fundamental “Loss of Information” and Entanglement with
inaccessible (“lost”) degrees of freedom enable us to
understand why pure states may evolve into mixed states and
to develop a rational theory of measurements, observations
and experiments in quantum mechanics; (“Second Law of
quantum measurement theory”!)

I No information- or unitarity paradoxes in quantum mechanics!
Time evolution of states of quantum systems admitting
observations and measurements is actually never unitary – it is
“tree-like”; (“eth in QM”!).

I Operator algebras (including things like type III
1

- von
Neumann algebras), probability theory, stochastic di↵erential
equations, etc. have been invented to be used in Quantum
Theory, rather than to be ignored!



Metaphor for the ”mysterious holistic aspects” of
Quantum Mechanics

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!QM!is!QM&as&QM!and!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!everything!else!is!everything!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!else!
!
!
!
!
“The!one!thing!to!say!about!art!is!that!it!is!one!thing.!
Art!is!art&as&art!and!everything!else!is!everything!
else.”!(Ad!Reinhardt)!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!



2. Direct (projective, or von Neumann) Measurements

Definition of qm systems – for pedestrians

An isolated quantum system, S , is characterized by the following
data:

1. A pair
(H, {U(t, s)}t,s2R)

of a Hilbert space H of pure state vectors and a propagator U;

2. a list,
OS = {Xi}i2IS ,

of bounded operators on H representing physical quantities/
potential properties of S that can be measured or observed
directly. For simplicity, we assume that OS is abelian; then
OS can be chosen to be a commutative algebra.
(S must be an isolated system that includes appropriate
instruments for the quantities represented by the operators
Xi , i 2 IS , to be measurable directly.)



Direct measurements – ctd.

Choose fiducial time t
0

at which physical quantities are identified
with operators in OS and define (Heisenberg picture!)

X (t) := U(t
0

, t)XU(t, t
0

), X 2 OS ,

to be the operator representing the quantity corresponding to
X 2 OS at some time t ! OS(t). Potential properties/phys.
quantities observable at times s � t generate a W*- algebra, E�t :

E�t := h
Y

i

Xi (ti )|Xi 2 OS , ti � ti�, with E := E>�1 (1)

Then
B(H) ◆ E ◆ E�t ◆ E�s ◆ OS(s), s � t (2)

6= I .L.!

(I .L. = “Information Loss”!)



Direct measurements – ctd.

“Information Loss” can be interpreted as saying that time
translations, ⌧t , (with ⌧t(X (s)) = X (s + t), X 2 OS), are
*endomorphisms

⌧t : E�s ! E�s+t ,

rather than *automorphisms – (at least if, between time s and
time s + t, a direct measurement happens).
It is not di�cult to construct examples of (generally non-autono-
mous) quantum systems exhibiting Information Loss, in the above
sense: “Small systems” (e.g., an n-level atom) temporarily inter-
acting with a quantized wave medium, such as the quantized e.m.
field, or phonons, etc.
More fundamentally, Information Loss always occurs in QFT’s with
massless particles, such as QED, as pointed out by Buchholz and
Roberts:



Information Loss and Huyghens Principle

In QED, (2) () Information Loss and Entanglement with
inaccessible degrees of freedom) is a consequence of Huyghens’
Principle for the electromagnetic field:

world line of J. F. %
All operators in E�t are located in V+

Pt
,Pt = (t,~x). The Figure

shows that E�t
0

properly contains E�t , for t > t
0

, and

(E�t)
0 \ E�t

0

� Aout

O



Example of a mesoscopic qm system:

�
!conduc'ng!“T*channel”!ending!in!detectors!DL$and!DR!
and!in!an!electron!gun,!quantum!dot,!P�P’,!with!P$
binding!up!to!N$electrons.!



Example – ctd.

E contains all measuring devices, including the two e�- detectors, DL

and DR . The only directly observable quantity in this system is the click
of either DL or DR : A detector clicks i↵ an e� is entering it.
Mathematically, this quantity is represented by the linear operator

X = 1P ⌦
✓

1 0
0 �1

◆

E

, with P = P _ P 0, (3)

which has the (infinitely degenerate) eigenvalues ⇠ = ±1, with

⇠ = +1$ DL clicks, ⇠ = �1$ DR clicks.

OS consists of all bounded functions of X . We want to understand what
it means that the quantity represented by the operator X is directly
(projectively) measurable, and (in the next section) what information can
be gained from long sequences of successive projective measurements of
X . (It will turn out that they reveal the number of e� in P .)



Meaning of direct measurements

Clarify what it means that a quantity rep. by operator X 2 OS is
measured directly (or projectively) around some time t, and what
the roles of Information Loss and Entanglement with inaccessible
degrees of freedom are. We assume, for simplicity, that the
spectrum of X consists of finitely many (typically infinitely
degenerate) eigenvalues ⇠

1

, ..., ⇠N . Then

X (t) =
NX

j=1

⇠j⇧j(t), (4)

where ⇧j(t) is the spectral proj. corresp. to ⇠j .
It is compatible with the “Copenhagen mumbo-jumbo” to assume
that measuring X at time t implies that the state of S ,

⇢(·) = Tr(P(·)), where P is a density matrix on B(H),



Direct measurements

restricted to the algebra E�t , is an incoherent superposition of
eigenstates of the operator X (t). This means that

⇢t(A) =
NX

j=1

⇢t(⇧j(t) A ⇧j(t)), 8A 2 E�t , (5)

where ⇢t := ⇢|E�t , (up to possibly a tiny error). Information Loss
& Entanglement with inaccessible degrees of freedom ) ⇢t is, in
general, a mixed state on E�t , even if ⇢ is a pure state on B(H).
Eq. (5) , X (t) belongs to the “stabilizer”, C⇢t , of the state ⇢t ,
i.e.,

adX (t)(⇢t) = 0.

By Z⇢t we denote the center of C⇢t .



Fundamental axiom of the quantum-mechanical
measurement process

1. The quantity represented by X 2 OS is measured/observed around
time t i↵

dist(X (t),Z⇢t ) := k✏⇢t (X (t))� X (t)k ⇡ 0, (6)

where ✏⇢t = conditional expectation of E⇢t given Z⇢t .
Clearly, Eq. (6) ) Eq. (5)!
In simple prose, Eq. (6) means that if ⇢t can be represented by a
density matrix, Pt , on E�t then, on the range of Pt , X (t) “equals”
a function of Pt , multiplied by a central element, z .

2. If X is observed around time t then X has a value 2 {⇠
1

, ..., ⇠N}
around time t.

3. Randomness in quantum mechanics
The probability of observing ⇠j is given by

pXj (t) = ⇢(⇧j(t)), (7)

Born’s Rule



Fundamental axiom – ctd.

If ⇠j has been observed then the state

⇢Xj (·) := pXj (t)
�1 ⇢t(⇧j(t)(·)⇧j(t)) (8)

must be used for improved predictions of future at times � t.

Remark: Apparently, if it is known that the system S has been
prepared in a state ⇢ before some direct measurement/observation
is made then the quantum-mechanical dynamics of S predicts
which quantity X will first be observed and, approximately, at what
time t; but the measured value ⇠j is not predictable with certainty!



E↵ective time evolution of states

  E:"“events”"(proj."measnts.),""T:"“trees”"(of"states),""""""""""""""""""""""""""""""""""""""
H:"“histories”";"probs."of"“histories”"are"det."by"QM"



3. Indirect (Kraus) measurements

Assume, OS is a finite-dimensional, commutative algebra with
spectrum XS = a finite set of points, {1, ...,N}. In the concrete
model considered in Section 2, OS consists of all functions of the
operator

X = 1P ⌦
✓

1 0
0 �1

◆

E

,

hence XS = {�1,+1}.
With each point ⇠ 2 XS we associate a spectral projection
⇡⇠ 2 OS , and all operators in OS are linear combinations of the
⇡⇠’s. We suppose that successive projective measurements/
observations of quantities corresponding to operators in OS at
times ⇡ t

1

, ...,⇡ tk have yielded a sequence of measurement
results,

⇠(k) := {⇠
1

, ..., ⇠k} 2 X⇥k
S . (9)



Kraus measurements – ctd.

We assume that S has been prepared in the state ⇢ before
measnts./observations of quantities corresponding to ops. in OS

have started. QM predicts that the probability (frequency) of a
measurement protocol ⇠(k) is given by

µ⇢(⇠1, ..., ⇠k) = Tr(⇡⇠k (tk) · · · ⇡⇠1(t1) P ⇡⇠
1

(t
1

) · · · ⇡⇠k (tk)), (10)

where P is the density matrix coresponding to the state ⇢; (LSW -
formula).Obviously,

X

⇠k2XS

µ⇢(⇠
(k�1), ⇠k) = µ⇢(⇠

(k�1)), µ⇢(;) = 1. (11)

It follows that µ⇢ extends to a probability measure on the space, ⌅,
of infinitely long measurement protocols; (equipped with the
�-algebra of cylinder sets).



Kraus measurements – ctd.

Let OS [⇢,1] be the algebra of functions in L1(⌅, [µ⇢]) that do
not depend on any finite set of measurement outcomes:
Observables at infinity. (Observables at infinity can sometimes be
related to the commutant of E ; see Eq. (1). But the general
picture is not entirely clear, yet.)
Let ⌅[⇢,1] be the spectrum of OS [⇢,1]. Then the measure µ⇢

can be decomposed into a convex combination of “extremal
measures”:

µ⇢(·) =
Z

⌅[⇢,1]

dP(⌫)µ⇢(·|⌫). (12)

For di↵erent points ⌫, the measures µ⇢(·|⌫) are mutually singular.
Thus, a very long measurement protocol ⇠(k) determines a point
⌫ 2 ⌅[⇢,1] (called a “fact”) with an error likelihood that tends to
0, as k !1, and ⌫ then determines the values of all “observables
at infinity”.



Exchangeable measures

If the order in which the measurement results ⇠
1

, ..., ⇠k are obtained does
not matter, for any k , (i.e., if successive measurements commute with
each other) then µ⇢(⇠�(1), ..., ⇠�(k)) is independent of the permutation �,
8� and all k . Then Eq. (12) follows from de Finetti’s theorem, which
also says that the measures µ⇢(·|⌫) are product measures:

µ⇢(⇠1, ..., ⇠k |⌫) =
kY

j=1

p(⇠j |⌫), (13)

with p(⇠|⌫) � 0 and
P

⇠ p(⇠|⌫) = 1.

A simple example of this situation is a model of the system described in

Section 2, for which OS = hX i and XS = {�1,+1}. (Assuming that the

electrons moving through the “T -channel” are entirely independent of

each other and that the detectors DL and DR return to the same state

after each measurement, and before the next electron travels through the

“T -channel”, one concludes that the measures µ⇢ are exchangeable.)



Exchangeable measures – ctd.

Let ⌫ 2 {1, ...,N} be the number of e� in the quantum dot P . Let
us assume, for the time being, that ⌫ is time-independent, i.e., we
consider a non-demolition measurement of ⌫. Because µ⇢ is
exchangeable, we have that

µ⇢(⇠
(k)) =

NX

⌫=1

P⇢(⌫)µ(⇠
(k)|⌫), (14)

with

µ⇢(⇠
(k)|⌫) =

kY

j=1

p(⇠j |⌫),

where:
P⇢(⌫): Born probability for ⌫ e� bound by P ;
p(⇠|⌫): QM probability for an e� in the “T -channel” to be
scattered into D⇠, ⇠ = �1(R),+1(L), (% a QM-I calculation!).



Frequencies of “events”

An example of an “observable at infinity” that is usually well defined is
the “asymptotic frequency”, p(⇠|·), of an event ⇠ 2 XS . We define

f (l,l+k)
⇠ (⇠) :=

1

k

0

@
l+kX

j=l+1

�⇠,⇠j

1

A , with
X

⇠

f (l,l+k)
⇠ (⇠) = 1. (15)

One expects that, for “most” states ⇢, the
(1) Law of Large Numbers

limk!1f (l,l+k)
⇠ (⇠) =: p(⇠|⌫), (16)

for some point (or “fact”) ⌫ 2 ⌅[⇢,1], holds. This is
indeed the case for the simple model described above.

Hypothesis: We continue to assume that OS is finite-dimensional and
that card(⌅[⇢,1]) <1, with

min⌫
1

6=⌫
2

|p(⇠|⌫
1

)� p(⇠|⌫
2

)| �  > 0, for some ⇠ 2 XS (17)



“q-hypothesis testing”

With each ⌫ 2 ⌅[⇢,1] we associate a subset

⌅⌫(l , k ; ") := {⇠| |f (l ,l+k)
⇠ (⇠)� p(⇠|⌫)| < ✏k}, (18)

where
✏k ! 0,

p
k ✏k !1, as k !1

Main Results:

(2) It follows from Hyp. (17) and definition (18) that, for k so large that
✏k < /2,

⌅⌫
1

(l , k ; ") \ ⌅⌫
2

(l , k ; ") = ;, ⌫
1

6= ⌫
2

(3) Central Limit Theorem: ) Under suitable hypotheses
on the states ⇢,

µ⇢

 
[

⌫

⌅⌫(l , k ; ")

!
! 1, k !1



hypothesis testing – ctd.

(4) Theorem of Boltzmann-Sanov ) If the measures µ⇢ are
exchangeable one has that

µ
⇣
⌅⌫

1

(l , k ; ")|⌫
2

)  C e�k�(⌫
1

k⌫
2

)

where � is a relative entropy.
(5) Theorem of Maassen and Kümmerer ) In the simple model

described above, the state of S , restricted to B(HP)
approaches a state with a fixed number of electrons in the
quantum dot P ; (“purification”).

The theory of indirect measurements outlined here only concerns

measurements of time-independent “facts”, which correspond to points

in ⌅[⇢,1] (non-demolition measurements). However, most interesting

“facts” depend on time! Thus, one must ask how one can acquire

information concerning time-dependent facts indirectly, through repeated,

successive direct measnts. of quantities corresponding to operators in OS .



We now consider the simple model introduced above. We assume that
electrons can enter into, or tunnel out of the component P of the
quantum dot P , i.e., the number of electrons, ⌫, in P may slowly vary in
time. We define

⌅⌫
1

,...,⌫r (k ; ") := {⇠ | |f (ik�k,ik)
L (⇠)� p(L|⌫i )| < "k , 8i = 1, ..., r}

and
P⇢(⌫1, ..., ⌫r ) := µ⇢(⌅⌫

1

,...,⌫r (k ; "))

(6) Theorem on quantum jumps: For each r <1,

X

⌫
1

,...,⌫r

P⇢(⌫1, ..., ⌫r )! 1,

in the limit where the temporal variation of the number of
electrons in P tends to 0 and k !1.

Remark. In suitable limiting regimes, P⇢(⌫1, ..., ⌫r ) is the path-space
measure of a Markov chain with state space = {1, ...,N}.



4. Conclusions – discussion

�In all my films, I have been faithful 
to these suspension points in the 
conclusions. Besides, I have never  
written the word �END� on the 
screen.�  
(Federico Fellini) 

“Everyone)wants)to)understand)art)(physics).))
Why)don’t)we)try)to)understand)the)song)of))a)
bird?)Why)do)we)love)the)night,)the)flowers,))
everything)around)us,)without)trying)to)under<
stand)them?)But)in)the)case)of)a)painAng)))))))
(result.in.physics),)people)think)they)have)to)
)understand.”)(Pablo)Picasso))
))))))))))).
...Vi)ringrazio)per)l’aIenzione!))))))))) 

......
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My Manifesto 
I propose that, at all decent institutions of higher 
education, one or two days per semester will be 
declared to be 

Days of Reflection and of Protest! 
During these days, we will not teach or attend 
committee meetings, and there won’t be any exercise 
classes. Instead, we will discuss some of the serious 
problems threatening our civilization, draft declarations 
and reach out to the media, with the aim to make it clear 
to all circles wielding power that we no longer accept – 
(to mention some examples among others): 



My Manifesto, ctd. 

•  That internal tensions and conflicts in countries, such as 
the Ukraine, are “solved” by armed conflicts rather than 
by political dialogue and compromise; 

•  that innocent people are slaughtered in ugly civil wars 
and by terrorist activities, such as those in Syria and Iraq; 

•  that countries threaten other countries with warfare; 
•  that weapons are sold to (clans) in countries plagued by 

civil war or other forms of unrest and conflict; 
•  that religions are abused for purposes of power and 

suppression of people; 
•  that the dignity and the rights of women are abused and 

offended in the name of religion; 
 



My Manifesto, ctd. 

•  that people are harassed or killed because of their race or faith; 
•  that nothing is done against the perversions of 21st Century 

Capitalism; 
•  that the resources of Planet Earth continue to be looted 

shamelessly. 
These are but some examples of numerous problems threatening the 
survival of humankind in peace and dignity. –  
Where is the “Peace Movement”, where are movements such as 
“Occupy Wall Street”, “Survivre et Vivre”? What is the “Club of 
Rome” doing? Why are the media silent about the activities of these 
and other groups? Why do academics not have a strong voice in 
political debates, anymore? 
                                                    ***  

Students and Academics raise your voices, arise! 


