
Renormalization group, Kondo effect and hierarchical models

G.Benfatto, I.Jauslin & GG

1-d lattice, fermions+impurity, “Kondo problem”

Hh =
∑

α=±

(

L/2−1
∑

x=−L/2

ψ+
α (x) (−

1

2
∆− 1)ψ−

α (x) + h ϕ+σzϕ−
)

HK =H0 + λ
∑

α,α′=±

γ,γ′=±

3
∑

j=1

ψ+
α (0)σ

j
α,α′ψ

−
α′(0)ϕ

+
γ σ

j
γ,γ′ϕ

−
γ′ = Hh + V

(1) ψ±
α (x), ϕ

±
γ C&A operators, σj, j = 1, 2, 3, Pauli matrices

(2) x ∈ unit lattice, −L/2, L/2 identified (periodic b.c.)

(3) ∆f(x) = f(x+1)− 2f(x) + f(x− 1) discrete Laplacian.
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If λ = 0 impurity-electrons independent: classic or quantum

χ(β, h) ∝ β−−−→
β→∞

∞, ∀ L ≥ 1, βh < 1

Interaction (classic) elec.+imp.: field on both & λ 6= 0

χ(β, h) = 4β
(1 + e−2λβ cosh βh)

(cosh 2βh+ e−2λβ)2
−−−−→
β→±∞

0 repulsive

+∞ attractive

field on impurity only: χ(β, 0) = β → ∞
Reason: λ < 0 → rigidly antiparallel spins ????

Still true if L <∞ classic&quantum or L = ∞ classic

XY model confirms (∞ both cases, exact)

Then Trivial? (0 repulsive, ∞ attractive ?)

BUT
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If L = ∞ quantum chain: new phenomena

1) at λ = 0 ⇒ Pauli paramagnetism (1926)

local or specific suscpt. <∞ at T ≥ 0 :

χ(∞, 0) = ρ
1

kBTF

d

2
, (Pauli)

2) at fixed λ < 0 ⇒ Kondo effect:

susceptibility χ(β, h)
smooth at T = 0 and h ≥ 0
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Kondo realized the problem (3d-order P.T.) and gave
arguments (1964) for χ <∞ (actually conductivity <∞)

Anderson-Yuval-Hamann (1969,70) ⇒ multiscale nature of
the problem, relation with the 1D Coulomb gas & solved
the λ > 0 case (no Kondo eff.), & stressed that lack of
asymptotic freedom = obstacle for λ < 0

Wilson (1974-75) overcame asymptotic freedom by
discussing a somewhat modified model and finding a
recursion scheme, numerically implementable in an
appropriately simplified model.

The method built a sequence of approximate Hamiltonians
(with finitely many coefficients) more and more accurately
representing the system on larger and larger scales, leading
to the Kondo effect via a nontrivial fixed point.
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Evaluate Z = Tr e−βHK as a functional integral, (BG990).

The free fields ψ±(x), ϕ±

ψ±(x) =
∑

m

e±ikxψ±[m](x), ϕ± =
∑

m

ϕ±[m]

can be decomposed into components of scale 2−m, m ∈ Z

ψ±(x) =
−∞
∑

m=0

∑

ω=±

e±iωpfx 2
1
2
m ψ±[m]

ω (2mx), ϕ± =
−∞
∑

m=0

ϕ±[m]

quasi particles, neglecting the UV (i.e. m ≤ 0). Then
represent Z as a Grassmann integral.
Fields become Grassman variables.

But since the impurity is localized observ. localized at 0
depend on fields at 0, ψ±(0), ϕ± ⇒ 1D problem (AYH).
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Key: response to field h acting on impurity site only
depends on the propagators with x = 0.

By Wick ⇒ only average values, over “time” of propagators
at x = 0 needed. Propagators on scale m are g[m](t− t′)

δm,m′

∑

ω

∫

dk0dk

(2π)2
eik0(t−t′)

−ik0 + ωe(k)
χ(2−2m(k20 + k2)),

δm,m′

∫

dk0
2π

eiσk0(t−t′)

−iσk0
χ(2−m k0

2π
)

singularity at t− t′ = 0 (UV sing.) and at t− t′ = ∞ (IR
sing.) regularized via χ on scale 2−m; e(k) = − cos k.

Illustration of (AYH970) remark: 1D problem, (long range)

Main operators : ~Ax
def
= ψ+

x σψ
−
x , ~Bx

def
= ϕ+

σϕ−
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Interaction Ham. is constructed via the operators

O0 = −λ0 ~A · ~B, O1 = λ1 ~A2, O2 = λ2 ~B2, O3 = λ3 ~A2 ~B2

HK on scale m = 0 is (with λ0 < 0 and λ1 = λ2 = λ3 = 0)

HK = H0 −
∑

x

(λ0Ox,0 + λ1Ox,1 + λ2O2 + λ3Ox,3) + . . .

Set RG analysis via (Grassmannian) as BG990 for Tre−βHK

Scaling O0 = marginal, O2 = relevant

Difficulty is immediate: multiscale PT at h = 0 generates a
power series with at least the above 4 running costants
(λn) n ≤ 0. Should be related by recurrence

λn = Λλn+1 + B(λn+1), λ0 = (−λ, 0, 0, 0)
with Λ = (1, 1

2
, 2, 1

2
) and B is a formal series.
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Even forgetting convergence, PT of no use: marginal term
grows (if λ0 < 0) and generates relevant term!

To understand a simpler problem turn to hierarchical model

The propagators g[m](t− t′) are c̃onstant for t > t′ on scale
m, i.e. t, t′ ∈ Im = [n2−m, (n+ 1)2−m], antisymmetric in t, t′

and fast decay on scale 2−m

Hierarchical fields will be defined by assigning to each Im
two Grassmannians 2

1
2
mz[m](t), ζ [m](t)

1) exactly constant in each half of Im

2) propagator 1 for t ∈ I−m, t
′ ∈ I+m, −1 for t ∈ I+m, t

′ ∈ I−m

3) independent for t ∈ Im, t
′ ∈ Im′ 6= Im

ψ[≤m]±
α (t) = 2

m
2

(

z[m]±
α (t) +

1√
2
Z [m−1]±

α

)

,

ϕ
[≤m]±
β (t) = ζ

[m]±
β (t) + Ξ

[m−1]±
β
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hierarchy of lattice sites [1, . . . , 2N ]: i intervals on scale 0

ψ[≤m]±
α (t) = 2

m
2

(

z[m]±
α (t) +

1√
2
Z [m−1]±

α

)

,

ϕ
[≤m]±
β (t) = ζ

[m]±
β (t) + Ξ

[m−1]±
β

where z, ζ are fields of scale m while Z e Ξ are constant on
scale m (not m− 1).
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A second key is that the integral on a given scale can be
exactly computed: no new operators arise

V (I) =
1

2

(
λ0 (A1 ·B1 + A2 ·B2) + λ1 (A

2

1
+A2

2
)

+ λ2 (B
2

1
+B2

2
) + λ3 (A

2

1
B2

1
+A2

2
ϕB2

2
)
)

with A1
def
= ψ+(t)σψ−(t),B1(t)

def
= ϕ+(t)σϕ−(t) t ∈ I−.

eV
′(I) = C exp

1

2

(
λ′0 a · b+ λ′

1
a2 + λ′

2
b2 + λ′

3
a2b2

)

=

∫
eV (I) P (dz)P (dζ)

defines exact recursion
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The running couplings λn can be explicitly computed in
closed form in terms of the λn+1.

λ′0 =
2

C

(1
2
λ0 + 9λ0λ3 +

3

2
λ0λ2 +

3

2
λ0λ1 − λ20

)

λ′1 =
2

C

(1
4
λ1 +

9

2
λ2λ3 +

1

8
λ20

)
,

λ′2 =
2

C

(
λ2 + 18λ1λ3 +

1

2
λ20

)

λ′3 =
2

C

(1
4
λ3 +

1

8
λ1λ2 +

1

48
λ20

)

C =1 + 3λ20 + 9λ21 + 9λ22 + 324λ23

In other words model exactly reducible to a 4 dim. map

Non perturbative as for n→ −∞ (IR limit) λn converge to
non trivial fixed point if h = 0, exactly computable.
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If only marginal and relevant retained 4 fixed points

λ′0 =
2

C

(1
2
λ0 +

3

2
λ0λ2 − λ20

)

λ′2 =
2

C

(
λ2 +

1

2
λ20

)

C =1 + 3λ20 + 9λ22

f0=(0, 0) marginal, repelling λ0 < 0
f1=(0, 1

3
) unstable with marginal repelling λ0 < 0,

f2=(0,−1
3
) stable, fixed point for λ0 > 0,

f*=(−2
3
, 1
3
) stable

Starting from λ0 < 0 quickly close to f1 then slowly to f*
Kondo temp. βK = 2n0(λ0) is β the temperature at which
the non-trivial fixed point is reached by all components
For small λ, j = 0, 1, 3
nj(λ0) = c0|λ0|

−1, c0 ≃ 0.5
n2(λ0) = c2|λ0|

−1, c2 ≃ 2.
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Susceptibility: new operators needed to close beta

O4 = ~A · ~h, O5 = ~B · ~h, O6 = ~A · ~h ~B · ~h,

O7 = ~A2 ~B · ~h, O8 = ~B2 ~A · ~h

O0, O4, O6, O8 marginal and O2, O5 relevant + irrelevant

Calculating beta function: ∼ 20 Feynman graphs at h = 0
but (person dependent) 52100 graphs for h 6= 0; after
simplifications beta function with 81 coeff.

λ̃0 =
1

2
λ0 − λ0λ6 + 9λ0λ3 +

3

2
λ0λ2 +

3

2
λ0λ1 − λ20

λ̃1 =
1

4
λ1 +

9

2
λ2λ3 +

3

4
λ28 +

1

24
λ26 +

1

2
λ5λ7 +

1

48
λ24 +

1

2
λ0λ6 +

1

8
λ20

λ̃2 =λ2 + 18λ1λ3 +
1

2
λ20 + 3λ27 +

1

6
λ26 +

1

12
λ25 + λ4λ8 +

1

3
λ0λ6

λ̃3 =
1

4
λ3 +

1

8
λ1λ2 +

1

24
λ20 +

1

72
λ0λ6

1

144
λ26 + 6λ5λ7 +

1

24
λ4λ8
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λ̃4 =
1

2
λ4 + 3λ6λ7 +

1

2
λ5λ6 + 54λ3λ8 + 9λ2λ8 +

3

2
λ1λ4

+ 3λ0λ7 +
1

2
λ0λ5

λ̃5 =λ5 + 6λ6λ8 + λ4λ6 + 108λ3λ7 + 3λ2λ5 + 18λ1λ7

+ 6λ0λ8 + λ0λ4

λ̃6 =
1

2
λ6 + 9λ7λ8 +

3

2
λ5λ8 +

3

2
λ4λ7 +

1

4
λ4λ5 + 9λ3λ6

+
3

2
λ2λ6 +

3

2
λ1λ6 + λ0λ6

λ̃7 =
1

4
λ7 +

1

4
λ6λ8 +

1

24
λ4λ6 +

3

4
λ3λ5 +

3

4
λ2λ7

+
1

8
λ1λ5 +

1

4
λ0λ8 +

1

24
λ0λ4
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λ̃8 =
1

2
λ8 +

1

2
λ6λ7 +

1

12
λ5λ6 +

3

2
λ3λ4 +

1

4
λ2λ4 +

3

2
λ1λ8

+
1

2
λ0λ7 +

1

12
λ0λ5

C =1 + 2λ20 + (λ0 + λ6)
2 + 9λ21 + 9λ22 + 324λ23 +

1

2
λ24 +

1

2
λ25

+ 18λ27 + 18λ28
Flow of running const: relevant,marginal,irrelevant h = 0
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2

Fig.1:plot of ℓ
ℓ∗

as a function of Nβ , λ0 ≡ α0 = −0.01.
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Projection of the flow on plane λ0, λ2

−0.6

−0.3

0

0.3

0.6

−1 −0.5 0 0.5

ℓ2

ℓ0

Fig.2: phase diagram projected on the (ℓ0, ℓ2) plane, with

initial conditions chosen in the plane that contains all four fixed

points: f* (linearly stable, yellow, nontrivial fixed pt.), f0

(trivial fixed pt. 1 unstable dir. and 1 marginal, green cross), f1

(1 linearly stable direction and one marginal, red star), and f2

(linearly stable, yellow).
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The flow to “high T fixed pt” at scale ∝ 1/| log h|

0
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Nβ

| log
2
(h)|
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✱
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✱
ℓ8
ℓ∗
8

Fig.3: ℓ
ℓ∗

versus Nβ = log2 β, at λ0 = −0.01, h = 2−40. ℓ∗0 –
ℓ∗3 are components of on-trivial fix. pt., ℓ∗4 through ℓ∗8 are
the values reached with largest absolute value by ℓ4 – ℓ8.
Flow is on h = 0-path until ℓ4–ℓ8 large: Nβ ∼ r(h). Then
→ 0, except relevant: r(h) = cr log2 β/| log2 h|, cr = 2.6.
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The equation of state

✸✳✹✵✻✼✻✸✸✶

✸✳✹✵✻✼✻✸✸✶

✸✳✹✵✻✼✻✸✸✷

0 2.5 × 10−7 5 × 10−7 7.5 × 10−7 1 × 10−6

h

χ

Fig.4: plot of χ(β, h) for h ≤ 10−6 at λ0 = −0.28 and
β = 220 (so that the largest value for βh is ∼ 1)
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Attempt at reproducing Wilson’s last graph

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T = 0 ❧✐♠✐ts

βK

β

βK

χ(β,0)

Fig.5: plot of βK

χ(β,0) as a function of βK

β
for various values of λ0:

λ0 = −0.024 (blue), λ0 = −0.02412 (green),λ0 = −0.05 (red). In
[7], λ0 = −0.024 and −0.02412. Note that the abscissa of the
data points are 2−n for n ≥ 0, so that there are only 3 points in
the range [0.25, 1]. The lines are drawn for visual aid.
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Sharp saturation of the marginal and irrelevant contants at
βK ≃ 1

2
1

|λ0|

0.5

0.52

0.54

0.56

0.58

1 2 3 4 5

| log10 |λ0||

n0(λ0)|λ0|✱ n1(λ0)|λ0|✱ n3(λ0)|λ0|

Fig.6: plot of nj(λ0)|λ0| for j = 0 (blue) and j = 1, 3 (red) as a
function of | log10 |λ0||.
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Sharp saturation of the relevant contants at βK ≃ 2 1
|λ0|

1.4

1.6

1.8

2

0 10 20 30 40 50

| log10 |λ0||

n2(λ0)
| log

2
|λ0||

Fig.6: plot of n2(λ0)| log2 |λ0|||
−1 as a function of | log10 |λ0||.

The relevant constants approach the fixed point 4 times more
slowly than the marginal and irrelevant (unlike their faster
approach to the temporary fixed point f1)
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h > 0 : sharp decay as h → 0 to the “high temperature” fixed
point rj(h) ≃ 2.6 1

− log2 h

2.6

2.8

3

3.2

0 100 200 300

| log2(h)|

(
r0(h)✱r1(h)✱r2(h)✱r3(h)✱r4(h)✱r5(h)✱r6(h)✱r7(h)✱r8(h)

)
| log2(h)|

Fig.6: plot of rj(h)| log2(h)|| as a function of | log2(h)|.
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Fig.5a: Plot of χ(β, 0) as a function of log2 β for ℓ0 = −0.28
[1, 6, 2, 3, 4, 5]
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