Renormalization group, Kondo effect and hierarchical models G.Benfatto, I.Jauslin \& GG

1-d lattice, fermions+impurity, "Kondo problem"

$$
\begin{aligned}
& H_{h}=\sum_{\alpha= \pm}\left(\sum_{x=-L / 2}^{L / 2-1} \psi_{\alpha}^{+}(x)\left(-\frac{1}{2} \Delta-1\right) \psi_{\alpha}^{-}(x)+h \varphi^{+} \sigma^{z} \varphi^{-}\right) \\
& H_{K}=H_{0}+\lambda \sum_{\substack{\alpha, \alpha^{\prime}= \pm \gamma, \gamma^{\prime}= \pm}} \sum_{j=1}^{3} \psi_{\alpha}^{+}(0) \sigma_{\alpha, \alpha^{\prime}}^{j} \psi_{\alpha^{\prime}}^{-}(0) \varphi_{\gamma}^{+} \sigma_{\gamma, \gamma^{\prime}}^{j} \varphi_{\gamma^{\prime}}^{-}=H_{h}+V
\end{aligned}
$$

(1) $\psi_{\alpha}^{ \pm}(x), \varphi_{\gamma}^{ \pm}$C\&A operators, $\sigma^{j}, j=1,2,3$, Pauli matrices
(2) $x \in$ unit lattice, $-L / 2, L / 2$ identified (periodic b.c.)
(3) $\Delta f(x)=f(x+1)-2 f(x)+f(x-1)$ discrete Laplacian.

If $\lambda=0$ impurity-electrons independent: classic or quantum

$$
\chi(\beta, h) \propto \beta \underset{\beta \rightarrow \infty}{\longrightarrow} \infty, \quad \forall L \geq 1, \beta h<1
$$

Interaction (classic) elec.+imp.: field on both $\& \lambda \neq 0$

$$
\chi(\beta, h)=4 \beta \frac{\left(1+e^{-2 \lambda \beta} \cosh \beta h\right)}{\left(\cosh 2 \beta h+e^{-2 \lambda \beta}\right)^{2}} \xrightarrow[\beta \rightarrow \pm \infty]{ } \quad 0 \text { repulsive }
$$

field on impurity only: $\chi(\beta, 0)=\beta \rightarrow \infty$
Reason: $\lambda<0 \rightarrow$ rigidly antiparallel spins ????
Still true if $L<\infty$ classic\&quantum or $L=\infty$ classic
XY model confirms ( $\infty$ both cases, exact)
Then Trivial? (0 repulsive, $\infty$ attractive ?)
BUT

If $L=\infty$ quantum chain: new phenomena

1) at $\lambda=0 \Rightarrow$ Pauli paramagnetism (1926) local or specific suscpt. $<\infty$ at $T \geq 0$ :

$$
\chi(\infty, 0)=\rho \frac{1}{k_{B} T_{F}} \frac{d}{2}, \quad(\text { Pauli) }
$$

2) at fixed $\lambda<0 \Rightarrow$ Kondo effect: susceptibility $\chi(\beta, h)$ smooth at $T=0$ and $h \geq 0$

Kondo realized the problem ( $3^{d}$-order P.T.) and gave arguments (1964) for $\chi<\infty$ (actually conductivity $<\infty$ )

Anderson-Yuval-Hamann $(1969,70) \Rightarrow$ multiscale nature of the problem, relation with the 1D Coulomb gas \& solved the $\lambda>0$ case (no Kondo eff.), \& stressed that lack of asymptotic freedom $=$ obstacle for $\lambda<0$

Wilson (1974-75) overcame asymptotic freedom by discussing a somewhat modified model and finding a recursion scheme, numerically implementable in an appropriately simplified model.

The method built a sequence of approximate Hamiltonians (with finitely many coefficients) more and more accurately representing the system on larger and larger scales, leading to the Kondo effect via a nontrivial fixed point.

Evaluate $Z=\operatorname{Tr} e^{-\beta H_{K}}$ as a functional integral, (BG990). The free fields $\psi^{ \pm}(x), \varphi^{ \pm}$

$$
\psi^{ \pm}(x)=\sum_{m} e^{ \pm i k x} \psi^{ \pm[m]}(x), \varphi^{ \pm}=\sum_{m} \varphi^{ \pm[m]}
$$

can be decomposed into components of scale $2^{-m}, m \in Z$

$$
\psi^{ \pm}(x)=\sum_{m=0}^{-\infty} \sum_{\omega= \pm} e^{ \pm i \omega p_{f} x} 2^{\frac{1}{2} m} \psi_{\omega}^{ \pm[m]}\left(2^{m} x\right), \quad \varphi^{ \pm}=\sum_{m=0}^{-\infty} \varphi^{ \pm[m]}
$$

quasi particles, neglecting the UV (i.e. $m \leq 0$ ). Then represent $Z$ as a Grassmann integral.
Fields become Grassman variables.
But since the impurity is localized observ. localized at 0 depend on fields at $0, \psi^{ \pm}(0), \varphi^{ \pm} \Rightarrow 1 \mathrm{D}$ problem (AYH).

Key: response to field $h$ acting on impurity site only depends on the propagators with $x=0$.

By Wick $\Rightarrow$ only average values, over "time" of propagators at $x=0$ needed. Propagators on scale $m$ are $g^{[m]}\left(t-t^{\prime}\right)$

$$
\begin{aligned}
& \delta_{m, m^{\prime}} \sum_{\omega} \int \frac{d k_{0} d k}{(2 \pi)^{2}} \frac{e^{i k_{0}\left(t-t^{\prime}\right)}}{-i k_{0}+\omega e(k)} \chi\left(2^{-2 m}\left(k_{0}^{2}+k^{2}\right)\right), \\
& \delta_{m, m^{\prime}} \int \frac{d k_{0}}{2 \pi} \frac{e^{i \sigma k_{0}\left(t-t^{\prime}\right)}}{-i \sigma k_{0}} \chi\left(2^{-m} \frac{k_{0}}{2 \pi}\right)
\end{aligned}
$$

singularity at $t-t^{\prime}=0$ (UV sing.) and at $t-t^{\prime}=\infty$ (IR sing.) regularized via $\chi$ on scale $2^{-m} ; e(k)=-\cos k$.

Illustration of (AYH970) remark: 1D problem, (long range)
Main operators : $\vec{A}_{x} \stackrel{\text { def }}{=} \psi_{x}^{+} \boldsymbol{\sigma} \psi_{x}^{-}, \vec{B}_{x} \stackrel{\text { def }}{=} \varphi^{+} \boldsymbol{\sigma} \varphi^{-}$

Interaction Ham. is constructed via the operators

$$
O_{0}=-\lambda^{0} \vec{A} \cdot \vec{B}, O_{1}=\lambda^{1} \vec{A}^{2}, O_{2}=\lambda^{2} \vec{B}^{2}, O_{3}=\lambda^{3} \vec{A}^{2} \vec{B}^{2}
$$

$H_{K}$ on scale $m=0$ is (with $\lambda^{0}<0$ and $\lambda^{1}=\lambda^{2}=\lambda^{3}=0$ )

$$
H_{K}=H_{0}-\sum_{x}\left(\lambda^{0} O_{x, 0}+\lambda^{1} O_{x, 1}+\lambda^{2} O_{2}+\lambda^{3} O_{x, 3}\right)+\ldots
$$

Set RG analysis via (Grassmannian) as BG990 for $\operatorname{Tr} e^{-\beta H_{K}}$ Scaling $O_{0}=$ marginal, $O_{2}=$ relevant
Difficulty is immediate: multiscale PT at $h=0$ generates a power series with at least the above 4 running costants $\left(\boldsymbol{\lambda}_{n}\right) n \leq 0$. Should be related by recurrence

$$
\boldsymbol{\lambda}_{n}=\Lambda \boldsymbol{\lambda}_{n+1}+\mathcal{B}\left(\boldsymbol{\lambda}_{n+1}\right), \quad \lambda_{0}=(-\lambda, 0,0,0)
$$

with $\Lambda=\left(1, \frac{1}{2}, 2, \frac{1}{2}\right)$ and $\mathcal{B}$ is a formal series.

Even forgetting convergence, PT of no use: marginal term grows (if $\lambda_{0}<0$ ) and generates relevant term!

To understand a simpler problem turn to hierarchical model The propagators $g^{[m]}\left(t-t^{\prime}\right)$ are c̃onstant for $t>t^{\prime}$ on scale $m$, i.e. $t, t^{\prime} \in I_{m}=\left[n 2^{-m},(n+1) 2^{-m}\right]$, antisymmetric in $t, t^{\prime}$ and fast decay on scale $2^{-m}$
Hierarchical fields will be defined by assigning to each $I_{m}$ two Grassmannians $2^{\frac{1}{2} m} z^{[m]}(t), \zeta^{[m]}(t)$

1) exactly constant in each half of $I_{m}$
2) propagator 1 for $t \in I_{m}^{-}, t^{\prime} \in I_{m}^{+},-1$ for $t \in I_{m}^{+}, t^{\prime} \in I_{m}^{-}$

3 ) independent for $t \in I_{m}, t^{\prime} \in I_{m^{\prime}} \neq I_{m}$

$$
\begin{aligned}
\psi_{\alpha}^{[\leq m] \pm}(t) & =2^{\frac{m}{2}}\left(z_{\alpha}^{[m] \pm}(t)+\frac{1}{\sqrt{2}} Z_{\alpha}^{[m-1] \pm}\right) \\
\varphi_{\beta}^{[\leq m] \pm}(t) & =\zeta_{\beta}^{[m] \pm}(t)+\Xi_{\beta}^{[m-1] \pm}
\end{aligned}
$$



Hierarchy of lattice sites $\left[1, \ldots, 2^{N}\right]: i$ intervals on scale 0

$$
\begin{aligned}
& \psi_{\alpha}^{[\leq m] \pm}(t)=2^{\frac{m}{2}}\left(z_{\alpha}^{[m] \pm}(t)+\frac{1}{\sqrt{2}} Z_{\alpha}^{[m-1] \pm}\right) \\
& \varphi_{\beta}^{[\leq m] \pm}(t)=\zeta_{\beta}^{[m] \pm}(t)+\Xi_{\beta}^{[m-1] \pm}
\end{aligned}
$$

where $z, \zeta$ are fields of scale $m$ while $Z$ e $\Xi$ are constant on scale $m$ (not $m-1$ ).

A second key is that the integral on a given scale can be exactly computed: no new operators arise

$$
\begin{aligned}
V(I)= & \frac{1}{2}\left(\lambda_{0}\left(\mathbf{A}_{1} \cdot \mathbf{B}_{1}+\mathbf{A}_{\mathbf{2}} \cdot \mathbf{B}_{2}\right)+\lambda_{1}\left(\mathbf{A}_{1}^{2}+\mathbf{A}_{\mathbf{2}}^{2}\right)\right. \\
& \left.+\lambda_{2}\left(\mathbf{B}_{1}^{2}+\mathbf{B}_{2}^{2}\right)+\lambda_{\mathbf{3}}\left(\mathbf{A}_{1}^{2} \mathbf{B}_{1}^{2}+\mathbf{A}_{2}^{2} \varphi \mathbf{B}_{2}^{2}\right)\right)
\end{aligned}
$$

with $\mathbf{A}_{1} \stackrel{\text { def }}{=} \psi^{+}(t) \boldsymbol{\sigma} \psi^{-}(t), \mathbf{B}_{1}(t) \stackrel{\text { def }}{=} \varphi^{+}(t) \boldsymbol{\sigma} \varphi^{-}(t) t \in I^{-}$.

$$
\begin{aligned}
e^{V^{\prime}(I)} & =C \exp \frac{1}{2}\left(\lambda_{0}^{\prime} \mathbf{a} \cdot \mathbf{b}+\lambda_{\mathbf{1}}^{\prime} \mathbf{a}^{2}+\lambda_{\mathbf{2}}^{\prime} \mathbf{b}^{2}+\lambda_{\mathbf{3}}^{\prime} \mathbf{a}^{2} \mathbf{b}^{2}\right) \\
& =\int e^{V(I)} P(d z) P(d \zeta)
\end{aligned}
$$

defines exact recursion

The running couplings $\boldsymbol{\lambda}_{n}$ can be explicitly computed in closed form in terms of the $\boldsymbol{\lambda}_{n+1}$.

$$
\begin{aligned}
\lambda_{0}^{\prime} & =\frac{2}{C}\left(\frac{1}{2} \lambda_{0}+9 \lambda_{0} \lambda_{3}+\frac{3}{2} \lambda_{0} \lambda_{2}+\frac{3}{2} \lambda_{0} \lambda_{1}-\lambda_{0}^{2}\right) \\
\lambda_{1}^{\prime} & =\frac{2}{C}\left(\frac{1}{4} \lambda_{1}+\frac{9}{2} \lambda_{2} \lambda_{3}+\frac{1}{8} \lambda_{0}^{2}\right), \\
\lambda_{2}^{\prime} & =\frac{2}{C}\left(\lambda_{2}+18 \lambda_{1} \lambda_{3}+\frac{1}{2} \lambda_{0}^{2}\right) \\
\lambda_{3}^{\prime} & =\frac{2}{C}\left(\frac{1}{4} \lambda_{3}+\frac{1}{8} \lambda_{1} \lambda_{2}+\frac{1}{48} \lambda_{0}^{2}\right) \\
C & =1+3 \lambda_{0}^{2}+9 \lambda_{1}^{2}+9 \lambda_{2}^{2}+324 \lambda_{3}^{2}
\end{aligned}
$$

In other words model exactly reducible to a 4 dim. map
Non perturbative as for $n \rightarrow-\infty$ (IR limit) $\boldsymbol{\lambda}_{n}$ converge to non trivial fixed point if $h=0$, exactly computable.

If only marginal and relevant retained 4 fixed points

$$
\begin{aligned}
\lambda_{0}^{\prime} & =\frac{2}{C}\left(\frac{1}{2} \lambda_{0}+\frac{3}{2} \lambda_{0} \lambda_{2}-\lambda_{0}^{2}\right) \\
\lambda_{2}^{\prime} & =\frac{2}{C}\left(\lambda_{2}+\frac{1}{2} \lambda_{0}^{2}\right) \\
C & =1+3 \lambda_{0}^{2}+9 \lambda_{2}^{2}
\end{aligned}
$$

$\mathrm{f} 0=(0,0)$ marginal, repelling $\lambda_{0}<0$
$\mathrm{f} 1=\left(0, \frac{1}{3}\right)$ unstable with marginal repelling $\lambda_{0}<0$,
$\mathrm{f} 2=\left(0,-\frac{1}{3}\right)$ stable, fixed point for $\lambda_{0}>0$,
$\mathrm{f}^{*}=\left(-\frac{2}{3}, \frac{1}{3}\right)$ stable
Starting from $\lambda_{0}<0$ quickly close to f 1 then slowly to $\mathrm{f}^{*}$ Kondo temp. $\beta_{K}=2^{n_{0}\left(\lambda_{0}\right)}$ is $\beta$ the temperature at which the non-trivial fixed point is reached by all components
For small $\lambda, j=0,1,3$
$n_{j}\left(\lambda_{0}\right)=c_{0}\left|\lambda_{0}\right|^{-1}, \quad c_{0} \simeq 0.5$
$n_{2}\left(\lambda_{0}\right)=c_{2}\left|\lambda_{0}\right|^{-1}, \quad c_{2} \simeq 2$.

Susceptibility: new operators needed to close beta

$$
\begin{aligned}
& O_{4}=\vec{A} \cdot \vec{h}, O_{5}=\vec{B} \cdot \vec{h}, O_{6}=\vec{A} \cdot \vec{h} \vec{B} \cdot \vec{h}, \\
& O_{7}=\vec{A}^{2} \vec{B} \cdot \vec{h}, O_{8}=\vec{B}^{2} \vec{A} \cdot \vec{h}
\end{aligned}
$$

$O_{0}, O_{4}, O_{6}, O_{8}$ marginal and $O_{2}, O_{5}$ relevant + irrelevant
Calculating beta function: $\sim 20$ Feynman graphs at $h=0$ but (person dependent) 52100 graphs for $h \neq 0$; after simplifications beta function with 81 coeff.

$$
\begin{aligned}
& \tilde{\lambda}_{0}=\frac{1}{2} \lambda_{0}-\lambda_{0} \lambda_{6}+9 \lambda_{0} \lambda_{3}+\frac{3}{2} \lambda_{0} \lambda_{2}+\frac{3}{2} \lambda_{0} \lambda_{1}-\lambda_{0}^{2} \\
& \widetilde{\lambda}_{1}=\frac{1}{4} \lambda_{1}+\frac{9}{2} \lambda_{2} \lambda_{3}+\frac{3}{4} \lambda_{8}^{2}+\frac{1}{24} \lambda_{6}^{2}+\frac{1}{2} \lambda_{5} \lambda_{7}+\frac{1}{48} \lambda_{4}^{2}+\frac{1}{2} \lambda_{0} \lambda_{6}+\frac{1}{8} \lambda_{0}^{2} \\
& \widetilde{\lambda}_{2}=\lambda_{2}+18 \lambda_{1} \lambda_{3}+\frac{1}{2} \lambda_{0}^{2}+3 \lambda_{7}^{2}+\frac{1}{6} \lambda_{6}^{2}+\frac{1}{12} \lambda_{5}^{2}+\lambda_{4} \lambda_{8}+\frac{1}{3} \lambda_{0} \lambda_{6} \\
& \widetilde{\lambda}_{3}=\frac{1}{4} \lambda_{3}+\frac{1}{8} \lambda_{1} \lambda_{2}+\frac{1}{24} \lambda_{0}^{2}+\frac{1}{72} \lambda_{0} \lambda_{6} \frac{1}{144} \lambda_{6}^{2}+6 \lambda_{5} \lambda_{7}+\frac{1}{24} \lambda_{4} \lambda_{8}
\end{aligned}
$$

$$
\begin{aligned}
\widetilde{\lambda}_{4}= & \frac{1}{2} \lambda_{4}+3 \lambda_{6} \lambda_{7}+\frac{1}{2} \lambda_{5} \lambda_{6}+54 \lambda_{3} \lambda_{8}+9 \lambda_{2} \lambda_{8}+\frac{3}{2} \lambda_{1} \lambda_{4} \\
& +3 \lambda_{0} \lambda_{7}+\frac{1}{2} \lambda_{0} \lambda_{5} \\
\widetilde{\lambda}_{5}= & \lambda_{5}+6 \lambda_{6} \lambda_{8}+\lambda_{4} \lambda_{6}+108 \lambda_{3} \lambda_{7}+3 \lambda_{2} \lambda_{5}+18 \lambda_{1} \lambda_{7} \\
& +6 \lambda_{0} \lambda_{8}+\lambda_{0} \lambda_{4} \\
\widetilde{\lambda}_{6}= & \frac{1}{2} \lambda_{6}+9 \lambda_{7} \lambda_{8}+\frac{3}{2} \lambda_{5} \lambda_{8}+\frac{3}{2} \lambda_{4} \lambda_{7}+\frac{1}{4} \lambda_{4} \lambda_{5}+9 \lambda_{3} \lambda_{6} \\
& +\frac{3}{2} \lambda_{2} \lambda_{6}+\frac{3}{2} \lambda_{1} \lambda_{6}+\lambda_{0} \lambda_{6} \\
\widetilde{\lambda}_{7}= & \frac{1}{4} \lambda_{7}+\frac{1}{4} \lambda_{6} \lambda_{8}+\frac{1}{24} \lambda_{4} \lambda_{6}+\frac{3}{4} \lambda_{3} \lambda_{5}+\frac{3}{4} \lambda_{2} \lambda_{7} \\
& +\frac{1}{8} \lambda_{1} \lambda_{5}+\frac{1}{4} \lambda_{0} \lambda_{8}+\frac{1}{24} \lambda_{0} \lambda_{4}
\end{aligned}
$$

$$
\begin{aligned}
\widetilde{\lambda}_{8}= & \frac{1}{2} \lambda_{8}+\frac{1}{2} \lambda_{6} \lambda_{7}+\frac{1}{12} \lambda_{5} \lambda_{6}+\frac{3}{2} \lambda_{3} \lambda_{4}+\frac{1}{4} \lambda_{2} \lambda_{4}+\frac{3}{2} \lambda_{1} \lambda_{8} \\
& +\frac{1}{2} \lambda_{0} \lambda_{7}+\frac{1}{12} \lambda_{0} \lambda_{5} \\
C= & 1+2 \lambda_{0}^{2}+\left(\lambda_{0}+\lambda_{6}\right)^{2}+9 \lambda_{1}^{2}+9 \lambda_{2}^{2}+324 \lambda_{3}^{2}+\frac{1}{2} \lambda_{4}^{2}+\frac{1}{2} \lambda_{5}^{2}
\end{aligned}
$$

$$
+18 \lambda_{7}^{2}+18 \lambda_{8}^{2}
$$

Flow of running const: relevant,marginal,irrelevant $h=0$


Fig.1:plot of $\frac{\ell}{\ell^{*}}$ as a function of $N_{\beta}, \lambda_{0} \equiv \alpha_{0}=-0.01$.

Projection of the flow on plane $\lambda_{0}, \lambda_{2}$


Fig.2: phase diagram projected on the $\left(\ell_{0}, \ell_{2}\right)$ plane, with initial conditions chosen in the plane that contains all four fixed points: f* (linearly stable, yellow, nontrivial fixed pt.), f0 (trivial fixed pt. 1 unstable dir. and 1 marginal, green cross), f1 (1 linearly stable direction and one marginal, red star), and f2 (linearly stable, yellow).

The flow to "high T fixed pt" at scale $\propto 1 /|\log h|$


Fig.3: $\frac{\ell}{\ell^{*}}$ versus $N_{\beta}=\log _{2} \beta$, at $\lambda_{0}=-0.01, h=2^{-40}$. $\ell_{0}^{*}-$ $\ell_{3}^{*}$ are components of on-trivial fix. pt., $\ell_{4}^{*}$ through $\ell_{8}^{*}$ are the values reached with largest absolute value by $\ell_{4}-\ell_{8}$. Flow is on $h=0$-path until $\ell_{4}-\ell_{8}$ large: $N_{\beta} \sim r(h)$. Then $\rightarrow 0$, except relevant: $r(h)=c_{r} \log _{2} \beta /\left|\log _{2} h\right|, c_{r}=2.6$.

The equation of state


Fig.4: plot of $\chi(\beta, h)$ for $h \leq 10^{-6}$ at $\lambda_{0}=-0.28$ and $\beta=2^{20}$ (so that the largest value for $\beta h$ is $\sim 1$ )

## Attempt at reproducing Wilson's last graph



Fig.5: plot of $\frac{\beta_{K}}{\chi(\beta, 0)}$ as a function of $\frac{\beta_{K}}{\beta}$ for various values of $\lambda_{0}$ : $\lambda_{0}=-0.024$ (blue), $\lambda_{0}=-0.02412$ (green), $\lambda_{0}=-0.05$ (red). In [7], $\lambda_{0}=-0.024$ and -0.02412 . Note that the abscissa of the data points are $2^{-n}$ for $n \geq 0$, so that there are only 3 points in the range $[0.25,1]$. The lines are drawn for visual aid.

Sharp saturation of the marginal and irrelevant contants at $\beta_{K} \simeq \frac{1}{2} \frac{1}{\left|\lambda_{0}\right|}$

$$
n_{0}\left(\lambda_{0}\right)\left|\lambda_{0}\right|, n_{1}\left(\lambda_{0}\right)\left|\lambda_{0}\right|, n_{3}\left(\lambda_{0}\right)\left|\lambda_{0}\right|
$$



Fig.6: plot of $n_{j}\left(\lambda_{0}\right)\left|\lambda_{0}\right|$ for $j=0$ (blue) and $j=1,3$ (red) as a function of $\left|\log _{10}\right| \lambda_{0}| |$.

Sharp saturation of the relevant contants at $\beta_{K} \simeq 2 \frac{1}{\left|\lambda_{0}\right|}$


Fig.6: plot of $n_{2}\left(\lambda_{0}\right)\left|\log _{2}\right| \lambda_{0} \mid \|^{-1}$ as a function of $\left|\log _{10}\right| \lambda_{0}| |$.
The relevant constants approach the fixed point 4 times more slowly than the marginal and irrelevant (unlike their faster approach to the temporary fixed point f1)
$h>0$ : sharp decay as $h \rightarrow 0$ to the "high temperature" fixed point $r_{j}(h) \simeq 2.6 \frac{1}{-\log _{2} h}$


Fig.6: plot of $r_{j}(h)\left|\log _{2}(h)\right| \mid$ as a function of $\left|\log _{2}(h)\right|$.


Fig.5a: Plot of $\chi(\beta, 0)$ as a function of $\log _{2} \beta$ for $\ell_{0}=-0.28$ $[1,6,2,3,4,5]$

Falco Memorial 9/6/2015

References
http://arxiv.org \& http://ipparco.roma1.infn.it and:
圊 G. Benfatto, P. Falco, and V. Mastropietro.
Functional integral construction of the massive Thirring model: Verification of axioms and massless limit.

Communications in Mathematical Physics, 273:67-118, 2007.

Fi. Benfatto, P. Falco, and V. Mastropietro.
Massless Sine-Gordon and Massive Thirring Models: proof of the Coleman's equivalence.

Comm. in Math. Phys., 285:713-762, 2008.
E. Benfatto, P. Falco, and V. Mastropietro.

Extended scaling relations for planar lattice models.
Communications in Mathematical Physics, 292:569-605, 2009.

目 G．Benfatto and G．Gallavotti．
Perturbation theory of the Fermi surface in a quantum liquid．a general quasi particle formalism and one dimensional systems．
Journal of Statistical Physics，59：541－664， 1990.
目 G．Benfatto and G．Gallavotti．
Renormalization group approach to the theory of the fermi surface．

$$
\text { Physical Review B, 42:9967-9972, } 1990 .
$$

目 F．Bonetto，P．Falco，and A．Giuliani．
Analyticity of the SRB measure of a lattice of coupled Anosov diffeomorphisms of the torus．

Journal of Mathematical Physics，45：3282－3309， 2004.
圊 K．Wilson．
The renormalization group．

