Renormalization group, Kondo effect and hierarchical models
G.Benfatto, I.Jauslin & GG

1-d lattice, fermions+impurity, “Kondo problem”
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(1) (), goff C&A operators, 0/, j = 1,2, 3, Pauli matrices
(2) x € unit lattice, —L/2, L/2 identified (periodic b.c.)
(3) Af(x) = f(z+1)—2f(z) + f(z — 1) discrete Laplacian.
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If A = 0 impurity-electrons independent: classic or quantum
Interaction (classic) elec.4+imp.: field on both & A # 0

(14 e=2* cosh 8h) . Orepulsive

h)=4
x(8,h) g (cosh 2Bh + e=2X8)2 B=+oc oo attractive

field on impurity only: x(5,0) = 8 — o
Reason: A < 0 — rigidly antiparallel spins 7777

Still true if L < oo classic&quantum or L = oo classic
XY model confirms (0o both cases, exact)

Then Trivial? (0 repulsive, oo attractive ?)

BUT
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If L = oo quantum chain: new phenomena
1) at A = 0 = Pauli paramagnetism (1926)
local or specific suscpt. < oo at T'> 0 :

1 d
= T2

X(00,0) (Pauli)

2) at fixed A < 0 = Kondo effect:

susceptibility x(5, h)
smooth at 7"=0 and h >0
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Kondo realized the problem (3%-order P.T.) and gave
arguments (1964) for x < oo (actually conductivity < oo)

Anderson-Yuval-Hamann (1969,70) =- multiscale nature of
the problem, relation with the 1D Coulomb gas & solved
the A > 0 case (no Kondo eff.), & stressed that lack of
asymptotic freedom = obstacle for A < 0

Wilson (1974-75) overcame asymptotic freedom by
discussing a somewhat modified model and finding a
recursion scheme, numerically implementable in an
appropriately simplified model.

The method built a sequence of approximate Hamiltonians
(with finitely many coefficients) more and more accurately
representing the system on larger and larger scales, leading
to the Kondo effect via a nontrivial fixed point.
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Evaluate Z = Tre 7% as a functional integral, (BG990).
The free fields y*(z), p*

wi(x) _ Z eiikxwi[m] Z 80

m

can be decomposed into components of scale 27", m € Z

@Di(l') _ i Z ezl:iwpf:v Q%m ¢f[m}(2mx)7 (P:I: _ i spzl:[m}
m=0

m=0w=%

quasi particles, neglecting the UV (i.e. m < 0). Then
represent Z as a Grassmann integral.
Fields become Grassman variables.

But since the impurity is localized observ. localized at 0
depend on fields at 0, ¥*(0), p* = 1D problem (AYH).
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Key: response to field A acting on impurity site only
depends on the propagators with x = 0.

By Wick = only average values, over “time” of propagators
at 7 = 0 needed. Propagators on scale m are g™ (t —t')

dkodk ~ eot=t)
mmZ/ R X277 (kg + k7)),

2 —iko + we(k)
dk wko(t 2] k
(5m,m/ / _0€—X<27m70>
2r  —iokg 2T
singularity at t — ¢ =0 (UV sing.) and at t — ¢’ = oo (IR
sing.) regularized via y on scale 27; e(k) = — cos k.

[lustration of (AYH970) remark: 1D problem, (long range)

‘ - d 3 ode _
Main operators : A, el vioy,, B, =) prop
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Interaction Ham. is constructed via the operators
Og=—NA-B, Oy = A4 0y = N2B?, O3 =\ A*B?
Hy on scale m = 0 is (with A\ < 0 and A\ = \? = \? = 0)

Hy = Hy—» (A’040+ X' Oqp1 + X0y + N0, 5) +

xT

Set RG analysis via (Grassmannian) as BG990 for Tre P«
Scaling Oy = marginal, Oy = relevant

Difficulty is immediate: multiscale PT at h = 0 generates a
power series with at least the above 4 running costants
(An) n < 0. Should be related by recurrence

A — AA7L+1 + B<)\n+l)7 )\() — (—)\, 0/ 0, 0)

with A = (1, 3,2, 3) and B is a formal series.
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Even forgetting convergence, PT' of no use: marginal term
grows (if Ag < 0) and generates relevant term!

To understand a simpler problem turn to hierarchical model

The propagators g™l (t — ') are Gonstant for t > ' on scale
m, i.e. t,t' € I, = [n27™, (n+1)27™], antisymmetric in ¢, #
and fast decay on scale 27™

Hierarchical fields will be defined by assigning to each I,
1

two Grassmannians 22™z™(¢), ¢Iml(t)

1) exactly constant in each half of I,

2) propagator 1 fort € I~ t' € It —1 fort € If

m? m? m?

3) independent for t € I,,,, t' € I, # I,

tel,

. 1
[<mlE () — 0% (Z[m}i £+ _Z[m—ui>
b () o (1) oA :

<m]+ m]+ —[m—1]%
o5 "0 = G
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123456789 10111213141516
Hierarchy of lattice sites [1,...,2"]: i intervals on scale 0

m 1
[<mlt () — 9% <Z[m}it _‘__Z[m—l]i)’
v = 2% () + 52

<ml]+ m|+ —[m—1]%
o5 ") = M+ E

where z, ( are fields of scale m while Z e = are constant on
scale m (not m — 1).
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A second key is that the integral on a given scale can be
exactly computed: no new operators arise

1
V(I) =5 <)\0 (A1 Bi+ Ay By) + A (AT +A3)
+ X (B2 4+ B2)+ A3 (AZB2+ A ngz))

def

with A, &yt ()oy (1), Bi(H) 2 ot (o (t) t € I~

e’ = Cexp = (/\'a b+ N aZ+ N, b2+ )\, 2b2>
= / eV P(dz)P(d¢)

defines exact recursion
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The running couplings A,, can be explicitly computed in
closed form in terms of the A, ;.

2 /1 3 3
Ny == (5)\0 + 9AoA3 + §>\o>\2 + 5/\0/\1 - /\(2)>

C

2,1, 9 1
I < ~\2
A1_(1(4A1+2A2A3+8A0)’
/ _2< 1 2)
X =2 (Ae 18N + 507

2 /1 1 1
I 2. - T2
As _0(4AS TghiAet 48)\())

C =1+ 3\5 + 9T + 9)\3 + 324)]
In other words model exactly reducible to a 4 dim. map

Non perturbative as for n — —oo (IR limit) A,, converge to
non trivial fixed point if h = 0, exactly computable.
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If only marginal and relevant retained 4 fixed points

\, :%(%AO + ;AOAQ - AS)
42 b

C =143\ + 9\

f0=(0,0) marginal, repelling \g < 0
f1=(0, %) unstable with marginal repelling A\g < 0,
f2=(0, —% stable, fixed point for Ay > 0,

i

f¥=(—2, 3) stable

Starting from A\g < 0 quickly close to f1 then slowly to f*
Kondo temp. Bx = 200 is /3 the temperature at which
the non-trivial fixed point is reached by all components
For small A\, 7 =0,1,3

n]’()\o) = CQ’)\Q’_l, co >~ 0.5

ng()\o) :CQ‘)\O‘_l, 6222.
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Susceptibility: new operators needed to close beta

—

Oy=A-h, O5=B-h, Og=A-hB-h,
O; =A’B -h, Os = B*A - I
Oy, Oy4, Og, Og marginal and Og, O5 relevant + irrelevant

Calculating beta function: ~ 20 Feynman graphs at h = 0
but (person dependent) 52100 graphs for h # 0; after
simplifications beta function with 81 coeff.

~ 1 3 3
Ao =520 = Aods + Ohods + S Aods + S Ao — A
~ 1 9 3
M =7h Aok + Z/\g 24/\2 + = )\5/\7 - 48/\2 - Ao)\6 + 8>\2
~ 1 1 1 1
_ 1 T2 2, 224 2
Az =As + 18\ A3 + 2)\ +3A SN oA dads 3)\0)\6
~ 1 1 .
As =723+ ke + 24)\ Mo 144/\ + 6A5A7 + —4)\4/\8
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~ 1 1 3
=5 A+ 36 + S Ash + 543 + 9Aads + S s
1
+3A0Ar + 5 Aos
s =5+ 66 s + Aadg + 108X3 A7 - 3hohs &+ 18A N7

+ 6o A + AgAy
~ 1 3 3 1
)\6 :§>\6 + 9)\7)\8 + 5)\5)\8 + 5)\4)\7 + 1/\4>\5 + 9)\3)\6
3 3
+ 5/\2>\6 + 5)\1)\6 + XoXs
~ 1 1 1 3 3
)\7 :Z__L/\7 + Z_l)\ﬁ)\8 + ﬂ)\zlAﬁ + Z)\g)\f, + Z)\Q)W

1 1 1
+ g)\l)\g, + Z)\Q/\g + ﬂ)\o)@
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~ 1 1 1 3 1 3
Ag Z—/\s + _)\6)\7 + _)\5)\6 + 5)\3)\4 + 4_1/\2>\4 + 5/\1/\8

1 1
C =14 205 + (Ao + A6)® + 9NT + A3 + 324)3 + §Ai + §A§

+ 182 4 18)3
Flow of runmng const: relevant ;marginal irrelevant h = 0
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Fig.1:plot of £ 7= as a function of Ng, Ao = ap = —0.01.
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Projection of the flow on plane \g, Ao
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Fig.2: phase diagram projected on the (¢y, ¢2) plane, with
initial conditions chosen in the plane that contains all four fixed
points: f* (linearly stable, yellow, nontrivial fixed pt.), fO
(trivial fixed pt. 1 unstable dir. and 1 marginal, green cross), fl
(1 linearly stable direction and one marginal, red star), and 2
(linearly stable, yellow).
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The flow to “high T fixed pt” at scale o 1/|log h|
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Fig.3: £ versus N = log, 3, at Ag = —0.01, h =271 ¢; —

05 are components of on-trivial fix. pt., £; through /5 are
the values reached with largest absolute value by ¢4, — (5.
Flow is on h = 0-path until ¢,—(s large: Ng ~ r(h). Then
— 0, except relevant: r(h) = ¢, log, 8/|log, hl, ¢, = 2.6.
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The equation of state

3.40676332
3.40676331

3.40676331
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h

Fig.4: plot of x(3,h) for h < 107% at Ay = —0.28 and
B = 22° (so that the largest value for Bh is ~ 1)
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Attempt at reproducing Wilson’s last graph

B
x(8,0)
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Fig.5: plot of x? éfo) as a function of %{ for various values of Ap:
Ao = —0.024 (blue), Ao = —0.02412 (green),Ag = —0.05 (red). In
[7], Ao = —0.024 and —0.02412. Note that the abscissa of the

data points are 27" for n > 0, so that there are only 3 points in

the range [0.25,1]. The lines are drawn for visual aid.
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Sharp saturation of the marginal and irrelevant contants at
~ L1 1
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Fig.6: plot of nj(Ag)|Ao| for j =0 (blue) and j = 1,3 (red) as a
function of | log;q |Aol|-
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Sharp saturation of the relevant contants at Sx ~ Qﬁ

n2(Xo)
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Fig.6: plot of na(A\o)|logs [Aol|| ™! as a function of |logyo [No]|-

The relevant constants approach the fixed point 4 times more
slowly than the marginal and irrelevant (unlike their faster
approach to the temporary fixed point f1)
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h > 0 : sharp decay as h — 0 to the “high temperature” fixed

point r;(h) ~ 2.6@

(ru(/z),rl(h),/'_)\'//‘),7‘;;()1),r4(h),/ 5(h)yre(h)yre(h :,7‘3()1))|10g2(h)|
3.2

2.6
0

[log, (h)]

Fig.6: plot of 7;(h)|logy(h)|| as a function of |logy(h)|.
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Fig.5a: Plot of x(,0) as a function of log, 8 for £y = —0.28
[1, 6,2, 3, 4, 5]
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