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Outline

1 Motivations and mathematical setting:
3D quantum Heisenberg ferromagnet at low temperature.
The spin-wave theory and the Holstein-Primakoff representation.

2 Main results:
Validity of the spin-wave theory for the free energy at low temperature.
Quasi long-range order.
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Motivations and Mathematical Setting

Motivations

The Heisenberg model (HM) is a paradigmatic to study phase
transitions in presence of a continuous symmetry.
Very few rigorous results (mostly or almost exclusively based on
reflection positivity).

Literature about HM
Absence of phase transitions in 1 or 2D [Mermin, Wagner ‘66].
classical Heisenberg: proof of symmetry breaking [Fröhlich,
Simon, Spencer ‘76]; spin-wave expansion [Balaban ‘95–’98];
plane rotator model: exactness of the spin-wave expansion to any
order [Bricmont, Fontaine, Lebowitz, Lieb, Spencer ‘81];
quantum Heisenberg antiferromagnet: proof of symmetry breaking
[Dyson, Lieb, Simon ‘78];
quantum Heisenberg ferromagnet is notably missing!
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Motivations and Mathematical Setting

Ferromagnetic Heisenberg model

Ferromagnetic quantum Heisenberg Hamiltonian

H =
∑
〈x,y〉⊂Λ

(
S2 − Ŝx · Ŝy

)

Λ ⊂ Z3 is a 3D box of side length L with periodic boundary
conditions.
〈x,y〉 denotes nearest neighbors in Λ, i.e., |x− y| = 1.
Ŝ quantum spin operator on C2S+1 (2S integer), i.e., generator of a
2S + 1-dimensional representation of SU(2):[
Ŝjx, Ŝ

k
y

]
= iεjklŜ

l
xδx,y , Ŝ2

x = (Ŝ1
x)2 + (Ŝ2

x)2 + (Ŝ3
x)2 = S(S + 1).

H acts on the Hilbert space H ' C(2S+1)L3
.

H is normalized so that the ground state energy is 0.
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k
y

]
= iεjklŜ
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x)2 + (Ŝ2
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Motivations and Mathematical Setting

Ground states

Introduce the total spin ŜT =
∑

x∈Λ Ŝx and the eigenstates
∣∣ST , S3

T

〉
of Ŝ2

T , i.e., such that Ŝ2
T

∣∣ST , S3
T

〉
= ST (ST + 1)

∣∣ST , S3
T

〉
.

Ground states
The ground states of H are the states with maximal total spin∣∣SL3, S3

T

〉
, with S3

T = −SL3, . . . , SL3.

Ground states are such that, for any nearest neighbor pair 〈x,y〉,
Ŝx · Ŝy reaches its maximal value S2.

Also the partial sums (Ŝσ(1) + · · · Ŝσ(N−k))
2, with k = 1, . . . , N − 1

and σ any perturbation, must be maximal on a ground state.
The degeneracy 2SL3 + 1 is due to spherical symmetry of the model
and could be removed by adding an external magnetic field.
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Motivations and Mathematical Setting

Excited states: spin-waves

Assume that the system is in the ground state
∣∣SL3, SL3

〉
(e.g.,

because of a small h < 0) =⇒ one can think of producing an excited
state by lowering just one spin: setting Ŝ±x = Ŝ1

x ± iŜ2
x,

|x〉 = 1√
2S
Ŝ−x
∣∣SL3, SL3

〉
|x〉 is not an eigenstate of H but a linear combination can be...

Spin waves
The spin waves are the orthonormal states (with k ∈ Λ∗ = 2π

L Z3)

|k〉 =
1

L3/2

∑
x∈Λ

eik·x |x〉

H |k〉 = Sε(k) |k〉 , ε(k) = 2
∑

(1− cos ki) .
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Motivations and Mathematical Setting

Spin-wave approximation

Neglecting the interaction, spin waves behave like free bosons, i.e., the
mean number of excitations at β � 1 is given by the Bose statistics

〈nk〉β =
1

eSβε(k) − 1
If β � 1 the spin-wave approximation predicts:

free energy: f0(S, β) = − lim
L→∞

1

βL3/2
log Tr

(
e−βH0

)
,

f0(S, β) =
1

β

∫
[−π,π]3

dk

(2π)3
log
(

1− e−βSε(k)
)

= − ζ(5/2)

8(πS)3/2

1

β5/2

spontaneous magnetization Msp(β) = lim
L→∞

[
S − 1

L3

∑
k∈Λ∗

〈nk〉
]
,

Msp(β) = S −
∫

[−π,π]3

dk

(2π)3

1

eSβε(k) − 1
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Motivations and Mathematical Setting

Holstein-Primakoff representation

Creation & annihilation operators
For any x ∈ Λ one sets [Holstein, Primakoff ‘40]

a†x = Ŝ+
x

1√
S−Ŝ3

x

, ax = 1√
S−Ŝ3

x

Ŝ−x , n̂x = Ŝ3
x + S,

One has [ax, a
†
x] = 1, n̂x = a†xax and 0 ≤ n̂x ≤ 2S.

The Hilbert space H is isomorphic to FS with basis ⊗x∈Λ |nx) via
|nx)←→

∣∣S3
x = nx − S

〉
, n̂x |nx) = nx |nx) .

The Hamiltonian H becomes the operator

H = H0 −K, H0 = S
∑
〈x,y〉⊂Λ

(
a†x − a†y

)
(ax − ay) ,

K =
∑
〈x,y〉⊂Λ

{
a†xa

†
yaxay − 2Sa†x

[
1−

√
1− n̂x

2S

√
1− n̂y

2S

]
ay

}
.
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Motivations and Mathematical Setting

Validity of spin-wave approximation

H = S
∑(

a†x − a†y
)

(ax − ay)−K

The spin-wave approximation is given by dropping the spin-wave
interaction:

1 hard-core constraint nx ≤ 2S;
2 attractive interaction K.

Physics of spin-waves
K is formally of relative size S−1 with respect to H0.
At least if S � 1, the spin-wave approximation should be
asymptotically correct =⇒ to observe a non-trivial behavior one has to
consider temperature scales of order S−1.
What if S is fixed and β →∞? spin-wave approximation is still
expected to be correct! [Dyson ‘56; Zittartz ‘65].

M. Correggi (Roma 3) Ferromagnetic Heisenberg Model Frascati 11/06/2015 9 / 21



Motivations and Mathematical Setting

Validity of spin-wave approximation

H = S
∑(

a†x − a†y
)

(ax − ay)−K

The spin-wave approximation is given by dropping the spin-wave
interaction:

1 hard-core constraint nx ≤ 2S;
2 attractive interaction K.

Physics of spin-waves
K is formally of relative size S−1 with respect to H0.
At least if S � 1, the spin-wave approximation should be
asymptotically correct =⇒ to observe a non-trivial behavior one has to
consider temperature scales of order S−1.
What if S is fixed and β →∞? spin-wave approximation is still
expected to be correct! [Dyson ‘56; Zittartz ‘65].

M. Correggi (Roma 3) Ferromagnetic Heisenberg Model Frascati 11/06/2015 9 / 21



Motivations and Mathematical Setting

Validity of spin-wave approximation

H = S
∑(

a†x − a†y
)

(ax − ay)−K

The spin-wave approximation is given by dropping the spin-wave
interaction:

1 hard-core constraint nx ≤ 2S;
2 attractive interaction K.

Physics of spin-waves
K is formally of relative size S−1 with respect to H0.
At least if S � 1, the spin-wave approximation should be
asymptotically correct =⇒ to observe a non-trivial behavior one has to
consider temperature scales of order S−1.
What if S is fixed and β →∞? spin-wave approximation is still
expected to be correct! [Dyson ‘56; Zittartz ‘65].

M. Correggi (Roma 3) Ferromagnetic Heisenberg Model Frascati 11/06/2015 9 / 21



Motivations and Mathematical Setting

Validity of spin-wave approximation

H = S
∑(

a†x − a†y
)

(ax − ay)−K

The spin-wave approximation is given by dropping the spin-wave
interaction:

1 hard-core constraint nx ≤ 2S;
2 attractive interaction K.

Physics of spin-waves
K is formally of relative size S−1 with respect to H0.
At least if S � 1, the spin-wave approximation should be
asymptotically correct =⇒ to observe a non-trivial behavior one has to
consider temperature scales of order S−1.
What if S is fixed and β →∞? spin-wave approximation is still
expected to be correct! [Dyson ‘56; Zittartz ‘65].

M. Correggi (Roma 3) Ferromagnetic Heisenberg Model Frascati 11/06/2015 9 / 21



Motivations and Mathematical Setting

Validity of spin-wave approximation

H = S
∑(

a†x − a†y
)

(ax − ay)−K

The spin-wave approximation is given by dropping the spin-wave
interaction:

1 hard-core constraint nx ≤ 2S;
2 attractive interaction K.

Physics of spin-waves
K is formally of relative size S−1 with respect to H0.
At least if S � 1, the spin-wave approximation should be
asymptotically correct =⇒ to observe a non-trivial behavior one has to
consider temperature scales of order S−1.
What if S is fixed and β →∞? spin-wave approximation is still
expected to be correct! [Dyson ‘56; Zittartz ‘65].

M. Correggi (Roma 3) Ferromagnetic Heisenberg Model Frascati 11/06/2015 9 / 21



Motivations and Mathematical Setting

(math) Literature

Known results
Exactness of the spin-wave theory for the computation of the free
energy, when S →∞ with β ∝ S−1 and a magnetic field h ∝ S
[Conlon, Solovej ‘90].
In the regime β →∞ with S fixed, there was only an upper bound to
the free energy (obtained through probabilistic methods) [Conlon,
Solovej ‘91; Toth ‘93]

f0(1/2, β) ≤ C1

β5/2
, with C1 > −

ζ(5/2)

(2π)3/2

where S is fixed equal to 1/2.
Exactness of the spin-wave theory for the computation of the free
energy when S →∞ with β ∝ S−1 [MC, Giuliani ’12].
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Main Results

Main result

Theorem (free energy [MC, Giuliani, Seiringer ‘13])

For any S ≥ 1
2 ,

lim
β→∞

S3/2β5/2 f (S, β) =

∫
R3

dk

(2π)3
log
(

1− e−k2
)

= −ζ(5/2)

8π3/2

Remarks
The result is uniform in S for any finite S.
In fact S needs not to be fixed but it is necessary that βS →∞,
under the additional constraint βS � Sα.
The upper bound proven in [Toth ‘93] was(

1
2

)3/2
β5/2f(1/2, β) ≤ −ζ(5/2)

8π3/2
log 2 + o(1)
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Main Results

Quasi long-range order

A first consequence of the main result is that the energy per site
e(S, β) = ∂β(βf(S, β)) is as β →∞

e(S, β) ' −CS−3/2β−5/2, C =
3ζ(5/2)

16π3/2

A more relevant by-product of the result together with a crucial
estimate on the excitation spectrum of H is that〈

S2 − Sx · Sy

〉
β
≤ 27

8 |x− y|2e(S, β) ' Cβ−5/2|x− y|2.
which yields

〈Sx · Sy〉β ≥ S
2 − Cβ−5/2|x− y|2 = S2 + o(1),

as long as |x− y| � β5/4.
Hence we get a proof that long-range order persists up to length scales
of order β5/4, although one would actually expect infinite long-range
order...
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Sketch of the Proof

Sketch of the proof

Upper bound

f(β) ≤ C0

(
1
2

)−3/2
β−5/2

(
1 +O(β−3/8)

)
1 Localization into boxes of side length `�

√
β with Dirichlet b.c.;

2 Gibbs variational principle f(β) ≤ 1
`3

Tr(HΓ + 1
βΓ log Γ) + trial state

Γ =
Pe−βH0P

TrPe−βH0

with P =
∏
Px projecting onto hard-core states with nx ≤ 1.

3 Key estimate 1− P ≤ 1
2

∑
n̂x (n̂x − 1) + Wick’s theorem and

〈n̂x〉β = O(β−3/2):
Z−1

0 Tr(1− P )e−βH0 ≤ C`3β−3

4 Optimization with respect to ` (∼ β7/8).
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Sketch of the Proof

Sketch of the proof (S = 1
2)

Lower bound

f(β) ≥ C0

(
1
2

)−3/2
β−5/2 (1 +O(β−κ)) , κ < 1

40

1 Localization into Neumann boxes;
2 Sharp lower bound on H =⇒ preliminary lower bound on f(β) off the

mark by log β =⇒ restriction of the trace to states with small energy;
3 Use of the HP representation and estimate of the interaction.

¶ Energy localization
By dropping the positive interaction among different subcells, one has

f(β) ≥ f(β,Λ`) = − 1
`3β

log Tre−βH ,

where the trace is over states with free (Neumann) boundary conditions.
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Proof: Lower Bound

Lower bound (S = 1
2)

Proposition (operator inequality)
In the subspace HST with total spin ST (ST + 1)

H
∣∣
HST

≥ C

`2
(

1
2`

3 − ST
)

Lemma (preliminary lower bound)

For ` ≥ β1/2 and β � 1, one has f(β,Λ`) ≥ −C (log β/β)5/2.

TreCβ`
−2(ST− `

3

2
) ≤ (`3 + 1)

∑
s

(
`3

s

)
e−Cβ`

−2s ≤ (`3 + 1)
(

1 + e−Cβ`
−2
)`3

f(β,Λ`) ≥ − 1
β log

(
1 + e−Cβ`

−2
)
− 1

β`3
log ` ≥ −C(log β/β)5/2
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Proof: Lower Bound

· Trace restriction

Cut the trace at energy E0 = −`3f(β/2,Λ`) ≤ `3(log β/β)5/2:
Z ≤ TrH≤E0e

−βH + 1

¸ Spherical symmetry and HP representation

H commutes with ŜT =⇒ in the trace we can fix S3
T = −ST

Tre−βH =

1
2
`3∑

ST=0

(2ST + 1)TrS3
T=−ST e

−βH

H ≤ E0 =⇒ ST ≥ S0 with S0 = 1
2`

3 − `2E0.
In the HP representation the number of bosons N is bounded:

N = 1
2`

3 + S3
T = 1

2`
3 − ST ≤ `2E0 ≤ `5(log β/β)5/2

For ` & β1/2+ε the number of bosons is small N ∼ β5ε and their
density is very small ρ ∼ β2ε−3/2.
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Proof: Lower Bound

Z ≤ (`3 + 2)TrH≤E0e
−βH

H = 1
2P

∑
〈x,y〉

[(
a†x − a†y

)
(ax − ay)− n̂xn̂y

]
P

¸ Estimate of the interaction
Peierls-Bogoliubov inequality TreA+B/TreA ≤ exp{Tr(BeA)/TreA)}.
To conclude the proof we thus have to estimate the expectation value

〈E| K |E〉 =
∑
〈x,y〉⊂Λ

ρ(x,y) ≤ C`3 ‖ρ‖∞

of the bosonic interaction K over eigenstates |E〉 of H with
two-particle density ρ(x,y) = 〈E| a†xa†yaxay |E〉.
The gas is very dilute: its density is ∼ β−3/2 and therefore
〈K〉β ∼ β−3/2 as well.
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Proof: Lower Bound

Z ≤ (`3 + 2)eβ〈K〉βTrN≤`2E0
e−βH0

Theorem (?)

If |E〉 is an eigenfunction of H and ρ(x,y) = 〈E| a†xa†yaxay |E〉 (E > 0),

‖ρ‖∞ ≤ CE3 ‖ρ‖1

¸ Estimate of the interaction

Since ‖ρ‖1 ≤ CN2, for ` & β1/2+ε and E ≤ E0,
〈E| K |E〉 ≤ C`3 ‖ρ‖∞ ≤ Cβ−3/2βε

′

The expectation value of the interaction 〈E| K |E〉 = O(β−3/2+ε′) is
much smaller that the kinetic term 〈E|H0 |E〉 = C`−2 = O(β−1):

eβ〈K〉β ≤ exp{β−1/2+ε′} ≤ 1 + o(1)
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Proof: Lower Bound

Z ≤ (`3 + 2)TrN≤`2E0
e−βH0

f(β) ≥ 1

β`3

∑
k∈Λ∗` ,k 6=0

log
(

1− e−
1
2
βε(k)

)
(1 + o`,β(1))

¸ Leading term
Ignoring the constraint N ≤ `2E0 for all states but k = 0,

TrN≤`2E0
e−βH0 ≤

(
`2E0 + 1

) ∏
k∈Λ∗` ,k 6=0

1

1− e−
1
2
βε(k)

Riemann sum approximation
1

`3

∑
log
(

1− e−
1
2
βε(k)

)
' 1

(2π)3

∫
[π,π]3

dk log
(

1− e−
1
2
βε(k)

)
Dispersion relation ε(k) = 2

∑
(1− cos ki) ' k2 for k � 1.

Optimization w.r.t. ` ∼ β21/40.

M. Correggi (Roma 3) Ferromagnetic Heisenberg Model Frascati 11/06/2015 19 / 21



Proof: Lower Bound

Z ≤ (`3 + 2)
(
`2E0 + 1

) ∏
k∈Λ∗` ,k 6=0

1

1− e−
1
2
βε(k)

f(β) ≥ 1

β`3

∑
k∈Λ∗` ,k 6=0

log
(

1− e−
1
2
βε(k)

)
(1 + o`,β(1))

¸ Leading term
Ignoring the constraint N ≤ `2E0 for all states but k = 0,

TrN≤`2E0
e−βH0 ≤

(
`2E0 + 1

) ∏
k∈Λ∗` ,k 6=0

1

1− e−
1
2
βε(k)

Riemann sum approximation
1

`3

∑
log
(

1− e−
1
2
βε(k)

)
' 1

(2π)3

∫
[π,π]3

dk log
(

1− e−
1
2
βε(k)

)
Dispersion relation ε(k) = 2

∑
(1− cos ki) ' k2 for k � 1.

Optimization w.r.t. ` ∼ β21/40.

M. Correggi (Roma 3) Ferromagnetic Heisenberg Model Frascati 11/06/2015 19 / 21



Proof: Lower Bound

Z ≤ (`3 + 2)
(
`2E0 + 1

) ∏
k∈Λ∗` ,k 6=0

1

1− e−
1
2
βε(k)

f(β) ≥ 1

β`3

∑
k∈Λ∗` ,k 6=0

log
(

1− e−
1
2
βε(k)

)
(1 + o`,β(1))

¸ Leading term
Ignoring the constraint N ≤ `2E0 for all states but k = 0,

TrN≤`2E0
e−βH0 ≤

(
`2E0 + 1

) ∏
k∈Λ∗` ,k 6=0

1

1− e−
1
2
βε(k)

Riemann sum approximation
1

`3

∑
log
(

1− e−
1
2
βε(k)

)
' 1

(2π)3

∫
[π,π]3

dk log
(

1− e−
1
2
βε(k)

)
Dispersion relation ε(k) = 2

∑
(1− cos ki) ' k2 for k � 1.

Optimization w.r.t. ` ∼ β21/40.

M. Correggi (Roma 3) Ferromagnetic Heisenberg Model Frascati 11/06/2015 19 / 21



Proof: Lower Bound

Z ≤ (`3 + 2)
(
`2E0 + 1

) ∏
k∈Λ∗` ,k 6=0

1

1− e−
1
2
βε(k)

f(β) ≥ 1

β`3

∑
k∈Λ∗` ,k 6=0

log
(

1− e−
1
2
βε(k)

)
(1 + o`,β(1))

¸ Leading term
Ignoring the constraint N ≤ `2E0 for all states but k = 0,

TrN≤`2E0
e−βH0 ≤

(
`2E0 + 1

) ∏
k∈Λ∗` ,k 6=0

1

1− e−
1
2
βε(k)

Riemann sum approximation
1

`3

∑
log
(

1− e−
1
2
βε(k)

)
' 1

(2π)3

∫
[π,π]3

dk log
(

1− e−
1
2
βε(k)

)
Dispersion relation ε(k) = 2

∑
(1− cos ki) ' k2 for k � 1.

Optimization w.r.t. ` ∼ β21/40.

M. Correggi (Roma 3) Ferromagnetic Heisenberg Model Frascati 11/06/2015 19 / 21



Proof: Lower Bound

Z ≤ (`3 + 2)
(
`2E0 + 1

) ∏
k∈Λ∗` ,k 6=0

1

1− e−
1
2
βε(k)

f(β) ≥ C0

(
1
2

)−3/2
β−5/2 (1 + o`,β(1))

¸ Leading term
Ignoring the constraint N ≤ `2E0 for all states but k = 0,

TrN≤`2E0
e−βH0 ≤

(
`2E0 + 1

) ∏
k∈Λ∗` ,k 6=0

1

1− e−
1
2
βε(k)

Riemann sum approximation
1

`3

∑
log
(

1− e−
1
2
βε(k)

)
' 23/2

(2π)3β3/2

∫
R3

dk log
(

1− e−k2
)

Dispersion relation ε(k) = 2
∑

(1− cos ki) ' k2 for k � 1.
Optimization w.r.t. ` ∼ β21/40.

M. Correggi (Roma 3) Ferromagnetic Heisenberg Model Frascati 11/06/2015 19 / 21



Proof: Lower Bound

Z ≤ (`3 + 2)
(
`2E0 + 1

) ∏
k∈Λ∗` ,k 6=0

1

1− e−
1
2
βε(k)

f(β) ≥ C0

(
1
2

)−3/2
β−5/2 (1 +O(β−κ))

¸ Leading term
Ignoring the constraint N ≤ `2E0 for all states but k = 0,

TrN≤`2E0
e−βH0 ≤

(
`2E0 + 1

) ∏
k∈Λ∗` ,k 6=0

1

1− e−
1
2
βε(k)

Riemann sum approximation
1

`3

∑
log
(

1− e−
1
2
βε(k)

)
' 23/2

(2π)3β3/2

∫
R3

dk log
(

1− e−k2
)

Dispersion relation ε(k) = 2
∑

(1− cos ki) ' k2 for k � 1.
Optimization w.r.t. ` ∼ β21/40.
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Proof: Lower Bound

Proof of Theorem (?)
Reduce the N -body eigenvalue equation H |Ψ〉 = E |Ψ〉 to the
differential inequality

−∆̃ρ(x,y) ≤ 4Eρ(x,y)

where ∆̃ is the discrete Laplacian on Λ` × Λ` \ {(x,x),x ∈ Λ`}, i.e.,
−∆̃ρ(x,y) = (−∆x −∆y) ρ(x,y) + 2ρ(x,y)1{|x−y|=1}

−∆ρ(x) =
∑

y∈Λ`,|y−x|=1

(ρ(x)− ρ(y))

Extend the inequality to the whole of Z6 via reflections:
−∆ρ(z) ≤ 4Eρ(z) + 2ρ(z)χ(z)

where Pn is the probability of a random walk on Zd.
Pick n ' E−1 � 1: Pn(z, z′) ∝ n−3e−3|z−z′|/n so that for some c < 1

ρ(z) ≤ (1 + o(1))
(
CE3 ‖ρ‖1 + c ‖ρ‖∞

)
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Proof: Lower Bound

Perspectives

(") Upper bound for f(S, β) in the regime S →∞ and β = β̃S−1 to the
first order in S−1 [with N. Benedikter]:

f(S, β)

S
≤ 1

(2π)3β̃

∫
R3

dk log
(

1− e−β̃ε(k)
)

+
C1

S
+O(1/S2),

where C1 is computed via the spin-wave approximation.
(%) Upper bound for f(β) as β →∞ up to the first non-trivial

contribution:
f(β) ≤ β−5/2

(
C0 + C ′1β

−1 + C ′2β
−2 + C ′3β

−5/2 + o(β−5/2)
)
,

where C ′3 is still the spin-wave prediction.

(%) 2D?

(%) Spontaneous magnetization and breaking of the rotational symmetry.

Thank you for the attention!
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