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@ Motivations and mathematical setting:
o 3D quantum Heisenberg ferromagnet at low temperature.
@ Main results:

o The spin-wave theory and the Holstein-Primakoff representation

@ Sketch of the proofs.

o MC, A. GIULIANI, J. Stat. Phys. 149 (2012).
appear (full proofs);

o MC, A. GruLiANI, R. SEIRINGER, Commun. Math. Phys. to

o MC, A. GruLiaNI, R. SEIRINGER, EPL 108, 2014 (physics letter).
«O> «Fr «=>r < 3 Q>
M. Correcal (Roma 3)  FERROMAGNETIC HEISENBERG MODEL FRrascari 11/06/2015 2 / 21




@ Motivations and mathematical setting:
o 3D quantum Heisenberg ferromagnet at low temperature.
@ Main results:

o The spin-wave theory and the Holstein-Primakoff representation

@ Sketch of the proofs.

o MC, A. GIULIANI, J. Stat. Phys. 149 (2012).
appear (full proofs);

o MC, A. GruLiANI, R. SEIRINGER, Commun. Math. Phys. to

o MC, A. GIULIANI, R. SEIRINGER, EPL 108, 2014 (physics letter).
«O> 4F» «=)r «E)» = Q>
M. Correcal (Roma 3)  FERROMAGNETIC HEISENBERG MODEL FRrascari 11/06/2015 2 / 21




OUTLINE (S /E-MATH

@ Motivations and mathematical setting:

o 3D quantum Heisenberg ferromagnet at low temperature.
o The spin-wave theory and the Holstein-Primakoff representation.

@ Main results:
o Validity of the spin-wave theory for the free energy at low temperature.

MAIN REFERENCES
o MC, A. GIULIANI, J. Stat. Phys. 149 (2012).

o MC, A. GIULIANI, R. SEIRINGER, Commun. Math. Phys. to
appear (full proofs);

o MC, A. GIULIANI, R. SEIRINGER, EPL 108, 2014 (physics letter).

M. Correccl (Roma 3) FERROMAGNETIC HEISENBERG MODEL FRAscaTI 11/06/2015 2 /21



OUTLINE (S /E-MATH

@ Motivations and mathematical setting:

o 3D quantum Heisenberg ferromagnet at low temperature.
o The spin-wave theory and the Holstein-Primakoff representation.

@ Main results:

o Validity of the spin-wave theory for the free energy at low temperature.
o Quasi long-range order.

MAIN REFERENCES
o MC, A. GIULIANI, J. Stat. Phys. 149 (2012).

o MC, A. GIULIANI, R. SEIRINGER, Commun. Math. Phys. to
appear (full proofs);

o MC, A. GIULIANI, R. SEIRINGER, EPL 108, 2014 (physics letter).

M. Correccl (Roma 3) FERROMAGNETIC HEISENBERG MODEL FRAscaTI 11/06/2015 2 /21



OUTLINE (S /E-MATH

@ Motivations and mathematical setting:

o 3D quantum Heisenberg ferromagnet at low temperature.
o The spin-wave theory and the Holstein-Primakoff representation.

@ Main results:

o Validity of the spin-wave theory for the free energy at low temperature.
o Quasi long-range order.

@ Sketch of the proofs.

MAIN REFERENCES
o MC, A. GIULIANI, J. Stat. Phys. 149 (2012).

o MC, A. GIULIANI, R. SEIRINGER, Commun. Math. Phys. to
appear (full proofs);

o MC, A. GIULIANI, R. SEIRINGER, EPL 108, 2014 (physics letter).

M. Correccl (Roma 3) FERROMAGNETIC HEISENBERG MODEL FRAscaTI 11/06/2015 2 /21



MOTIVATIONS AND MATHEMATICAL SETTING

MOTIVATIONS (S /B-maTH

o The Heisenberg model (HM) is a paradigmatic to study phase
transitions in presence of a continuous symmetry.

LITERATURE ABOUT HM
o Absence of phase transitions in 1 or 2D [MERMIN, WAGNER ‘66].

<
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MOTIVATIONS (S /0-MATH

o The Heisenberg model (HM) is a paradigmatic to study phase
transitions in presence of a continuous symmetry.

o Very few rigorous results (mostly or almost exclusively based on
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o classical Heisenberg: proof of symmetry breaking [FROHLICH,
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order [BRICMONT, FONTAINE, LEBOWITZ, LIEB, SPENCER ‘81];

o quantum Heisenberg antiferromagnet: proof of symmetry breaking
[Dyson, LiEB, SIMON ‘78];

o quantum Heisenberg ferromagnet is notably missing!
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o A C Z? is a 3D box of side length L with periodic boundary
conditions.

o (x,y) denotes nearest neighbors in A, ie., |x —y|=1.
o S quantum spin operator on C25+1 (2S integer), i.e., generator of a
2S5 + 1-dimensional representation of SU(2):
(94, 5] = iejuuSiony . 82 = (512 + (52)° + (892 = S(S +1).
o H acts on the Hilbert space 57 ~ C@S+1L?
o H is normalized so that the ground state energy is 0.

«O> «Fr «=>r < Q>
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MOTIVATIONS AND MATHEMATICAL SETTING

FERROMAGNETIC HEISENBERG MODEL S/ /E-MATH

FERROMAGNETIC QUANTUM HEISENBERG HAMILTONIAN

H= Y ($*-8.-8,)

(x,y)CA

o A C Z? is a 3D box of side length L with periodic boundary
conditions.

o (x,y) denotes nearest neighbors in A, i.e., |[x —y| = 1.
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A C 72 is a 3D box of side length L with periodic boundary
conditions.
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(x,y) denotes nearest neighbors in A, i.e, |[x —y| = 1.

S quantum spin operator on C25+1 (25 integer), i.e., generator of a
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o Introduce the total spin Sy = > xeA S, and the eigenstates |ST, Sr_?;>
of SZ, i.e., such that S2.|Sr, S3) = St(St + 1) | Sr, S3.).

GROUND STATES

The ground states of H are the states with maximal total spin

|SL3,53), with S3 = —SL3, ..., SL3.

o Ground states are such that, for any nearest neighbor pair (x,y),
Sx - Sy reaches its maximal value S2.

o Also the partial sums (90(1) + - SU(N,,C))Q, withk=1,....N -1
and o any perturbation, must be maximal on a ground state.

o The degeneracy 2S5L3 + 1 is due to spherical symmetry of the model
and could be removed by adding an external magnetic field.

«O>» <« Fr «=)r «E»
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MOTIVATIONS AND MATHEMATICAL SETTING

GROUND STATES (S /B-maTH

o Introduce the total spin Sy = Y oxeA S, and the eigenstates |S7,5%)
of SZ, i.e., such that S2. |S7,5%) = Sp(Sr + 1) |Sr, S%).

GROUND STATES
The ground states of H are the states with maximal total spin

|SL3,53), with S3 = —SL3,..., SL3.

o Ground states are such that, for any nearest neighbor pair (x,y),
Sx - Sy reaches its maximal value 5.

o Also the partial sums (Sa(l) + - gg(N,k))Z, with k=1,...,N—1
and o any perturbation, must be maximal on a ground state.
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MOTIVATIONS AND MATHEMATICAL SETTING

EXCITED STATES: SPIN-WAVES (S /IHNATH

o Assume that the system is in the ground state |SL? SL?) (e.g.,
because of a small 4 < 0) = one can think of producing an excited
state by lowering just one spin: setting S = S. +i52,

x) = #SS*; |SL3,SL?)
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EXCITED STATES: SPIN-WAVES (S /IHNATH

o Assume that the system is in the ground state |SL? SL?) (e.g.,
because of a small 4 < 0) = one can think of producing an excited
state by lowering just one spin: setting S = S. +i52,

[x) = Z555x [SL?, SL?)

o |x) is not an eigenstate of H but a linear combination can be...

SPIN WAVES

The spin waves are the orthonormal states (with k € A* = 273)

1 ik-x
|k>:mzek %)

xEA

Hk) = Se(k) [k), e(k)=2) (1—cosk;).
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MOTIVATIONS AND MATHEMATICAL SETTING

SPIN-WAVE APPROXIMATION (S /IHNATH

o Neglecting the interaction, spin waves behave like free bosons, i.e., the

mean number of excitations at S>> 1 is given by the Bose statistics
(M5 =~k
"k/g = TSBe(k) _
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o Neglecting the interaction, spin waves behave like free bosons, i.e., the
mean number of excitations at S>> 1 is given by the Bose statistics
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o If 3> 1 the spin-wave approximation predicts:
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1
: —BH,
o free energy: fo(S,3) = hm Y L log Tr (e~ 7H0),
0(S,8) = / log( e‘ﬂse(m)
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ization M, = li ! ’
o spontaneous magnetization Mg, (5) = Jim S — s kg* (nk) |,
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ax—5'+

\/s 3§53’

1

o For any x € A one sets [HOLSTEIN, PRIMAKOFF ‘40]

—— 5
S—S3
o One has [ax,ax] =1, fix = axax and 0 < 7, < 25

Inx)

G\V
‘S?’ = nyx — S>
o The Hamiltonian H becomes the operator

o The Hilbert space .77 is isomorphic to .#g with basis ®xen [nx) via
— -
H=Ho—K

fix [Nx) = nx |nx

SZ(

> ax _a’)’)7
(x,y)CA
«O> 4F» «=)r «E)» = Q>
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MOTIVATIONS AND MATHEMATICAL SETTING

HOLSTEIN-PRIMAKOFF REPRESENTATION [(G//I-MATH

CREATION & ANNIHILATION OPERATORS
o For any x € A one sets [HOLSTEIN, PRIMAKOFF ‘40]

4 1 _ - ~ Q3
ax—S Jo53’ Tl = WSX, Nx — 9% + 9,

o One has [ax,aic] =1, fix = akay and 0 < 7, < 28.

o The Hilbert space .77 is isomorphic to .#g with basis @xec |[nx) via

Inx) <— ‘Sf( =ny — S> , Nix [nx) = nx [nx) .
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MOTIVATIONS AND MATHEMATICAL SETTING

VALIDITY OF SPIN-WAVE APPROXIMATION [/ /I-MATl

H:SZ((LL*ai,)((Ix*ay)fK

o The spin-wave approximation is given by dropping the spin-wave
interaction:
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H:SZ(alfa;)(axfay)flC

o The spin-wave approximation is given by dropping the spin-wave
interaction:

@ hard-core constraint ny, < 25;
@ attractive interaction /.
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MOTIVATIONS AND MATHEMATICAL SETTING

VALIDITY OF SPIN-WAVE APPROXIMATION [G//MATI

H= Sz (a/j( - al,) (ax —ay) — K

o The spin-wave approximation is given by dropping the spin-wave
interaction:

@ hard-core constraint ny, < 25;
@ attractive interaction .

PHYSICS OF SPIN-WAVES
o K is formally of relative size S—! with respect to #.

o At least if S>> 1, the spin-wave approximation should be
asymptotically correct —> to observe a non-trivial behavior one has to
consider temperature scales of order S~ 1.
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H= Sz (a/j( - al,) (ax —ay) — K

o The spin-wave approximation is given by dropping the spin-wave
interaction:

@ hard-core constraint ny, < 25;
@ attractive interaction .

PHYSICS OF SPIN-WAVES

IC is formally of relative size S~ with respect to H,.

©

©

At least if S > 1, the spin-wave approximation should be
asymptotically correct —> to observe a non-trivial behavior one has to
consider temperature scales of order 5.

What if S is fixed and 5 — co?

(%)
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o The spin-wave approximation is given by dropping the spin-wave
interaction:

@ hard-core constraint ny, < 25;
@ attractive interaction .

PHYSICS OF SPIN-WAVES

IC is formally of relative size S~ with respect to H,.

©

©

At least if S > 1, the spin-wave approximation should be
asymptotically correct —> to observe a non-trivial behavior one has to
consider temperature scales of order 5.

(%)

What if S is fixed and 3 — oo? spin-wave approximation is still
expected to be correct! [DYSON ‘56; ZITTARTZ ‘65].
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MOTIVATIONS AND MATHEMATICAL SETTING

(MATH) LITERATURE (S /BT

KNOWN RESULTS

o Exactness of the spin-wave theory for the computation of the free
energy, when S — oo with 8 oc S~! and a magnetic field » o< S
[CoNLON, SOLOVEJ ‘90].
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o Exactness of the spin-wave theory for the computation of the free
energy, when S — oo with 8 oc S~! and a magnetic field 7 o< S
[CoNLON, SOLOVEJ ‘90].

o Exactness of the spin-wave theory for the computation of the free
energy when S — oo with 3 oc S~! [MC, GIULIANT '12].

MATH
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MOTIVATIONS AND MATHEMATICAL SETTING

(MATH) LITERATURE (/7 /i-MATi

KNOWN RESULTS

o Exactness of the spin-wave theory for the computation of the free
energy, when S — oo with 8 oc S~! and a magnetic field 7 o< S
[CoNLON, SOLOVEJ ‘90].

o In the regime [ — oo with S fixed, there was only an upper bound to
the free energy (obtained through probabilistic methods) [CONLON,
SOoLOVEJ ‘91; TorH ‘93]

Cq

fo(1/2,8) < W? ' (2m)372

where S is fixed equal to 1/2.

o Exactness of the spin-wave theory for the computation of the free
energy when S — oo with 3 oc S~! [MC, GIULIANT '12].
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MAIN REsuULTS

MAIN RESULT S/ /iR

THEOREM (FREE ENERGY |[MC, GIULIANI, SEIRINGER ‘13])
For any S > %

= dk 2
Jim SV £ (5.9) = [ oo Sstog (1) = §(5/2)

s (271)8 T
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MAIN REsuULTS

MAIN RESULT LS/ /6-MATH
THEOREM (FREE ENERGY |[MC, GIULIANI, SEIRINGER ‘13])
>

For any S %

. @3/25/2 _ dk k2 _ G(5/2)
Jim S5 £(5,) = [ stos (1-e) = S0

REMARKS
o The result is uniform in S for any finite S.

o In fact S needs not to be fixed but it is necessary that 35 — oo,
under the additional constraint 85 > S%.
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MAIN REsuULTS

MAIN RESULT (S /E-MATH

THEOREM (FREE ENERGY |[MC, GIULIANI, SEIRINGER ‘13])
For any S > %

= dk 9 5/9
Jim SV £ (5.9) = [ oo Sstog (1) = §(5/2)

e (27)3 832

REMARKS
o The result is uniform in S for any finite S.

o In fact S needs not to be fixed but it is necessary that 35 — oo,
under the additional constraint 85 > S%.

o The upper bound proven in [TOTH ‘93] was

B2 552 5(1/2,8) <~ 1052 1 o(1)

{r3/2
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6(5’, B) =

0s(Bf(S,B)) is as f — oo

e(5, ) ~

o A first consequence of the main result is that the energy per site

CS— S/QB 5/2

3¢(5/2
o306/
1673/2
o A more relevant by-product of the result together with a crucial
estimate on the excitation spectrum of H is that
(% -

Sx - Sy), < &lx —yle(S, 8) = CB|x — y|*.

of order 3°/4,
order

o Hence we get a proof that long-range order persists up to length scales
although one would actually expect infinite long-range

. «O>» «F>r «=» «=)» A
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MAIN REsuULTS

QUASI LONG-RANGE ORDER LS/ /0MmATH

o A first consequence of the main result is that the energy per site

e(S,B) = 95(Bf(S,B)) is as B — o0
3205 3¢(5/2)
~ 3/213-5/2 _
o(5,8) = ~CS IR, 0= RO
o A more relevant by-product of the result together with a crucial
estimate on the excitation spectrum of H is that

(8% =Sx-Sy), < Hlx —y[’e(S,8) ~ CB~x —y .
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o A first consequence of the main result is that the energy per site

e(S,B) = 95(Bf(S,B)) is as B — o0
3205 3¢(5/2)
~ 3/213-5/2 _
o(5,8) = ~CS IR, 0= RO
o A more relevant by-product of the result together with a crucial
estimate on the excitation spectrum of H is that

(8% =Sx-Sy), < Hlx —y[’e(S,8) ~ CB~x —y .
which yields
(Sx - Sy)y > 5% = OB x —y[> = 5% + o(1),

as long as [x — y| < %%
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MAIN REsuULTS

QUASI LONG-RANGE ORDER LS/ /0MmATH

A first consequence of the main result is that the energy per site

G(S, 6) - OS(ﬁf(Svﬁ)) is as [)) — 00

s 30(5/2)
~ —3/23-5/2 —
o(5,8) = ~CS IR, 0= RO
A more relevant by-product of the result together with a crucial
estimate on the excitation spectrum of H is that

(8% =Sx-Sy), < Hlx —y[’e(S,8) ~ CB~x —y .
which yields
(Sx - Sy)y > 5% = OB x —y[> = 5% + o(1),

as long as |x — y| < /%
Hence we get a proof that long-range order persists up to length scales

of order 3°/*, although one would actually expect infinite long-range
order...
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~ Sxeron oF THE PRoOF
SKETCH OF THE PROOF (S /0-matH

UPPER BOUND

f(B)<Co(3)”

5=5/2 (1 + (’)(ﬂ_3/8))

D Localization into boxes of side length ¢ > /3 with Dirichlet b.c;
2 Gibbs variational principle f(8) < #Tr(HI + £I'logI') + trial state
Pe=FHop

V= Tperms
with P = [] Px projecting onto hard-core states with ny < 1.

» Key estimate 1 — P < 15" f, (ix — 1) + Wick's theorem and
(ix)p = O(B%):
Zy'Tr(1 — P)e PHo < €383
® Optimization with respect to £ (~ £7/8).

o = YIRLY

o -
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SKETCH OF THE PROOF

SKETCH OF THE PROOF (S /0-MATH

UPPER BOUND

F(8)<Co (1)~

5 (14 0(571%)

@ Localization into boxes of side length ¢ >> /3 with Dirichlet b.c.;
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SKETCH OF THE PROOF

SKETCH OF THE PROOF (S /E-MATH

UPPER BOUND

f(B) < Co (3) 727 8752 (1+ 0(8-3/%))

@ Localization into boxes of side length ¢ >> /3 with Dirichlet b.c.;
@ Gibbs variational principle f(3) < K%Tr(HF + %Flog I') + trial state
Pe=Ptop

= ———
TrPe—FHo
with P = [ Px projecting onto hard-core states with ny < 1.
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@ Localization into boxes of side length ¢ >> /3 with Dirichlet b.c.;
@ Gibbs variational principle f(3) < K%Tr(HF + %Flog I') + trial state

Pe=Ptop

= ———
TrPe—FHo
with P = [ Px projecting onto hard-core states with ny < 1.

@ Key estimate 1 — P < 1 3", (fix — 1) + Wick's theorem and
(ix)p = O(B%):
Z31Tr(1 — P)e PHo < C3873
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UPPER BOUND

f(B) < Co (3) 727 8752 (1+ 0(8-3/%))

@ Localization into boxes of side length ¢ >> /3 with Dirichlet b.c.;
@ Gibbs variational principle f(3) < K%Tr(HF + %Flog I') + trial state

Pe=Ptop

= ———
TrPe—FHo
with P = [ Px projecting onto hard-core states with ny < 1.

@ Key estimate 1 — P < 1 3", (fix — 1) + Wick's theorem and
(ix)g = O(B~%/?);
Z31Tr(1 — P)e PHo < C3873
@ Optimization with respect to £ (~ £7/8).
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FB) > Co ()52 +0(8™), K< L

@ Localization into Neumann boxes;

@ Sharp lower bound on H = preliminary lower bound on f (/) off the
mark by log 3 = restriction of the trace to states with small energy;

@ Use of the HP representation and estimate of the interaction.

©® ENERGY LOCALIZATION

By dropping the positive interaction among different subcells, one has
£(8) > £(B, Ae) = — 5 log Tre™5H,
where the trace is over states with free (Neumann) boundary conditions.



FB) > Co ()52 +0(8™), K< L

@ Localization into Neumann boxes;

@ Sharp lower bound on H = preliminary lower bound on f (/) off the
mark by log 3 = restriction of the trace to states with small energy;

@ Use of the HP representation and estimate of the interaction.

©® ENERGY LOCALIZATION

By dropping the positive interaction among different subcells, one has
£(8) > £(B, Ae) = — 5 log Tre™5H,
where the trace is over states with free (Neumann) boundary conditions.



SKETCH OF THE PROOF

SKETCH OF THE PROOF (S = 1) LS/ /B-MATH

LOWER BOUND

£(B) = Co (2)™¥? 8521+ 0(8™)), K< &

@ Localization into Neumann boxes;

@ Sharp lower bound on H = preliminary lower bound on f(3) off the
mark by log 5 = restriction of the trace to states with small energy;
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@ Localization into Neumann boxes;

@ Sharp lower bound on H = preliminary lower bound on f(3) off the
mark by log 5 = restriction of the trace to states with small energy;

@ Use of the HP representation and estimate of the interaction.
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SKETCH OF THE PROOF

SKETCH OF THE PROOF (S = 1) LS/ /I-MATH

LOWER BOUND

f(B) = Co (3) 2552 (1 + 0(8™)), K< 45

@ Localization into Neumann boxes;

@ Sharp lower bound on H = preliminary lower bound on f(3) off the
mark by log § = restriction of the trace to states with small energy;

@ Use of the HP representation and estimate of the interaction.

©® ENERGY LOCALIZATION

By dropping the positive interaction among different subcells, one has
£(8) > £(B.Ae) = — gy log Tre ™81,

where the trace is over states with free (Neumann) boundary conditions.
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In the subspace 75, with total spin St (St + 1)

LEMMA (PRELIMINARY LOWER BOUND)

For £ > §'/? and § > 1, one has f(5, A¢) > —C (log 3/5)"”.
Trecmfg(ST_g

v
«O>» <« Fr «=» «=>» DA™




Proor: LoweEr Bounp

LOWER BOUND (S = 1) (S /AT

PROPOSITION (OPERATOR INEQUALITY)
In the subspace .75, with total spin St(S7 + 1)

Q

H‘%T = 2 \2 (*5 ST)

LEMMA (PRELIMINARY LOWER BOUND)

For ¢ > BY/2 and B> 1, one has f(3,A;) > —C (log 3/8)"'>.

M. Correccl (Roma 3) FERROMAGNETIC HEISENBERG MODEL FRrascat! 11/06/2015 15 / 21



LOWER BOUND (S = 1) (S /AT

PROPOSITION (OPERATOR INEQUALITY)
In the subspace .75, with total spin St(S7 + 1)

Q

H‘%T = 2 \2 (*5 ST)

LEMMA (PRELIMINARY LOWER BOUND)

For ¢ > BY/2 and B> 1, one has f(3,A;) > —C (log 3/8)"'>.

TreCBE (51— )
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Proor: LoweEr Bounp
LOWER BOUND (S = 1) (S /AT

PROPOSITION (OPERATOR INEQUALITY)
In the subspace .75, with total spin St(S7 + 1)

Q

H‘%T = 2 \2 (*5 ST)

LEMMA (PRELIMINARY LOWER BOUND)

For ¢ > BY/2 and B> 1, one has f(3,A;) > —C (log 3/8)"'>.

_ 3 % _c
TreP*51=5) < (18 4 1) 30, (4)e O
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Proor: LoweEr Bounp
LOWER BOUND (S = 1) (S /AT

PROPOSITION (OPERATOR INEQUALITY)
In the subspace .75, with total spin St(S7 + 1)

Q

H‘%T = 2 \2 (*5 ST)

LEMMA (PRELIMINARY LOWER BOUND)

For ¢ > BY/2 and B> 1, one has f(3,A;) > —C (log 3/8)"'>.

7 3 . » N4
TreCBE 2 (S7=5) < (B 41) Do (f)e’cw s < (3 +1) (1 + e OB 2)
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Proor: LoweEr Bounp
LOWER BOUND (S = 1) (S /AT

PROPOSITION (OPERATOR INEQUALITY)
In the subspace .75, with total spin St(S7 + 1)

Q

H‘%T = 2 \2 (*5 ST)

LEMMA (PRELIMINARY LOWER BOUND)

For ¢ > BY/2 and B> 1, one has f(3,A;) > —C (log 3/8)"'>.

7 3 . » N4
TreCBE 2 (S7=5) < (B 41) Do (f)e’cw s < (3 +1) (1 + e OB 2)

F(8Ar) > —31og (147 %7) — L 1oge
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Proor: LoweEr Bounp
LOWER BOUND (S = 1) (S /AT

PROPOSITION (OPERATOR INEQUALITY)
In the subspace .75, with total spin St(S7 + 1)

Q

H‘%T = 2 \2 (*5 ST)

LEMMA (PRELIMINARY LOWER BOUND)

For ¢ > BY/2 and B> 1, one has f(3,A;) > —C (log 3/8)"'>.

- B B
TreCBE2(Sr—5) < By, (Ej)e—c,(% s < (B4 1) (1 4 ot 2)
F(8,00) = ~Flog (14 93" — Fslog £ > ~C(log 8/8)°?
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o Cut the trace at energy Eg = —£3£(8/2,Ag) < (*(log 3/3)°/?
Z < TI‘HSEOG_BH +1

® SPHERICAL SYMMETRY AND HP REPRESENTATION

«O>» <« Fr «=» «=>» DA™



o Cut the trace at energy Eo = —£3f(8/2, Ay) < £3(log B/B)°/?
Z < TI‘HSEOG_BH +1

® SPHERICAL SYMMETRY AND HP REPRESENTATION

«O>» <« Fr «=» «=>» DA™



Proor: LoweEr Bounp

® TRACE RESTRICTION
o Cut the trace at energy Eg = —£3f(8/2,Ay) < £3(log B/B)°/?:
7 < TI”HSE()e*’BH +1

® SPHERICAL SYMMETRY AND HP REPRESENTATION

o H commutes with S; = in the trace we can fix S3. = —Sp
e
_ —BH
Tre A% = %~ (257 + 1)Trgg __g, e "
Sp=0
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Proor: LoweEr Bounp

® TRACE RESTRICTION
o Cut the trace at energy Eg = —£3f(8/2,Ay) < £3(log B/B)°/?:
7 < TI”HSE()e*’BH +1

® SPHERICAL SYMMETRY AND HP REPRESENTATION

o H commutes with S7 = in the trace we can fix 52 = — S,
e
—BH —BH
TrHSE()e BH _ Z (QST—l—l)TI‘S%:_STe B
ST==So

o H < Ey=— St > 5 with Sy = %53 —KQE().
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Proor: LoweEr Bounp

® TRACE RESTRICTION
o Cut the trace at energy Eg = —£3f(8/2,Ay) < £3(log B/B)°/?:
Z < TI"HSE()e*’BH +1

® SPHERICAL SYMMETRY AND HP REPRESENTATION

o H commutes with S = in the trace we can fix S3 = — S
i
_BH —BH
TrHSE()e AH _ Z (QST—l-l)TI‘S%:_STe B
Sr=5Sg

o H < Ey =— St > S with Sy = %53 —€2E0.
o In the HP representation the number of bosons IV is bounded:
N =3063+53 =165 < ?E,
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Proor: LoweEr Bounp

® TRACE RESTRICTION

o Cut the trace at energy Eg = —£3f(8/2,Ay) < £3(log B/B)°/?:
Z < TI"HSE()e*’BH +1

® SPHERICAL SYMMETRY AND HP REPRESENTATION

o H commutes with S = in the trace we can fix S3 = — S
i
_BH —BH
TrHSE()e AH _ Z (QST—l-l)TI‘S%:_STe B
Sr=5Sg

o H < Ey =— St > S with Sy = %53 —€2E0.
o In the HP representation the number of bosons IV is bounded:
N=10483 =10 - Sr <2E; < £5(log B/B)>/?

o For ¢ > 31/2%¢ the number of bosons is small N ~ 3% and their
density is very small p ~ 323/2,

4
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Z < (53 -+ 2)TI'H§E06_5H
H = 1

=5P Z [(a;f( - ai,) (ax — ay) —
xy)

ity | P
o Peierls-Bogoliubov inequality TreA*+? /Tre4 < exp{Tr(Be®)/Tre?)}.
o To conclude the proof we thus have to estimate the expectation value

(BIKIE)= ) »xy) <
(x,y)CA
of the bosonic interaction /C over eigenstates |E) of H with

two-particle density p(x,y) = (F| alayaxay |E).
o The gas is very dilute: its density is ~ 8~
(K)g ~ B73/% as well.

i
3/2 and therefore
«O>» «F>r «=» «=)» A
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A S (63 + 2)6ﬂ<IC>BTI'NSE2EO€_6’HO
H=3

1) (ax = ay) = ety | P
o Peierls-Bogoliubov inequality TreA™5 /Tre? < exp{Tr(Be?)/Tre?)}.
o To conclude the proof we thus have to estimate the expectation value

(EIKIB)= ) plxy)<

(x,y)CA

T

yaxay|E>'
3/2 and therefore
«O>» «F>r «=» «=)» A
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of the bosonic interaction /C over eigenstates |E) of H with

two-particle density p(x,y) = (F| aka

o The gas is very dilute: its density is ~ S~
(K)g ~ B3/% as well.




Proor: LoweEr Bounp
Z S (£3 + 2)€/3<K>ﬁTI'N§£2E0€_BHO

H =3P [(al — ai,) (ax — ay) — nxny | P

® ESTIMATE OF THE INTERACTION
o Peierls-Bogoliubov inequality TreA* 5 /Tre4 < exp{Tr(Be4)/Tre?)}.
o To conclude the proof we thus have to estimate the expectation value
(BIKIE)= ) p(xy)
(xy)cA
of the bosonic interaction /C over eigenstates |E) of H with
two-particle density p(x,y) = (F| aia;axay |E).

v
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Proor: LoweEr Bounp

Z S (£3 + 2>€/3<K>ﬁTI'N§£2E0€_’SHO

H =3P [(al — ai,) (ax — ay) — nxny | P

® ESTIMATE OF THE INTERACTION

o Peierls-Bogoliubov inequality TreA* 5 /Tre4 < exp{Tr(Be4)/Tre?)}.

o To conclude the proof we thus have to estimate the expectation value

(EIKIE) = ) pxy) < CEpll,
(xy)CcA
of the bosonic interaction /C over eigenstates |E) of H with
two-particle density p(x,y) = (F| aia;axay |E).
o The gas is very dilute: its density is ~ 3~3/2 and therefore
(K)g ~ B3/% as well.
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I e
Z S (£3 + 2)eﬁ<K>6T‘I'NS[2E06_BHO

ol < CE?lpll;

® ESTIMATE OF THE INTERACTION

«O>» <« Fr «=» «=>» DA™

If |[E) is an eigenfunction of H and p(x,y) = (E)| aLaI,axay |E) (E>0),




Z S (63 + 2)6ﬁ<’C>BTI‘NS(2E0€76HO
THEOREM ()

If |[E) is an eigenfunction of H and p(x,y) = (E)| a;'(ai,axay |E) (E>0),

ol < CE? Il
® ESTIMATE OF THE INTERACTION

o Since ||p||; < CN?, for £ > 81/?%¢ and E < E,
(EIK|E) < O ol < C5 925
The expectation value of the interaction (E| K |E) = O(873/%t') is
much smaller that the kinetic term (E|Hq |E) = C¢~2 = O(871):
P8 < exp{f~1/2+'} <14 0(1)
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If |[E) is an eigenfunction of H and p(x,y) = (E)| a;'(ai,axay |E) (E>0),
lolloe < CE |Iplly
® ESTIMATE OF THE INTERACTION

o Since ||p||; < CN?, for £ > 81/?%¢ and E < E,

(E|K|E) < CL3E3N? < Cp—3/2p°

The expectation value of the interaction (E|K |E) = O(83/2+") is
much smaller that the kinetic term (E|Hg |E) = C¢=2 = O(B~1):

ePRs < exp{f~1/?'} <14 0(1)
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lolloe < CE |Iplly
® ESTIMATE OF THE INTERACTION

o Since ||p||; < CN?, for £ > 81/?%¢ and E < E,
(E|K|E) < CITES < CB3/2p
The expectation value of the interaction (E| K |E) = O(873/2t¢') is
much smaller that the kinetic term (E|Hq |E) = C¢~2 = O(871):
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Proor: LoweEr Bounp

Z S (g? =+ 2)€ﬁ<’C>’3TI'N§42EO€7ﬁHO

THEOREM (*)
If |E) is an eigenfunction of H and p(x,y) = (E| aial,axay |E) (E >0),

ol < CE?llpll,

® ESTIMATE OF THE INTERACTION
o Since ||p||; < CN?, for £ > BY/2*¢ and E < Ey,
(E|K|E) < CITEj < CB~3/28°
o The expectation value of the interaction (E| K |E) = O(573/2) is
much smaller that the kinetic term (E|H |E) = C(~2 = O(B71):
PR < exp{B~1/2T'} <14 0(1)
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o Since ||p||; < CN?, for £ > BY/2*¢ and E < Ey,
(E|K|E) < CITEj < CB~3/28°
o The expectation value of the interaction (E| K |E) = O(573/2) is
much smaller that the kinetic term (E|H |E) = C(~2 = O(B71):
PR < exp{B~1/2T'} <14 0(1)
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A S (63 + 2)TrN§f2Eoe_6H0
1 1
)2 5m > los(1-e270) (14 05(1))

keA} k#0

o lgnoring the constraint N < (2 Ej for all states but k = 0,

1
Trncene 7 < (CB+1) [ ——5
keAj k0 1 —€ 2

o Riemann sum approximation

3 log (1- 370 o (2;)3 /[] dk log (1~ 379

o Dispersion relation £(k) = 23 (1 — cos k;) ~ k? for k < 1.
o Optimization w.r.t. £ ~ 321/40,

40> «4Fr «=»r « =) = ¥)aQ >



1
< (3 2 -
Z<(B+2)(PE+1) ] ==y
keA; k#£0

1
f(B) = 303 Z log <1 . fJf%"i:'(k')) (1+05(1))
77 keA; k#0

m

® LEADING TERM
o Ignoring the constraint N < ¢?E), for all states but k = 0,

1
ﬁngone_BHo S (EZEO —+ ].) H ——1B€(k)
keAy k0 1 —€ 2

o Riemann sum approximation

E% S log (1 . e*%&(k)) = (271T)3 / dk log (1 . e*%&(k))
J[m,7]3

o Dispersion relation £(k) =23 (1 — cos k;) ~ k? for k < 1.
40

o Optimization w.r.t. £ ~ 32/
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1
< (3 2 -
Z<(B+2)(PE+1) ] ==y
keA; k#£0

f(B) > % Z log (1 - e*%ﬁe(k)> (14 o005(1))

keA} kA0

® LEADING TERM
o Ignoring the constraint N < ¢?E), for all states but k = 0,

1
ﬁngZEoe_BHO S (€2E0 —+ ].) H ——155(1()
keAy k0 1 —€ 2

> Riemann sum approximation

%3 Zlog (1 - e*éﬁs(k)) ~ (271T)3 / dk log (1 - e*%ﬁ€<k>>
J[x,x]3

Dispersion relation (k) = 2> (1 — cos k;) ~ k? for k < 1.

> Optimization w.r.t. £ ~ 321/40,
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Proor: LoweEr Bounp

1
7 < (63 +2)(F2E 1 _
_(6 + )(E 0+ ) H 1—6_%’85(1()
kEAZ,k#O

0)2 55 3 tog (1= H79) (1 +0r5(1)

keA; k0

® LEADING TERM
o Ignoring the constraint N < (?E} for all states but k = 0,

1
Trycepe ™0 < (PE+1) | ——p
kEAS k0 l1—e™2

o Riemann sum approximation

1 i 1 ao
7 > log (1 — e3P <k>) = G /W]B dk log (1 _ 2B <k>)

o Dispersion relation £(k) = 2> (1 — cos k;) ~ k? for k < 1.

- A
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Proor: LoweEr Bounp

1

< (63 2 -

Z<(B+2) (B +1) ][] IR
keA k#£0

® LEADING TERM
o Ignoring the constraint N < (2F} for all states but k = 0,

1
Trycepe ™0 < (PE+1) | ——p
kEAS kA0 l1—e™2

o Riemann sum approximation
23/2

1 1 _
[3210@; (1—6 %Be(k)> :W/Rgdk log (1—6

o Dispersion relation e(k) = 2> (1 — cos k;) ~ k? for k < 1.

¥)

4

(=] =] =
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Proor: LoweEr Bounp

1

< (63 2 -

Z<(B+2) (B +1) ][] IR
keA k#£0

® LEADING TERM
o Ignoring the constraint N < (2F} for all states but k = 0,

1
Trycepe ™0 < (PE+1) | ——p
kEAS kA0 l1—e™2

o Riemann sum approximation
23/2

1 1 _
ﬁZlog (1—6 éﬁs(k)> :W/Rgdk log (1—6 kQ)

Dispersion relation e(k) = 2> (1 — cos k;) ~ k? for k < 1.
Optimization w.r.t. £ ~ §1/40.

©

©

4
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Proor: LoweEr Bounp

PROOF OF THEOREM ()

o Reduce the N-body eigenvalue equation H |V) = F | V) to the
differential inequality

—Ap(x,y) < 4Ep(x,y)
where A is the discrete Laplacian on Ay x Ay \ {(x,%),x € As}, ie.,

—Ap(x,y) = (—Ax — Ay) p(x,y) + 2p(X, y) L{jx_y|=1}
—Ap(x) = Z (p(x) — p(y))

yeA(va_X‘:]‘

<
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Proor: LoweEr Bounp

PROOF OF THEOREM ()

o Reduce the N-body eigenvalue equation H |V) = F | V) to the
differential inequality

— Ap(X, Y) S 4EP(X> y)

where A is the discrete Laplacian on Ay x Ay \ {(x,%),x € As}, ie.,

pr(X, y) = (7AX - Ay) p(x, y) + ZP(Xa y)]]-{|x7y|:1}
—Ap(x) = Y. (p(x)—p(y))
yeA[7|y7X‘:l
o Extend the inequality to the whole of Z5 via reflections:
— Ap(z) < 4Ep(z) + 2p(2)x(2)
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Proor: LoweEr Bounp

PROOF OF THEOREM ()

o Reduce the N-body eigenvalue equation H |V) = F | V) to the
differential inequality

— Ap(x,y) < 4Ep(x,y)
where A is the discrete Laplacian on Ay x Ay \ {(x,%),x € As}, ie.,

—Ap(x,y) = (—Ax = Ay) p(%,¥) + 2p(%, ¥) Lijx—y|=1}
—Ap(x) = Y. (p(x)—p(y))
yEA[7|y—X‘:1
o Extend the inequality to the whole of Z via reflections:
p(z) < (1—E/3)7" ({p)(2) + lIpll X(2))

<
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Proor: LoweEr Bounp

PROOF OF THEOREM ()

o Reduce the N-body eigenvalue equation H |¥) = E'|¥) to the
differential inequality

— Ap(x,y) < 4Ep(x,y)
where A is the discrete Laplacian on Ay x Ay \ {(x,%),x € A}, ie.,

—Ap(x,y) = (=Ax = Ay) p(%,¥) + 2p(%, ¥) L{jx—y|=1)
—Ap(x)= Y. (p(x)—p(y))
YEA, ly—x(|=1
o Extend the inequality to the whole of Z5 via reflections:
p(z) < (1= E/3)™" ((Pu+ p)(2) + § lI0llc £5=0 Py * X(2))

where P, is the probability of a random walk on Z¢.

V.
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Proor: LoweEr Bounp

PROOF OF THEOREM ()

o Reduce the N-body eigenvalue equation H |¥) = E'|¥) to the
differential inequality

— Ap(x,y) < 4Ep(x,y)
where A is the discrete Laplacian on Ay x Ay \ {(x,%),x € A}, ie.,

—Ap(x,y) = (—Ax — Ay) p(x,¥) + 2p(%, ¥) L{jx—y|=1)
A= Y () - py)
yEAyly—x|=1
o Extend the inequality to the whole of Z5 via reflections:
p(z) < (1= E/3)™" ((Pu+ p)(2) + § lI0llc £5=0 Py * X(2))
where P, is the probability of a random walk on Z¢.

o Pick n~ E~' > 1: P,(2,2') « n=3e3#=71/" 50 that for some ¢ < 1

p(z) < (1+0(1)) (CE?|plly + cllpll)

V.
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(V) Upper bound for f(S, 3) in the regime S — oo and 8 = 35! to the
first order in S~1 [with N. BENEDIKTER]:
g =

5 C
_ [ dklog (1—e7®M) + =L 4 0(1/5?),
BTG e g ( )+ +01/5%
where (' is computed via the spin-wave approximation.

(X) Upper bound for f(/3) as 3 — oo up to the first non-trivial
contribution:

F(B) < B2 (Co+ CiB~ + CYB2 + C4B752 4 o(57/2)) |
where C4 is still the spin-wave prediction.

(X) 2D?

(X) Spontaneous magnetization and breaking of the rotational symmetry.

«O>» <« Fr «=)r «E» = Q>



Proor: LoweEr Bounp

PERSPECTIVES (S /B-maTH

(/) Upper bound for f(S,3) in the regime S — oo and 3 = BS1 to the
first order in S~! [with N. BENEDIKTER]:

j(S/ﬁ) 1 ) __—Be(k) g 2
= g o o (1 e )+ &+ 0(1/5),

where (' is computed via the spin-wave approximation.

(X) Upper bound for f(3) as 3 — oo up to the first non-trivial
contribution:

F(B) < B2 (Co+ CiB~" + B2 + C4B73/2 + o(57%/2)),
where C4 is still the spin-wave prediction.
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Proor: LoweEr Bounp

PERSPECTIVES (S /B-maTH

(/) Upper bound for f(S,3) in the regime S — oo and 3 = BS1 to the
first order in S~! [with N. BENEDIKTER]:

f08,6) . 1 ' A=) 4 ©1 2
1 c 1
GEEENTRIEY S Og( >+S OQ/s%),
where (' is computed via the spin-wave approximation.

(X) Upper bound for f(3) as 3 — oo up to the first non-trivial
contribution:

F(B) < B2 (Co+ CiB~" + B2 + C4B73/2 + o(57%/2)),
where (4 is still the spin-wave prediction.

(X) 2D7?
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Proor: LoweEr Bounp

PERSPECTIVES (S /B-maTH

(/) Upper bound for f(S,3) in the regime S — oo and 3 = BS1 to the
first order in S~! [with N. BENEDIKTER]:

j(S/ﬁ) 1 ) __—Be(k) g 2
= g o o (1 e )+ &+ 0(1/5),

where (' is computed via the spin-wave approximation.

(X) Upper bound for f(3) as 3 — oo up to the first non-trivial
contribution:

F(B) < B2 (Co+ CIA~" + CYB~2 + C4672 +0(575/7))
where (4 is still the spin-wave prediction.
(X) 2D7?

(X) Spontaneous magnetization and breaking of the rotational symmetry.

P
%ﬁ/ yoee /4 //é alterilicre,”
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