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Singular stochastic PDE

SSPDE : Non-linear Langevin equations “whose solutions” are
supposed to generate Markov processes with Euclidean field theory
measures as invariant measures.
A priori ill defined problem.

I EFT measures require renormalization to be defined. They are
realized on spaces with distributions D′(Rd) or S ′(Rd).

I The SSPDE = Non-linear Langevin equations having
coefficients inherited from EFT measures. These are typically
distributions. Nonlinear ↔ pointwise products ↔
renormalization.
If “solutions” exist, Markov process is distribution valued.

How to proceed ? Follow Dirac’s advice. Introduce cut-offs, solve
the equations and then take limits.

Pronob K. Mitter SSPDE
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What sort of solutions ?
Different points of view :

I Probabilistic weak solutions/ Martingale solutions : With
cut-offs these are also strong solutions and Martingale
solutions exist. This leads to Functional integral/RG point of
view to construction of semigroup/invariant measures.

This is the point of view I will adopt.

Pronob K. Mitter SSPDE
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What sort of solutions ?

I Pathwise approaches
Dynamical solutions of super-renormalizable Euclidean Field
theories. Counter-terms : those of super-renormalizable
EFT’s. (massive φ4

d d = 2, 3.)

a) M. Hairer (theory of regularity structures), M. Gubinelli et.
al. (paracontrolled distributions) : These are theories of
multiplication of distributions with counter-terms. Verified in
low order perturbation theory. The remainder is controlled as
a fixed point problem in a Banach space.

Pronob K. Mitter SSPDE
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What sort of solutions ?

I b) Antti Kupiainen : RG approach directly on the equation

UV cut-off noise, finite volume. Rescale to unit cut-off with
enlarged volume. This gives rise to a sequence of effective
equations with rescaling at each step → Perturbative part +
remainder. The limit of the sequence of remainders has been
proved to exist by solving a Banach fixed point problem.

These are all : short time solutions with the upper bound
on time dependent on noise.

Long time solution, D = 2 by J.C. Mourrat and H.Weber.

BUT : Hairer gives optimal regularity for paths, and intial
conditions.
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An example

Scalar field theory in dimension D, φ(x), x ∈ RD .

C0(x − y) = Fourier transform of Ĉ0(k) = 1
k2+m2 .

κ : UV cut-off

Ĉκ(k) =
1

(k2 + m2)(1 + k2

κ2 )p
for suffieciently large p.

The random gaussian field φ in Rd with covariance C0 is a
distributon for D ≥ 2. For p sufficiently large, φ distributed
according to Cx is locally sufficiently differentiable.

dµκ(φ) =
1

Zκ(Λ)

∫
dµCκ(φ) e−Vκ(φ,Λ).

Vκ(φ,Λ) =

∫
Λ
dDx {λ : φ4 :Cκ (x) + countertermsκ}

ΛL : cube side, periodic b.c., ΛL = RD/(LZD). Cκ : periodized
covariance.
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Linear process

Dynamical models

Nonlinear Langevin equations
Large class of equations available, such that if solutions exist, they
have the same invariant measure.
Example : Let 0 < ρ ≤ 1.

dφ̃t = dWt −
1

2

(
C−ρx φ̃t + λC 1−ρ : φ̃3

t :Cκ

)
dt,

φ̃0 = φ,

values in subspace of D′(ΛL), (sufficiently differentiable functions).

f , g are test functions in D(ΛL).

E (Wt(f ),Wt(g)) = (f ,C 1−ρg) min(t, s).

[Canonical choice ρ = 1.] Also counter-terms in the drift are
omitted. Pronob K. Mitter SSPDE
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Linear process

Dynamical models

If the solutions exist, then there is a generator Lκ,p and it is easy
to see

Lκ,p =
1

2

∫
dx dy C 1−ρ(x − y)

(
δ

δφ(x)

δ

δφ(y)
− δS
δφ(x)

δ

δφ(y)

)
.

is symmetric with respect to L2(dµκ,Λ) and formally,∫
dµκ,Λ(φ) etLκ,p F (φ) =

∫
dµκ,Λ(φ)F (φ).

F : bounded C2 cylindrical function.

Each choice of ρ ∈ (0, 1] will, if equation can be solved, lead to
Markov processes with same invariant measure µκ,Λ.

Pronob K. Mitter SSPDE
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Linear process

Linear processes

dφt = dWt −
1

2
C−ρκ φtdt,

φt = φ

This is an Ornstein-Uhlenbeck process/Langevin equation.

This has a unique solution

φt = e−t/2φ0 +

∫ t

0
e−

1
2

(t−s)C−ρκ dWκ.

The O-U process has continuous sample paths.
Generator :

L(0)
κ =

1

2

∫
dx

∫
dy

[
C 1−ρ
κ (x − y)

δ2

δφ(x)δφ(y)
− C−ρκ (x − y)φ(x)

δ

δφ(y)

]
.
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Linear process

Linear processes

Transition probability : pt(φ,B) = µCt,κ

(
B − e−

t
2
C−ρκ φ

)
,

B : Borel set in D′(ΛL).

Ct,κ = (1− e−t C
−ρ
κ )Cκ.

µCκ : invariant measure.

POU
φ : O-U measure on path space : C0([0,∞),D′(ΛL)).

In terms of the linear process, the full process must solve the
integral equation :

φ̃t = φt −
λ

2

∫ t

0
dse−(t−s)C−ρκ C 1−ρ

κ : φ̃3
s :Cκ .
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Probabilistic weak solution

Girsanov formula :

et LκF (φ) = E
(w)
φ0=φ

(
F (φt) eξ

t,κ
0

)
(∗)

O-U process : φt is a measurable function of wt .

ξ0,(κ) = −λ
2

∫ t

0

(
: φ3

s :Cκ , dws

)
− λ3

8

∫ t

0
ds
(
: φ3

s :Cκ ,C
1−ρ : φ3

s :Cκ
)
.

Because of the cut-off κ Ito’s formula applied to eξ
t,κ
0 shows

E (w)(eξ
t,κ
0 ) = 1. (∗∗)

Martingale property :

E (w)(eξ
t,κ
s |Fs) = 1,

E (w)(eξ
t,κ
0 |Fs) = eξ

s,κ
0 .

Pronob K. Mitter SSPDE
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Probabilistic weak solution

Because of (∗∗) in the previous slide, the Gaussian representation
of (∗) defines a semigroup with transition probabilities,

p̂t(φ,B) = E
(w)
φ

(
X (φt ∈ B) eξ

t,κ
0

)
,

satisfies Chapman-Kolmogoroff equation (semigroup property).
=⇒ new probability measure P̂φ on C0([0,T ]),D′(Λ) = ΩT .

P̂φ solves the non-linear integral equation in weak sense.

Zt = φ̂t +
λ

2

∫ t

0
ds e−(t−s)C−ρκ C 1−ρ

κ : φ̂3
s :Cκ , φ̂t ∈ ΩT

Under P̂φ, Zt has probability distribution of an O-U process.

Pronob K. Mitter SSPDE
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The drift is a gradient vector field.

Therefore we can get rid of the stochastic integral in the Girasanov
exponent ξt0, using Ito’s formula.

The result is :

ξt = −1

2
Vκ(φt) +

1

2
Vκ(φ0)−

∫ t

0
dsṼκ(φs),

Ṽκ(φs) =
λ

4
:
(
φ3
s ,C

−ρ
κ φs

)
L2(Λ)

:Cκ +
λ2

8

(
: φ3

s :Cκ ,C
1−ρ
κ : φ3

s :Cκ
)
L2

−3λ

4
:
(
φs ,C

1−ρ
κ φs

)
L2(Λ)

,

(
et Lκ

)
(φ) = Eφ0=φ

(
F (φt) e

− 1
2
Vκ(φt)+ 1

2
Vκ(φ0)−

∫ t
0 dsṼκ(φs)

)
.
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(
G , et LκF

)
L2 (dµκ,λ,ΛL)

=

∫
dµκ,λ

2
,ΛL

(φ)G (φ)Eφ0=φ

(
F (φt)e

− 1
2
Vκ(φt)−

∫ t
0 dsṼκ(φs)

)

ULTRAVIOLET CUT-OFF REMOVAL (κ→∞) .

Pronob K. Mitter SSPDE
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D = 2 The weak solution of Jona-Lasinio, Mitter in the
limit κ→∞(1985)

Here the parameter ρ : 0 ≤ ρ ≤ 1 plays an important role. In other
words we are studying a modified non-linear Langevin (Glauber)
dynamics. The initial choice of ρ is very restricted for technical
reasons : 0 < ρ < 1

10 . Progressively, this restriction was removed
by Rozovskii and Mikulevicius (1998) : 0 < ρ < 1 and then ρ = 1.
A strong solution was given by G. da Prato and Debussche (2003)
for ρ = 1 in a very important work which introduced new
technology (use of Besov spaces). Finally (2015) J-C Mourrat and
H.Weber have extended da Prato’s work to prove global in time (
and also in space) pathwise solutions.

Pronob K. Mitter SSPDE
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Estimates [J-L,M (CMP-1985), M(Spain-1986)], κ→∞
1) D = 2 Cκ

κ→∞−−−→ C (for massive covariance).

: φn :C (f ) ∈ Lp(dµC ), ∀p : 1 ≤ p ≤ ∞.

2) The O-U transition probability µCt (φ, ·) is absolutely continuous
with respect to µC (·), µC a.e. in φ. The Radon-Nikodym
derivarive is in L2(dµC ), µC a.e. in φ.

If h ∈ L2p(dµC ), the trivially,

Eφ(|h(φt)|p) <∞, 1 ≤ p <∞.

So h(φt) ∈ Lp(dPφ,Ω).

Pronob K. Mitter SSPDE
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3) φt is continuous in t, Pφ a.s., µC a.e. in φ.

Moreover the O-U semigroup is hypercontractive.

Using Riemann sum approximation, with κ→∞∫ t

0
ds h(φs) ∈ Lp(dPφ,Ω), µC a.e. in φ.

Therefore provided 0 < ρ < 1

Eφ

(∫ t

0
ds
(
: φ3 :C ,C

1−ρ : φ3 :C
)
L2

)
<∞,

µC a.e. in φ.
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Ito isometry

Eφ

[(∫ t

0
(: φ3

s :,dWs)

)2
]

= Eφ

(∫ t

0
ds(: φ3 :C ,C

1−ρ : φ3 :C )L2

)
<∞,

µC a.e. in φ.

Because of the above, ξt,∞0 exists as a random variable.

Pronob K. Mitter SSPDE
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4) We know

Eφ(eξ
t,κ
0 ) = 1, µC a.e.

By Fatou’s lemma

Eφ(eξ
t,∞
0 ) ≤ 1, µC a.e.

For a martingale/weak solution we have to prove

Eφ

(
eξ

t,∞
0

)
?
= 1.

Pronob K. Mitter SSPDE



Singular stochastic partial differential equations
Dynamical models

Probabilistic weak solution
D = 2 The weak solution of J-L, P.K.M in the limit κ→∞

Stationary O-U process
Euclidean formalism

5)

eξ
t,∞
0 = eξ

t,∞
0 − eξ

t,κ
0 + eξ

t,κ
0 .

|Eφ(eξ
t,∞
0 )− 1| ≤ |E

(
eξ

t,∞
0 − eξ

t,κ
0

)
| (∗ ∗ ∗)

|E
(
eξ

t,∞
0 − eξ

t,κ
0

)
| ≤ Eφ

(
|ξt,∞0 − ξt,κ0 ||

(
eξ

t,∞
0 + eξ

t,κ
0

)
|
)

≤
(
Eφ(|ξt,∞0 − ξt,κ0 |

2
) 1

2

[(
Eφ

(
e2ξt,∞0

)) 1
2

+
(
Eφ

(
e2ξt,κ0

)) 1
2

]
It is easy to show |ξt,∞0 − ξt,κ0 | → 0 in L2

(
dPW

φ ,Ω
)

, µC a.e. in φ.
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6) Lemma

Suppose 0 < ρ < 1
10 . Then

Eφ

(
e2ξt,∞0

)
<∞, µC a.e. in φ.

e2ξt,∞0 is uniformly bounded in L2(dPW
φ ,Ω).

7) Therefore taking κ→∞ in (∗ ∗ ∗) we have

Eφ

(
eξ

t,∞
0

)
= 1.
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Proof of the lemma

The idea is to undo the stochastic integral in ξt,∞0 since the drift
perturbation is a gradient. To undo the stochastic integral we use
the Ito’s formula. Then we see that each term exists as a random
variable in L2(dPW

φ ,Ω), µC a.e. in φ provided 0 < ρ < 1
2 .

Then we use the method of Nelson and Glimm from the earliest
days of constructive QFT. For the stability estimate to work we

need to restrict : 0 < ρ < 1
10 .

Pronob K. Mitter SSPDE
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∫
dµ(φ)Eφ (e2ξt,∞0 ) =

∫
dµC (φ)Eφ

(
e−V (φt)−2

∫ t
0 dsṼ (φs)

)
Where

2Ṽ (φs) =
λ

2
:
(
φ3
s ,C

−ρφs
)
L2(Λ)

:C +
λ2

4

(
: φ3

s :C ,C
1−ρ : φ3

s :C
)
L2

−3λ

2
: (φs ,C

1−ρφs) :C

≤
(∫

dµC (φ)Eφ(e−2V (φt))

) 1
2
(∫

dµC (φ)Eφ(e−4
∫ t

0 ds Ṽ (φs))

) 1
2

(∗ ∗ ∗∗)

Pronob K. Mitter SSPDE
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1) The first factor in (∗ ∗ ∗∗) is easily proven to be finite.

∫
dµC (φ)Eφ(e−2V (φt)) =

∫
dµC (φ) et L0 e−2V (φ)

=

∫
dµC (φ)e−2V (φ) < ∞,

by Nelson’s estimate ( have used that µC is invariant measure of
O-U process).
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2)

∫
dµC (φ)E

(w)
φ (e−4

∫ t
0 ds Ṽ (φs)) ≤

∫
dµC (φ)e−4t Ṽ (φ).

(φs a.s. continuous, Riemann sum approximation, Hölder’s
inequality)

Ṽ (φ) : The non-local φ6 term is a positive random variable, can
be dropped.

The negative sign mas term is dominated by the Gaussian
measure, for small λ.

We are left with the estimate provided by the following proposition.

Pronob K. Mitter SSPDE
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Proposition

For 0 < ρ < 1
10∫

dµC (φ)e−ptλG(φ) <∞

G (φ) =: (φ3,C−ρφ)L2) :C , in Lp(dµC ) for 0 < ρ <
1

2
.

I Step 1

(φ3,C−ρφ)L2(Λ) ≥
∫

Λ d2xφ4(x), 0 < ρ < 1.

Proved using spectral representation and Young’s inequality.

Pronob K. Mitter SSPDE
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I Step 2
UV cut-off field (cut-off Fourier modes)

φκ(x) =

∫
|k|≤κ

d2k

(2π)2
e ik·x φ̂(k).

Cκ(x , y) is µC covariance of φκ.
Gκ(φ) = G (φκ).

Gκ → G in Lp(dµC ) for 0 < ρ < 1
2 .

Undo Wick ordering in Gκ. The Wick constants →∞ when
κ→∞.

Using Step 1 and and estimates of Wick constants get

Gκ ≥ −const ×
(
κ4ρ (lnκ)2

)
Pronob K. Mitter SSPDE
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Step 3

Define G̃κ = G − Gκ.

Then :∫
dµC |G̃κ|2j ≤ (j!)4 bj

(
(lnκ)m κ−2+4ρ

)j ∀j , some m > 0.

Hypercontractivity to reduce Lp(dµC ) estimates to L2(dµC )
estimates, then Feynman graph computation.

Pronob K. Mitter SSPDE
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Step 4

µC
(
{G ≤ −const (κ4ρ(lnκ)2)− 1}

)
≤ µC

(
{|G̃κ|2j ≥ 1}

)
≤
∫

dµC |G̃κ|2j ≤ (j!)4bj(lnκ)m(κ−2+4ρ)j

Then Stirling’s approximation and optimal κ-dependent choice of j
gives

µC
(
{G ≤ −const (κ4ρ(lnκ)2)− 1}

)
≤ e

−const
(
κ

2−4ρ
4 (lnκ)−

m
4

)

Pronob K. Mitter SSPDE
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Step 5

κn = 2n →∞, Cκn = constκ4ρ
n (lnκn)2.

∫
dµCe

−G =

∫
dµCe

−G (X{G > −Cκ0 − 1}+ X{G ≤ −Cκ0 − 1})

≤ eCκ0 +1 + I0

Pronob K. Mitter SSPDE
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Step 5 continued

I0 =

∫
dµCe

−GX{G ≤ −Cκ0 − 1}

=

∫
dµCe

−G
∞∑
n=0

X{−Cκn+1 − 1 < G ≤ −Cκn − 1}

≤
∞∑
n=0

eCκn+1 +1 µC{G ≤ −Cκn − 1}

≤
∞∑
n=0

eCκn+1 +1 e
−const

(
κ

2−4ρ
4 (lnκ)−

m
4

)
,

and using the definition of Cκn , this series converges for ρ < 1
10 .
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Stationary O-U process

P̃ : measure on path space Ω = C0([0,∞),D′).

P̃(B) =

∫
dµCκ(φ) P̃φ(B), P̃φ : O-U measure.

I Stationarity : E P̃ (φt(f )φs(g)) = E P̃ (φt−s(f )φ0(g)), t > s.

I Symmetry : E P̃ (φt(f )φs(g)) = E P̃(φt(g)φs(f ).

I Covariance : E P̃ (φt(f )φs(g)) = Cκ(f , e−
t−s

2
C−ρκ g).

Because of stationarity : path space Ω→ Ω̃ = C0 ((−∞,∞),D′)
All of this is true when κ→∞.

Pronob K. Mitter SSPDE
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Side remark

A Euclidean formalism for the canonical choice ρ = 1.
x = (x1, ..., xD) ∈ RD x0 ∈ R,

x̃ = (x0, x) ∈ R× ΛL ⊂ RD+1,

φ(x̃) = φ(x0, x), x0 = “time coordinate” = “Langevin time etc.

Define :

C̃κ(x̃ , ỹ) =

∫
dk0

2π

∫
dDk

(2π)D
e ik0(x0−y0)+i(k,x−y)RD

k2
0 + Ĉ−2(k)

.

µC̃κ : Gaussian measure, covariance C̃κ on D′(R× ΛL).
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Side remark

D+(R× ΛL) : positive time subspace.

ft(x̃) = f (x)δ(x0 − t), t > 0, ∈ D+(R× ΛL).

Take t > s. Then an easy computation shows∫
dµC̃κ φ(ft)φ(fs) =

(
f ,Cκe

−|t−s|C−1
κ g

)
L2

= E P̃OU(φt(f )φs(g)).

Thus the analogy is

C̃κ : Euclidean covariance.

Cκ : Fock space covariance.
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“Time” reflection θ :

ft(x̃) = f (x) δ(x0 − t) ∈ D+(R× ΛL),

(θft)(x̃) = f (x)δ(x0 + t).

Reflection positivity :

〈φ(ft), φ(ft)〉 =

∫
dµC̃ (θφ)(ft)φ(ft) =

∫
dµC̃ φ(θft)φ(ft)

= E P̃
OU (φt(f )φ−t(f )) ≥ 0.

You can apply the O-S construction of Hilbert space, semigroup
etc. This could be the beginning of an Euclidean formalism for the
non linear process.
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