Results and Conjectures about the XY Model

Dedicated to Pierluigi

Tom Spencer Institute for Advanced Study Princeton, NJ

June 9, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition of X-Y model

$$egin{aligned} s_j &= (cos(heta_j), sin(heta_j)), \quad j \in \Lambda \subset \mathbb{Z}^d, \quad |j - j'| = 1 \ Z_\Lambda(eta, arepsilon) &= \int e^{eta \{\sum_{j \sim j'} cos(heta_j - heta_{j'}) + arepsilon \sum_j cos(heta_j)\}} \prod_\Lambda d heta_j \end{aligned}$$

$$<\cos(\theta_0-\theta_x)>_{\Lambda}(\beta,\varepsilon)=$$

$$Z_{\Lambda}^{-1} \int \cos(\theta_0 - \theta_x) e^{\beta \{\sum_{j \sim j'} \cos(\theta_j - \theta_{j'}) + \varepsilon \sum_j \cos(\theta_j)\}} \prod_{\Lambda} d\theta_j$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

Lim as $\Lambda \uparrow \mathbb{Z}^d$ well defined. $M(\beta) \equiv \lim_{\epsilon \downarrow 0} \langle \cos(\theta_0) \rangle(\beta, \epsilon)$.

Some 2D Results

- M(β) = 0 all β. There is a unique translation invariant state (Mer-Wag, Br-Fo-La, Mes-Mes-Pf)
- For $\beta \leq .88$ exponential decay of correlations. (Aiz-Si)
- For ε > 0, exponential decay of correlations at rate ∝ ε. (Lee-Yang, Penrose, Lebowitz, Gu-Ro-Si, Fröhlich)
- $0 \leq \langle \cos(heta_0 heta_x) \rangle(eta) \leq C |x|^{-(2\pi\beta)^{-1}}$ (Mc-Sp)
- For $\beta \gg 1$, $\langle \cos(\theta_0 \theta_x) \rangle(\beta) \ge C |x|^{-(2\pi\bar{\beta})^{-1}}$, $\bar{\beta} \approx \beta$ (Kosterlitz-Thouless, Fr-Sp)

(日) (同) (三) (三) (三) (○) (○)

X-Y Results in 3D

- If $\beta < .2 \Rightarrow$ exponential decay of correlations
- By Infrared bounds we have Long Range order (Fr-Si-Sp)

$$\langle \cos(heta_0 - heta_x)
angle (eta) \geq [1 - 2G(0,0)/eta], \ \ G = (-\Delta)^{-1}$$

There are alternative proofs using duality (Guth, Fr-Sp), and by (Kennedy-King) using Gauge theory coupled to XY.

• There is an asymptotic expansion in powers of $1/\beta$ for the magnetization $M(\beta) = \lim_{\epsilon \downarrow 0} \langle \cos(\theta_0) \rangle(\beta, \epsilon)$ (Br-Fo-Le-Li-Sp)

Gaussian or Spin Wave Approximation

For large β , the Gaussian approximation:

$$\begin{split} \beta \sum_{j} \cos(\nabla \phi_{j}) + \varepsilon \sum_{j} \cos(\phi_{j}) &\approx \beta \sum_{j} (\nabla \phi_{j})^{2}/2 + \varepsilon \sum_{j} \phi_{j}^{2}/2 \\ \langle \cos(\phi_{x} - \phi_{0}) \rangle(\beta, \varepsilon) &= \langle e^{(i(\phi_{x} - \phi_{0}))} \rangle(\beta, \varepsilon) = e^{-[G(0,0) - G(0,x)]/\beta} \\ G(0,x) &= (-\Delta + \varepsilon/\beta)^{-1}(0,x). \text{ When } \varepsilon \downarrow \mathbf{0} \\ G(0,0) - G(0,x) &= (2\pi\beta)^{-1} \ln |x| \quad 2D . \\ G(0,0) < \infty \text{ and } G(0,x) &\approx 1/|x| \quad 3D. \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conjectures for XY Model - Justify SW For $\varepsilon > 0$,

 $0 \leq \langle \cos \phi_0 \cos \phi_x
angle - \langle \cos \phi_0
angle \langle \cos \phi_x
angle \leq C_{\varepsilon} e^{-m|x|}, \ m = \sqrt{\varepsilon/eta}$?

In 3D for $\varepsilon \downarrow 0$

$$0 \leq \langle \cos \phi_0 \cos \phi_x
angle - \langle \cos \phi_0
angle \langle \cos \phi_x
angle \leq Const 1/|x|^2$$
 ?

Holds in the Gaussian approximation

Main Problem with the Gaussian Approximation: Ignores vortices and No Phase Transition.

The Villain X-Y model

$$e^{eta \cos(heta_j - heta_{j'})} pprox \sum_{m_{j,j'} \in \mathbb{Z}} e^{-eta/2(heta_j - heta_{j'} - 2\pi m_{j,j'})^2}
onumber \ = const \sum_{n_{j,j'} \in \mathbb{Z}} e^{-n_{j,j'}^2/2eta} e^{i n_{j,j'}(heta_j - heta_{j'})}$$

After explicit integration over θ obtain dual representation:

$$Z_{\Lambda}(\beta) = \sum_{div \ n=0} e^{-\sum n_{j,j'}^2/2\beta}$$

In 2D, since $\operatorname{div} n = 0, \ n = \nabla \times \phi, \ \phi \in \mathbb{Z}$ hence

$$Z_{\Lambda}(\beta) = \sum_{\phi} e^{-\sum_{j} (\nabla \phi(j))^2/2\beta}.$$

By Poisson summation (with a = 1)

$$Z_{\Lambda}(\beta) = \int e^{-\sum_{j} (\nabla \phi(j))^2 / 2\beta} \times \prod_{j} [1 + 2a \sum_{q \in Z} \cos(2\pi q \phi(j))] d\phi(j)$$

If a = 0, the spin-spin correlation is $|x|^{-(2\pi\beta)^{-1}}$.

Is a irrelevant ? Yes, if $2\pi\beta_{eff}(\beta, a) > 4$

Vortices bind to form Dipoles for large β $e^{\pm 2\pi i q_j} =$ vortex at j of charge $\pm q$

Non-neutral charge configurations have 0 probability For a dipole at 0 and \times

$$\langle e^{2\pi i q(\phi_0-\phi_x)}
angle(eta)=e^{-2\pieta q^2\ln(|x|)}\leq |x|^{-2\pieta}$$

Note that $q = \pm 1$ are the dominant configurations.

The dipoles give rise to $\beta_{eff}(\beta, a) < \beta$.

However, $2\pi\beta_{eff} \ge 4$ for the dipoles to be irrelevant.

Remarks: The dual spin-spin is nonlocal $e^{1/\beta \sum_{0}^{x} (\partial_2 \phi(j) - 1/2)}$

Sine Gordon representation of Coulomb Gas:

 $e^{-\sum_{j} (\nabla \phi(j))^2 / 2\beta + a \sum_{j} \cos(\phi(j))}$ $\beta_{c,eff} = 8\pi$

Remarks on Dipole gas

Consider the action:

$$\sum_{j} (\nabla \phi(j))^2 / 2\beta - \sum_{jk} \cos(\phi_j - \phi_k)$$

Note that if $|a_{jk}| \ll |j - k|^{-4-\delta}$ then the action is convex: Hessian $\approx -\Delta/\bar{\beta}$ since $\sum_j a_{jk}|j - k|^2 < \infty$

Hence one can get apply Brascamp-Lieb or its stronger version Helffer-Sjöstrand to see that it has free field behavior.

3D is simpler: For large β , a single renormalization group step converts the Villain action to a **convex** action. Vortices are replaced by vortex loops. (Fr-Sp).

Falco's Theorem:

For a small, dipoles remain irrelevant for $2\pi\beta_{c,eff}(\beta, a) = 4$ with explicit log corrections.

Falco's result is also *expected* to hold for a = 1 and if so it implies that at the KT edge (β_c)

$$\langle \cos(heta_0- heta_x)
angle_{eta_c}pprox \ln^{1/8}(|x|)\,|x|^{-1/4}$$

Earlier Renormalization group analysis Dimock and Hurd but required $2\pi\beta>4$

Universality of Mean Field Theory for $D \ge 3$?

Consider **O(n) invariant** interacting spins: eg. X-Y model O(2), Heisenberg O(3) Let $s_j \in \mathbb{R}^n$, $j \in \Lambda_L \cap Z^d$, periodic box of side L, $h \in R^n$ Conjecture:

$$\langle e^{\sum_{j\in\Lambda}h\cdot s_j/|\Lambda|}
angle(eta)$$
 as $L o\infty$

$$=\int_{\mathcal{S}^{n-1}}e^{h\cdot S_0\mathcal{M}(eta)}d\mu(S_0)\, imes [1+O(rac{1}{eta L^{d-2}})]$$

M(eta)= Magnetization, $d\mu(S_0)$ is uniform measure on S^{n-1} .

The leading term is like a Law of Large Numbers and the correction is CLT.

Theorem (J. Fröhlich and T.S.) Holds for O(2) symmetric systems

Main ideas: Pure states are parametrized by S^1 , Fröhlich-Pfister, + IR bounds.

Explanation of Conjectured Universality of Wigner-Dyson statistics in 3D:

Apply SUSY statistical mechanics, (Kravstov and Mirlin (1994))

 $s_j \in U(1,1|2)/U(1|1) \times U(1|1), \quad M(\beta) \approx \rho(E), \ DOS$

Conclusion: Wigner Dyson should describe RBM and Random Schrödinger in 3 Dim in the extended region

T. Shcherbina: Example with SU(2) symmetry:

Let H be an $N \times N$ Gaussian matrix such that

$$\langle H_{ij}\bar{H}_{i'j'}\rangle = rac{e^{-|i-j|/W}}{W}\,\delta_{i,i'}\,\delta_{j,j'} \quad 1 \le i,j \le N$$

Define

$$F_N(E, u) = rac{\langle \det(H - E + u/N) \det(H - E - u/N)
angle}{\langle \det(H - E)^2
angle}$$

If the width $W^2 \gg N \gg 1$ then

$$F_N(E,u) \Rightarrow \int_{S^2} e^{iu\rho(E)S_0^{(3)}} d\mu = rac{\sin(2u\rho(E))}{2u\rho(E)}$$

Main Idea

In 1D, F(E,u) is mapped onto classical Heisenberg spin chain of length N, $\beta = \rho(E)^2 W^2$, $s_j \in S^2$

In one dimension the chain is ordered if $\textit{N}\ll\beta\approx\textit{W}^2$

For $d \geq 3$ it is ordered for $\beta \geq 1$.

Conjecture: The same Mean field result to hold for fixed W and large N in 3D.

More Problems and Conjectures

- Prove that there is a K-T transition for the 2D Quantum XY model: obtain power law lower bound.
- Show that if $2\pi\beta_{eff} < 4$ there is exponential decay of correlations Or if $\langle S_0 S_x \rangle \leq |x|^{-(1/4+\varepsilon)}$, then it decays exponentially fast.
- Prove that $\langle \cos(\phi_0 \phi_1) \rangle(\beta)$ is continuously differentiable for all β Finite specific heat.
- Show staggered sine-Gordon

$$\sum_{j} (-1)^{j} \cos(\phi_{j}) \approx \sum_{j} \cos(2\phi_{j})$$

so that it flows to free field in 2D if $\beta_{eff} > 2\pi$ instead of 8π . Related to six vertex. In 3D show that it has exponential decay.