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Anomalies and universality

Vieri Mastropietro

University of Milan
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The massive Thirring model

Pierluigi asked me a phd thesis in 2004. I suggested him the
construction of the D=1+1 massive Thirring model ( uniformly in
m). The TM is one of the basic model in QFT, as it has a number
of features common to more realistic systems

L =

∫
dx [ψ̄x( ̸ ∂ +m)ψx + λjµ,x jµ,x ]

The massless Thirring is exactly solvable, in the sense that one has
an explicit set of correlations verifiying the Wightmann axioms
(Johnson (1961), Klaiber (1968), Carey et al (1985)). Froehlich and
Seiler (1976) constructed the Thirring-Schwinger model, equivalent
to Thirring with non local interaction.

Gawedzki and Kupiainen (1985) and Feldman, Magnen, Rivasseau
and Seneor (1986) constructed a generalization of it, the
Gross-Neveu GNN , N > 1 which is asymptotically free in the
ultraviolet.
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The massive Thirring model

The construction of the Thirring model by RG was however lacking,
and this was unfortunate as it has several basic features in common
with more realistic models, like QED3+1 or YM3+1; for instance the
fact that it requires the implementation of Ward Identiites based on
local symmetries to decrease the number of independent
renormalizations.

At a formal level, what one has to do was understood by Johnson
(1961) and Gomes-Lowenstein (1972); one needs to combine
Schwinger-Dyson equation with Ward Identities to prove that the
effective coupling is proportional to the square of the wave function
renormalization λh ∼ λ0Z

2
h .

However in implementing such strategy in a non perturbative
Wilsonian RG one has to face basic difficulties; the momentum
cut-offs breaks the formal invariance and produces corrections, which
in principle could spoil WI from their utility

pµ < jµ,pψk,ωψ̄k+p >=< ψkψ̄k > − < ψk+pψ̄
−
k+p > +∆(k,p)

where ∆ =< δjpψkψ̄k+p > with
δȷp =

∫
dk[(χ−1(k+ p)− 1)(̸ k+ ̸ p)− (χ−1(k)− 1) ̸ k]ψ̄kψk+p
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The massive Thirring model

Benfatto and myself (RMP (2001), CMP(2002), CMP(2005))
developed a technique for dealing with such corrections to WI; the
main technical difficulty was that such correction were not small at
all even removing the cur-off χ→ 1 (for the oresence of anomalies).
Even worse, when one combine WI with SD equation such
corrections produce extra terms.

In BM (2005) we were finally able to overcome such problems and
solved the infrared problem of the Thirring model with a cut-off (or
Tomonaga model). We sketched the solution of the ultraviolet
problem in a short appendix but to fully construct the model one has
to verify the axioms and a lot of technical mwork was still necessary,
in particular for the verification of the OS axioms. .

This was the point when Pierluigi came into the game. His first
result was a very powerful and general bound for the n-point
Schwinger function, which was strong enough to allow the axiom
verifications (and later on in the proof of Coleman equivalence
between Thirring and Sine Gordon or in interacting dimers).
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The massive Thirring model

The main conclusion of Falco PHD thesis was the following theorem,
which finally provided the full construction of the massive Thirring
model after so many years of attempts. One starts from Sn,N , the
Schwinger function of a regularized Thirring model with ultraviolet
momentum cut-off 2N , wave function renormalization ZN , coupling
λ and mass µN .

Theorem

(Benf, Falco, Mas CMP 2007) For λ small enough it is possible to choose

ZN = 2−ηzN(1 + O(λ)) µN = 2−ηµNµ(1 + O(λ))

with ηz = azλ
2 + O(λ3) and ηµ = −aµλ+ O(λ), az , aλ > 0 such that

lim
N→∞

Sn,N(x) = Sn(x)

exists at non coinciding points and fulfill the Osterwalder-Schrader axioms
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Coleman equivalence and bosonization

The work on Thirring provided the necessary tool to prove a basic
result in QFT, namely the Coleman conjecture on the equivalence
between the massless Sine-Gordon model with finite volume
interaction and the Thirring model with a finite volume mass term.

Coleman (1975) proved equivalence provided that the perturbative
series are convergent. Froelich-Seiler (1976) proved equivalence
between the massive Sine-Gordon model and a Thirring model with
a large long-range interaction. Dimock (1998), using Dimock-Hurd
(1993), proved equivalence at the free fermion point.

Theorem

(Benf, Falco, Mas CMP 2009) Coleman equivalence between the massless
Sine-Gordon model with

∫
dxχΛ : cosαϕx : and the Thirring model with

mass
∫
χΛψ̄ψ, if χΛ is non vanishing in x ∈ Λ is true if α2 ≤ 16

3 π and λ is
small enough , with a suitable identification of the parameters.

In Coleman paper it is proved the equivalence order by order in the
expansion, but the proof of convergence was lacking. The limit
Λ → ∞ is still an open problem
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Anomalies

One of the most interesting consequences of BFM06 was the
following formula for the WI of the massless Thirring model

∂µ < ψ̄zγµψz;ψxψ̄y >= A(δ(x− z)− δ(y − z)) < ψxψ̄y >

∂µ < ψ̄zγµγ5ψz;ψxψ̄y >= Ā(δ(x− z)− δ(y − z)) < ψxψ̄y >

A−1 = 1− λ

4π
λ+ c+λ

2 + ...; Ā−1 = 1 +
λ

4π
λ+ c+λ

2 + ..

with c+ non vanishing.

The fact that A, Ā ̸= 1 is a manifestation of the Quantum anomaly
(formal WI has Ā = A = 1).

Similar formulas were postulated by Johnson (1961); he observed
that that in order to avoid paradoxical results one has to postulate
certain anomalous commutators with unknown constants A, Ā, and
he fixed their value by a self-consinstency argument.

Our analysis shown that such anomaly naturally comes out in a
non-perturbative analysis of the functional integrals; indeed it comes
from the the correction term ∆ in the WI.
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following formula for the WI of the massless Thirring model

∂µ < ψ̄zγµψz;ψxψ̄y >= A(δ(x− z)− δ(y − z)) < ψxψ̄y >

∂µ < ψ̄zγµγ5ψz;ψxψ̄y >= Ā(δ(x− z)− δ(y − z)) < ψxψ̄y >

A−1 = 1− λ

4π
λ+ c+λ

2 + ...; Ā−1 = 1 +
λ

4π
λ+ c+λ

2 + ..

with c+ non vanishing.

The fact that A, Ā ̸= 1 is a manifestation of the Quantum anomaly
(formal WI has Ā = A = 1).

Similar formulas were postulated by Johnson (1961); he observed
that that in order to avoid paradoxical results one has to postulate
certain anomalous commutators with unknown constants A, Ā, and
he fixed their value by a self-consinstency argument.

Our analysis shown that such anomaly naturally comes out in a
non-perturbative analysis of the functional integrals; indeed it comes
from the the correction term ∆ in the WI.
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Renormalziation and non Renormalization of the
Anomalies

Curiously the value of A, Ā were different with respect to the values
found by Johnson A−1 = 1− λ

4πλ, Ā
−1 = 1 + λ

4πλ, in which there
were no higher order corrections.

Pierluigi computed in his thesis c+ and he was very surprised to find
such a non zero value; he started to think on the reasons on the
difference between Johnson result and he convinced me that such
difference was interesting and worthwhile to understand.

We discovered a paper of Georgi Rawls (1971) in which the absence
of higher order corrections in A, Ā was related to the validity of the
anomaly non renormalization property analogous to the one
predicted by Adler-Bardeen (1969) in QED. Therefore we were
saying that such a property was instead somewhat violated.
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of higher order corrections in A, Ā was related to the validity of the
anomaly non renormalization property analogous to the one
predicted by Adler-Bardeen (1969) in QED. Therefore we were
saying that such a property was instead somewhat violated.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Renormalziation and non Renormalization of the
Anomalies
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Renormalziation and non Renormalization of the
Anomalies

Similarly if you write the Thirring model in terms of bosons via an
Hubbard-Stratonivich transformation, then the linearity of A follows
from certain results on the fermionic determinants, or from
Fujikkawa (1979) theory. Why we get instead higher order
corrections to the anomaly?

The reason relyes in a subtle exchange of limits phenomenon. One
can introduce an ultraviolet cut-off in the Thirring model both
introducing a momentum cut-off and a transfer momentum cut-off
in the interaction. If the limit of local interaction is taken before the
removal of the momentum cut-off the anomaly has higher order
corrections; if is taken after all higher order corrections are vanishing
(Mastropietro JMP 007).
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In a RG analysis ∆(k,p) the terms δjψ+ψ− are marginal; one
subtracts a local term, and one can further decompose them in a
sum of terms with have scaling negative dimension (see c,d,e) for
the non locality of the interaction except a, which is compensated
by the local term (b)
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Non perturbative Adler-Bardeen theorem

More in general one can consider a d = 1 + 1 photon-fermion model
with interaction eAµψ̄γµψ, where Aµ is a massive (mass M) photon
field with ultraviolet cut-off. If the fermionic cut-off is removed then
the anomaly is not renormalized

∂µj
5
µ =

e

4π
εµ,ν∂

νAν

This is a non-perturbative version of the Adler Bardeen theorem
(Mas 2007).

Note however that if the photon propagator is Dirac delta δ higher
order corrections are present and the AB theorem is violated. AB
theorem holds if the theory is superrenormalizable in the ultraviolet.
Later on Falco JMP 2010 completed such result removing also the
ultraviolet cut-off of the photon field (which I kept in my paper),
proving that photon-photon propagator converges to the one of

gaussian field with mass M2 + e2

2π .
If M = 0 this result implies the mass generation of the Schwinger
model; in Falco 2010 M > 0 but the result is an important step
toward the rigorous construction of the Schwinger model starting (a
problem correctly considered fundamental by Pierluigi).
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X−X+ = 1

Pierluigi then moved for post-doc with Brydges. One day I received
a 2 lines mail from him in his typical oracular style saying something
like we can prove the Kadanoff relation X−X+ = 1. I was surprised
by the mail as while he was in Rome we discussed only about QFT
models but he was apparently never interested on the statistical
models I was at the same time working on.

After some thoughts and reading some Kadanoff paper I understood
what he meant and I found it very interisting. Consider 2 Ising
models coupled by a quartic interaction

H(σ, σ′) = HJ(σ) + HJ′(σ′)− λV (σ, σ′)

with H = −J
∑

j=0,1

∑
x∈Λ σxσx+ej σx = ±, Λ is a 2D square lattice,

x ∈ Λ, e0 = (0, 1), e1 = (1, 0). V is a short ranged, quartic in the
spin and invariant in the spin exchange, like

V =
∑
j=0,1

∑
x,y∈Λ

v(x− y)σxσx+ejσ
′
yσ

′
y+ej

with v(x) a short range potential.
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X−X+ = 1

Previously I proved the existence of anomalous (non trivial functions
of λ) critical exponents for such model Mastropietro CMP 2005;
before Pinson and Spencer in 2000 had proved on the contrary that
in a perturbed Ising model the exponents are universal

However a form of universality was believed to be true also for
coupled Ising models: if if X± are the exponents of the energy or
crossover correlations, then it was conjectured X−X+ = 1 by
Kadanoff (1977), Kadanoff and Wegner (1971).

I had the exponents X± in the form of convergent series, depending
from all microscopic detail. Such expansions were so complicated
that a direct proof of a model independent relation X−X+ = 1
seemed impossible.
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X−X+ = 1

Pierluigi proposal was clever and natural. We already used (for the
proof of the positivity axiom) in the paper on Thirring that different
regularizations (a momentum or a lattice cut-off) has as a limit the
same correlations, provided that the bare parameters are suitably
chosen.

One can follow a similar strategy to conclude that the exponents of
coupled Ising are the same of effective models of interacting
fermions with linear relativistic dispersion relation, if the bare
parameters are properly tuned.

Among such effective models there are some in which the anomaly is
exactly known as higher order corrections are vanishimg (for instance
if the interaction is short ranged), as we proved before. In such cases
the exponents of the effective models have simple expressions in
terms of the bare coupling of the effective model.
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Universality relations

The bare coupling has to be fine tuned and it is a complicated
expressions of the microscopic detail; however the simplicity of the
exponents in terms of the bare coupling implies exact relations.

Theorem

(Benfatto,Falco,Mastropietro CMP(2009)) If the coupling of the coupled
Ising model is small enough

X−(λ) =
1

X+(λ)
ν =

1

2− X+(λ)
α =

2− 2X+(λ)

2− X+(λ)

XT (λ) =
2− X+(λ)

2− X−1
+ (λ)

The last relation is new; the others were proposed by Kadanoff
(1977), Kadanoff and Wegner (1971) and imply the hyperscaling
relation 2ν = 2− α.
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Haldane relations for the conductivity

Such ideas on universality have found applications in a number of
other problems.

The Heisenberg XXZ spin chain

H0 = −
L−1∑
x=1

[JS1
x S

1
x+1 + JS2

x S
2
x+1 + J3S

3
x S

3
x+1 − hS3

x ]

where Sα
x = σα

x /2 for i = 1, 2, . . . , L and α = 1, 2, 3, σα
x being the

Pauli matrices (J = 1).

The above model can be solved by Bethe ansatz, and it is
interesting to add a next-to-nearest neighbor interaction breaking
exact solvability, that is consider H = H0 + H1

H1 = −λ
L−1∑
x=1

[S1
x S

1
x+2 + S2

x S
2
x+2 + S3

x S
3
x+2]
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The Heisenberg XXZ spin chain

H0 = −
L−1∑
x=1

[JS1
x S

1
x+1 + JS2

x S
2
x+1 + J3S

3
x S

3
x+1 − hS3

x ]

where Sα
x = σα

x /2 for i = 1, 2, . . . , L and α = 1, 2, 3, σα
x being the

Pauli matrices (J = 1).

The above model can be solved by Bethe ansatz, and it is
interesting to add a next-to-nearest neighbor interaction breaking
exact solvability, that is consider H = H0 + H1

H1 = −λ
L−1∑
x=1

[S1
x S

1
x+2 + S2

x S
2
x+2 + S3

x S
3
x+2]
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Linear response theory

By the Peierls substitution jx = S1
x S

2
x+1 − S2

x S
1
x+1 + λFx where Fx is

an expression quartic in the spin operators.

If ρx = S3
x − 1

2 and (j0x , j
1
x ) = (ρx , jx)

Kµ,ν
β,λ (p0, p) =

∫ β

0

dx0e
−ip0x0 < ĵµx0,p ĵ

ν
x0,p >β,T

and < O >β=
Tre−βHO
Tre−βH , Ox0 = eHx0Oe−Hx0 and T denotes

truncation.

The conductivity at zero temperature is, by Kubo formula

σλ(ω) = lim
δ→0

lim
p→0

lim
β→∞

Dβ,λ(p)

ip0
|ip0→ω+iδ

where p = (p0, p) and Dβ,λ(p) = [K 11
β,λ(p)+ < jD >β]. Non

vanishing Drude weight implies infinite conductivity.

The susceptibility is defined as
κλ = limp→0 limp0→0 limβ→∞ K 00

β,λ(p).
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Luttinger liquid conjecture

In the XXZ (λ = 0)case by Bethe ansatz (Yang-Yang 1966) oner
obtains

D0 =
π

µ̄

sin µ̄

2µ(π − µ̄)

κ0 =
µ̄

2π

1

(π − µ̄)
sin µ̄ vs,0 =

π

µ̄
sin µ̄

and cos µ̄ = −J3.

The zero temperature conducivity is still infinite D ̸= 0 even with
interaction.

In the non interacting case J3 = 0 then D0/κ0 = v2
s,0; from the

above formulas one can verify that the relation is valid for any J3
(the same relation Is true in the Luttinger model)

Haldane (1980) conjectured that the same relations is true in a wide
class of systems, including non solvable models (Luttinger liquid
conjecture; in particular for λ ̸= 0.
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Conductivity in the non integrable case

Theorem

(Benf Mas JSP 2012; Mas PRE 2013) There exists ε < 1 such that, if
|J3|, |λ| ≤ ε the zero temperature Drude weight is non vanishing and
analytic in J3, λ; moreover

Dλ = K
vs,λ
π

κλ =
K

πvs,λ

with K = 1− 1
πvs,λ

[(J3 + 2λ)(1− cos 2pF ) + λ(1− cos 4pF ) + F ] and

vs = sin(pF ) + F̃ , sin pF = h and |F | ≤ Cε2, |F̃ | ≤ Cε.

The Haldane relation is true also for λ ̸= 0, Dλ/κλ = v2
λ.

The zero temperature conductivity is still infinite ( an interaction
breaking integrability does not change qualitative behavior).

The idea is to combine the lattice WI with the emerging WI; Again
the non renormalization of anomalies and AB theorem for the
effective model plays a crucial role.
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Non equilibrium Luttinger model

Universality properties for the conductivity emerge also in a non
equilibrium context. I report a recent computation (preliminary
results in collaboration with Langmann, Lebowitz, Moosavi) in the
Luttinger model; we can exploit its exact solution to get information
on non equilibrium dynamics.

The Luttinger model Hamiltonian is (antiperiodic b.c.)

Hλ =
∑
σ=±

∫ L/2

−L/2

dx : ψ̃+
σ (x)(−iσ∂x − pF )ψ̃

−
σ (x) : +λ

∫ L/2

−L/2

dxdyv(x − y)(
: ψ̃+

+(x)ψ̃
−
+ (x) :+: ψ̃+

−(x)ψ̃
−
−(x) :

)(
: ψ̃+

+(y)ψ̃
−
+ (y) :+: ψ̃+

−(y)ψ̃
−
−(y) :

)
We add a chemical potential term saying that there is an asymmetry
of charge in the left or right hand side,
ρ(x) =: ψ̃+

+(x)ψ̃
−
+ (x) : + : ψ̃+

−(x)ψ̃
−
−(x) :

Hλ,h = Hλ − h0

∫ L/2

−L/2

dxµ(x)ρ(x)

We choose µ(x) to be positive on the left side (x < 0) and negative
on the right (x > 0)
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Non equilibrium properties

Remarkably the Luttinger model is solvable even with an external
potential. We consider the ground state of H0,h0 , called |Ψ0,h0⟩; such
a state has an excess of density in the right hand side.Then we
switch off the external potential and let the system evolve with the
interacting Hamiltonian.

We consider then the evolution of |Ψ0,h0⟩ under the interacting
Hamiltonian Hλ (no external field),

|Ψλ
0,h0(t)⟩ = e−iHλt |Ψ0,h0⟩.

The averaged density is, in the limit L → ∞

⟨Ψλ
0,h0(t)|ρ(x)|Ψ

λ
0,h(t)⟩ =

h0
2π

∫ ∞

−∞

dp

2π
µ̂(p)

(
e ip(x−ε(p)t) + e ip(x+ε(p)t)

)

where ε(p) =

√(
1 + λv̂(p)

π

)2

−
(

λv̂(p)
π

)2

is an interaction

dependent velocity. If the interaction is local ε(p) is constant.
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The density at different times

−L4 −L6 − L
12

L
12

L
6

L
4

− 1
2π

1
2π

x

〈Ψλ
0,h0

(t)|ρ(x)|Ψλ
0,h0

(t)〉

−L4 −L6 − L
12

L
12

L
6

L
4

− 1
2π

1
2π

x

〈Ψλ
0,h0

(t)|ρ(x)|Ψλ
0,h0

(t)〉

−L4 −L6 − L
12

L
12

L
6

L
4

− 1
2π

1
2π

x

〈Ψλ
0,h0

(t)|ρ(x)|Ψλ
0,h0

(t)〉

There is a region with zero density bounded by two fronts moving
ballistically; the interaction changes the velocity of the two fronts and
changes their shape. As t → ∞ one reaches a zero density state.
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The current at different times

The averaged current j(x) =: ψ̃+
+(x)ψ̃

−
+ (x) : − : ψ̃+

−(x)ψ̃
−
−(x) :is

⟨Ψλ
0,h0(t)|j(x)|Ψ

λ
0,h0(t)⟩ =

h

2π

∫ ∞

−∞

dp

2π

µ̂(p)

K (p)

(
e ip(x−ε(p)t) − e ip(x+ε(p)t)

)
where K (p) =

√
π

π+2λv̂(p) : there is a non zero region where the current is

non vanishing. As t → ∞ one reaches a state with a uniform non
vanishing and finite current. The current is finite even without dissipation
, as there is current without external field.
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L
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〈Ψλ
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(t)|j(x)|Ψλ
0,h0
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−L4 −L6 − L
12

L
12

L
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L
4

− 1
2π

1
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〈Ψλ
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The 2-point function

The averaged 2-point function is given by

⟨Ψλ
0,h0(t)|ψ̃

+
σ (x)ψ̃

−
σ (y)|Ψλ

0,h0(t)⟩ = e−iσpF (x−y)eAσ(x,y ,t)S1(x , y , t),

where S1(x , y , t) = ⟨Ψ0|e i(Hλtψ+
σ (x)ψ

−
σ (y)e

−i(Hλ)t |Ψ0⟩∞

S1(x , y , t) =
i

2πσ(x − y) + i0+

exp

(∫ ∞

0

dp
γ(p)

p
(cos p(x − y)− 1)(1− cos 2ε(p)t)

)
with γ(p) = 4 sinh2 φp cosh

2 φp, tanh 2φp = −λv̂(p)/2π.

Aσ(x , y , t) = −σh0
∫ ∞

−∞

dp

2π

µ̂(p)

p
(
K (p) + 1

2K (p)
(e ip(x−σε(p)t)−e ip(y−σε(p)t))

+
K (p)− 1

2K (p)
(e ip(x+σε(p)t) − e ip(y+σε(p)t))

Translation invariance is recovered in the t → ∞ limit.
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The local case

1 For definiteness we consider the case of delta interactions. The
limiting value of the current is, K ≡ K (0)

lim
t→∞

⟨Ψλ
0,h0(t)|j(x)|Ψ

λ
0,h0(t)⟩ =

h0
2π

1

K
= I

2 The 2-point function becomes

lim
t→∞

lim
a→0

Za⟨Ψλ
0,h0(t)|ψ

+
σ (x)ψ

−
σ (y)|Ψλ

0,h0(t)⟩ =
ie−iσµσ(x−y)|x − y |−γ

2πσ(x − y) + i0+

µσ = pF + σ
h0
2K

with γ = γ(0) a critical exponent which is different from the
exponent found in the average over the ground state of Hλ, that is
|Ψλ,0 >. Note that indeed limt→∞ e iHλt |Ψ0,0 > ̸= |Ψλ,0 >.
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Universality of conductance

1 The evolution of the domain wall state limt→∞ e iHλt |Ψ0,h0 >
converges to a state with different chemical potential µ± for right
and left going fermions (which is not the groundstate of
Hλ +

∑
σ µσρσ ) ; that is asymtotically the excess of charge

produces an effective potential. µ+ − µ− = V .

2 Note that µ± and the limiting current depend from λ but the
Landauer conductance is λ independent and equal to the
conductivity quantum

G =
I

µ+ − µ−
=

h0
2πK

K

h0
=

1

2π
.
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Universality of conductance

1 Instead of evolving the domain wall state |Ψ0,h0 > with Hλ we can
evolve |Ψλ,h0 > with Hλ; physically this corresponds to consider a
system of interacting fermions with external field in the GS and
switch off the external field.

2 Again as t → ∞ one get a stationary state with zero density and
non zero current.

3 The 2-point function is given by, as t → ∞

lim
t→∞

⟨Ψλ
0,h0(t)|ψ

+
σ (x)ψ

−
σ (y)|Ψλ

0,h0(t)⟩ =
ie−iσµ̃σ(x−y)|x − y |−η

2πσ(x − y) + i0+

Now η is the Luttinger liquid exponent; therefore limt→∞ |Ψλ,h0 >
tends to the ground state of a Luttinger Hamiltonian with different
chemical potentials Hλ +

∑
σ µ̃σρσ. Again the conductance is

universal (µ̃± and I are different with respect to the previous case).

4 Alekseev, Cheianov, and Froehlich (1996) computed The
conductance of the GS of Hλ +

∑
σ µσρσ finding G = 1

2π , using the
anomaly non renormalization AB theorem.
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Non equilibrium properties and universality

In conclusion we have considered the evolution of two different
states, that is the evolution of a domain wall state or the evolution
of the ground state of Hλ,h0 switching off the potential at t = 0.

In both cases one reaches a state with different µ+, µ−; the current
is depending from the interaction but the conductivity is universal.
Note that in the case of e iHλt |Ψ0,h0 > this is a truly non equilibrium
phenomenon as the limiting state is not the ground state of
Hλ +

∑
σ µσρσ.

Such universality emerges at non equilibrium by a dynamical
computation. In particular, the second case is related to the non
renormalization of the anomaly but it is unclear if this is true also in
the first.

A goal for the future is to develop an RG for non equilibrium
properties for non solvable models, as it was done for the equilibrium
properties. How much the above results are related to the exact
solvability ?

It is really sad that we can not discuss of this with Pierluigi, profiting
of his deep intuition!
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