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2D Coulomb gas

I Periodic lattice Λ ⊂ Z2

I charged particles (xi , σi ) ∈ Λ× {±1}
I Neutral n-particle configurations ω ∈ Ω0

n

Energy of configuration ω:

HΛ(ω) = lim
m2↓0

1

2

n∑
i ,j=1

σiσjwΛ(xi − xj)

wΛ(x − y) = (m2 −∆)−1
x ,y

Grand Canonical partition function:

ZΛ(β, z) =
∑
n≥0

zn

n!

∑
ω∈Ω0

n

e−βHΛ(ω)



2D Coulomb gas

I Periodic lattice Λ ⊂ Z2

I charged particles (xi , σi ) ∈ Λ× {±1}
I Neutral n-particle configurations ω ∈ Ω0

n

Energy of configuration ω:

HΛ(ω) = lim
m2↓0

1

2

n∑
i ,j=1

σiσjwΛ(xi − xj)

wΛ(x − y) = (m2 −∆)−1
x ,y

Grand Canonical partition function:

ZΛ(β, z) =
∑
n≥0

zn

n!

∑
ω∈Ω0

n

e−βHΛ(ω)



2D Coulomb gas

I Periodic lattice Λ ⊂ Z2

I charged particles (xi , σi ) ∈ Λ× {±1}

I Neutral n-particle configurations ω ∈ Ω0
n

Energy of configuration ω:

HΛ(ω) = lim
m2↓0

1

2

n∑
i ,j=1

σiσjwΛ(xi − xj)

wΛ(x − y) = (m2 −∆)−1
x ,y

Grand Canonical partition function:

ZΛ(β, z) =
∑
n≥0

zn

n!

∑
ω∈Ω0

n

e−βHΛ(ω)



2D Coulomb gas

I Periodic lattice Λ ⊂ Z2

I charged particles (xi , σi ) ∈ Λ× {±1}
I Neutral n-particle configurations ω ∈ Ω0

n

Energy of configuration ω:

HΛ(ω) = lim
m2↓0

1

2

n∑
i ,j=1

σiσjwΛ(xi − xj)

wΛ(x − y) = (m2 −∆)−1
x ,y

Grand Canonical partition function:

ZΛ(β, z) =
∑
n≥0

zn

n!

∑
ω∈Ω0

n

e−βHΛ(ω)



2D Coulomb gas

I Periodic lattice Λ ⊂ Z2

I charged particles (xi , σi ) ∈ Λ× {±1}
I Neutral n-particle configurations ω ∈ Ω0

n

Energy of configuration ω:

HΛ(ω) = lim
m2↓0

1

2

n∑
i ,j=1

σiσjwΛ(xi − xj)

wΛ(x − y) = (m2 −∆)−1
x ,y

Grand Canonical partition function:

ZΛ(β, z) =
∑
n≥0

zn

n!

∑
ω∈Ω0

n

e−βHΛ(ω)



2D Coulomb gas

I Periodic lattice Λ ⊂ Z2

I charged particles (xi , σi ) ∈ Λ× {±1}
I Neutral n-particle configurations ω ∈ Ω0

n

Energy of configuration ω:

HΛ(ω) = lim
m2↓0

1

2

n∑
i ,j=1

σiσjwΛ(xi − xj)

wΛ(x − y) = (m2 −∆)−1
x ,y

Grand Canonical partition function:

ZΛ(β, z) =
∑
n≥0

zn

n!

∑
ω∈Ω0

n

e−βHΛ(ω)



I Fractional test charges

p1 = (x , η), p2 = (y ,−η),

η ∈ (0, 1)

I Augmented configuration ω ∧ {p1, p2}

I Zp1,p2

Λ (β, z) =
∑

n≥0
zn

n!

∑
ω∈Ω0

n
e−βHΛ(ω∧{p1,p2})

Fractional charge correlation function:

ρη(x − y) = lim
Λ→∞

Zp1,p2

Λ (β, z)

ZΛ(β, z)
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Debye and Hückel 1923



Theorem (Wei-Shih Yang 1987)

For the grand canonical Coulomb system on R2 with β small,
ρη(x , y) decays exponentially to zero as |x − y | → ∞.

Open problems: (1) implicit hypothesis on z ; (2) free boundary
conditions; (3) extend range of β.

Theorem (Fröhlich-Spencer 1981)

For the Coulomb system on Z2 exponential screening does not
hold for β large.

Fröhlich, J. (1976). Classical and quantum statistical mechanics in one and two dimensions: two-component
Yukawa- and Coulomb systems.
Comm. Math. Phys., 47(3):233–268

Yang, W.-S. (1987). Debye screening for two-dimensional Coulomb systems at high temperatures.
J. Statist. Phys., 49:1–32

Fröhlich, J. and Spencer, T. (1981). The Kosterlitz-Thouless transition in two-dimensional abelian spin systems
and the Coulomb gas.
Comm. Math. Phys., 81(4):527–602



KT Picture

βeff =: where trajectories cross horizontal axis.

ρ(a− b) decays as |a− b|−2κ for η ∈ (0, 1
2 ] and βeff ≥ 8π.

κ = βeff
4π η

2 with log corrections for βeff = 8π.



Berezinskĭı, V. L. (1970). Destruction of long-range order in one-dimensional and two-dimensional systems having a
continuous symmetry group. I. Classical systems.
Ž. Èksper. Teoret. Fiz., 59:907–920

Kosterlitz, M. and Thouless, D. J. (1973). Ordering, metastability and phase transitions in two-dimensions.
J. Phys. C, 6:1181–1203

Kosterlitz, J. M. (1974). The critical properties of the two-dimensional xy model.
Journal of Physics C: Solid State Physics, 7(6):1046



Theorem (Pierluigi Falco, 2013)

KT picture, including differential equations
for trajectories, holds with explicit log
corrections to κ for βeff = 8π and z small.

The FS result was improved to βeff > 8π, (see Marchetti-Klein
1991).

Falco, P. (2012). Kosterlitz-Thouless transition line for the two dimensional Coulomb gas.
Comm. Math. Phys., 312(2):559–609

Falco, P. (2013). Critical exponents of the two dimensional coulomb gas at the Berezinskii-Kosterlitz-Thouless
transition.
http://arxiv.org/abs/1311.2237



Sine–Gordon transformation

Gaussian field:

Em[ϕxϕy ] = (−∆ + m2)−1(x , y)

Sine–Gordon transformation:

ZΛ(β, z) = lim
m→0

Em ez
∑

x 2 cosβ1/2ϕx

ρη(x − y) = lim
Λ→∞

lim
m→0

〈
e iηβ

1/2ϕx e−iηβ
1/2ϕy

〉
m,Λ

.



Generating functional and interaction

Ω(J,Λ) = lim
m→0

Em exp
[
z
∑

x ,σ=±
e iσβ

1/2ϕx +
∑

x∈Λ,σ=±
Jx ,σe

iησβ1/2ϕx

]

= lim
m→0

Em

[
eV(J,ϕ)

]
where

V(J, ϕ) =
s

2

∑
x ,µ

(∂µϕx)2 + z
∑

x ,σ=±
e iσαϕx +

∑
x ,σ=±

Jx ,σe
iηασϕx

s ∈ (0,
1

2
), α2 = β(1− s)

Dropping multiplicative constants.



2D GFF

Assume period(Λ) = LR .

∃ multiscale covariance decomposition:

(−∆ + m2)−1 =
∑

0≤j<R

Γj + Γ′R .

For ζj ∼ N(Γj),

I Finite range property: ζj(x) independent of ζj(y) if
|x − y | ≥ O(Lj)

I Scaling estimates:

∇αζj ≈ L−j |α|1

ζj ≈
√

log L, Γj(0) ∼ 1

2π
log L.



RG

Evaluate Ω progressively:

Ω0(J, ϕ) = eV(J,ϕ), Ωj+1(J, ϕ) = Ej [Ωj(J, ϕ+ ζj)] ,

Ω(J, ϕ) = ΩR(J, ϕ)

I Ej acts only on the fluctuation field ζj .



Begin definition of RG:

Ej

(
sj+1, zj+1,Zj+1, Z̄j+1,Kj+1

)

Ωj Ωj+1

(
sj , zj ,Zj , Z̄j ,Kj

)
RG

I Real valued bulk coupling constants sj , zj
I Real valued observable coupling constants Zj , Z̄j

I Kj in Banach space



Definition of vertical arrows: step 1

Given (sj , zj ,Zj , Z̄j) ∈ R4, define functions of Φ = (J, ϕ).

V0,j(Φ,B) =
sj
2

∑
x∈B,µ

(∂µϕx)2 + zjL
−2j

∑
x∈B,σ=±

e iσαϕx

V1,j(Φ,B) = ZjL
−2j

∑
x∈B,σ=±

Jx ,σe
iηασϕx

+ Z̄jL
−2j

∑
x∈B,σ=±

Jx ,σe
i η̄ασϕx , η̄ = 1− η.

Vj(Φ,B) = V0,j(Φ,B) + V1,j(Φ,B)



Definition of vertical arrows: step 2

Let

Uj(Φ,B) = Vj(Φ,B) + Wj(Φ,B)

where Wj(Φ,B) is another explicit function of Φ = (J, ϕ) defined
by (sj , zj ,Zj , Z̄j).

It is given by a LARGE formula obtained from second order
perturbation theory.



Definition of vertical arrows: final step

Given Kj : X 7→ function of (ϕx , Jx)x∈X�

Ωj is expressed in terms of (Uj ,Kj)

using

Ωj(Φ,Λ) =
∑
X∈Pj

eU j (Φ,Λ\X )
∏

Y∈Cj (X )

K j(Φ,Y ).

Kj is there to include the remainder after second order
perturbation theory.



Summary

Ej

Ωj Ωj+1

RG

(
Uj ,Kj

) (
Uj+1,Kj+1

)
I Uj determined by coupling constants (sj , zj ,Zj , Z̄j)

I Ωj(Φ,Λ) =
∑

X∈Pj
eUj (Φ,Λ\X )

∏
Y∈Cj (X ) Kj(Φ,Y ),



Theorem (∃ RG)

For all j such that (sj , zj) is small, Kj is also small, O(sj , zj)
3

uniformly in j, and (sj , zj) follows the KT picture:

sj+1 ≈ sj − az2
j , zj+1 ≈ L2e−

α2

2
Γj (0)[zj − bsjzj ]

Theorem (Best choice of s)

For α2 = 8π, for z0 = z small, there is a unique s0 = s0(z) such
that (sj , zj ,Kj) is in the domain of RG for j ≤ R and (sR , zR ,KR)
tends to zero.

zR → 0 means there are no dipoles at macroscopic scales.

sR → 0 means that αϕ is “the best” gaussian approximation to
the Coulomb gas at the KT transition.
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Since Γj(0) ∼ 1
2π log L as j →∞,

L2e−
α2

2
Γj (0) ∼ L2−α

2

4π

So if

α2 = 8π, KT point

then zj is marginal.

To have α2 = 8π, by the definition α2 = (1− s0(z))β,

β =
8π

1− s0(z)



Calculation of ρ(a, b)

After R steps Λ becomes a single block so that

ΩR(Φ,Λ) = eUR(Φ,Λ) + KR(Φ,Λ).

Put this into

ρη(x , y) =
1

ΩR(Φ,Λ)

∂2ΩR(Φ,Λ)

∂Jx∂Jy

∣∣∣
J=0

.

In the infinite volume limit R →∞, KR becomes zero and makes
no contribution!

In fact ρ(a, b) is completely determined by the double derivative of
WR and the (s, z ,Z , Z̄ ) flow.



I First paper [CMP 2012]: External field J = 0 (“bulk”).

(sj , zj ,K
J=0
j ) 7→ (sj+1, zj+1,K

J=0
j+1 ).

I Second paper [arXiv 2013]: Extension to J 6= 0.

This is really an extension, in the sense that Zj , Z̄j and J do
not feed back into the bulk coordinates.



Recall the magenta arrow

Ej

Ωj Ωj+1

RG

(
Uj ,Kj

) (
Uj+1,Kj+1

)



Provisional definition of (Uj ,Uj+1,Kj) 7→ Kj+1

Expand Ωj =∑
X∈Pj

eUj (Φ,Λ\X )
∏

Y∈Cj (X )

Kj(Φ,Y )

using, in each small block,

ϕ = ϕ′ + ζj

eUj (ϕ
′+ζj ) = eUj+1(ϕ′) + difference.

Sum over configurations with fixed closure X .

Finite range: expectation factors over connected components.

For a connected union X of big blocks,

Kj+1(X ) = Ej

(
sum over ways to fill X

)
.
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Linear part on small sets

X 7→ Kj+1(X ) is a power series in Kj . The linear term in this series
is

X 7→
∑

Y :Y=X ,|Y |j≤2d

EKj(Y )

when coupling constants are zero.

By very general arguments, the theorems above reduce to showing
that this part of Kj+1 is contractive as a function of Kj .

Brydges, D. C. (2009). Lectures on the renormalisation group.
In Statistical Mechanics, volume 16 of IAS/Park City Math. Ser., pages 7–93. Amer. Math. Soc., Providence, RI

Brydges, D. and Yau, H.-T. (1990). Grad φ perturbations of massless Gaussian fields.
Comm. Math. Phys., 129(2):351–392



Example

Consider a scale j + 1 block B.

B

b

The linearisation of Kj 7→ Kj+1(B) is∑
b∈Bj (B)

Kj(b)

Making no assumptions on Kj , it would expand by L2 because
there are L2 little blocks b inside B.





Progressive integration

I Represented Coulomb gas as lattice Sine-Gordon model

I Goal is to understand the generating functional

Ω(J) = lim
m→0

Em exp

z ∑
x ,σ=±

e iσβ
1/2ϕx +

∑
x∈Λ,σ=±

Jx ,σe
iησβ1/2ϕx


I Evaluate progressively:

Ωj+1(J, ϕ) = Ej

[
Ωj(J, ϕ+ ζ(j))

]
, Ω0(J, ϕ) = eV(J,ϕ)

using finite range decomposition

(−∆ + m2)−1 = Γ1 + · · ·+ ΓR .

Then Ω(J) = ΩR(J, 0).



Local coordinates

Represented Ωj 7→ Ωj+1 via (Uj ,Kj) 7→ (Uj+1,Kj+1) and

Ωj(Φ) =
∑
X∈Pj

eUj (Φ,Λ\X )
∏

Y∈Cj (X )

Kj(Φ,Y ), Φ = (J, ϕ).

I Uj ≡ (sj , zj ,Zj , Z̄j) coupling
constants  KT picture;

I Kj remainder coordinate.

I Pj : unions of blocks of side Lj ;

I Cj : connected unions of blocks;

So far: Evolution (Uj ,Kj) 7→ Kj+1 still contained relevant/marginal
directions. Not contractive.

Now: How to make (Uj ,Kj) 7→ Kj+1 contractive.



Ej

Ωj Ωj+1

RG

(
Uj ,Kj

) (
Uj+1,Kj+1

)
I Vertical arrows:

Ωj(Φ,Λ) =
∑
X∈Pj

eUj (Φ,Λ\X )
∏

Y∈Cj (X )

Kj(Φ,Y ), Φ = (J, ϕ)

I Uj determined by coupling constants (sj , zj ,Zj , Z̄j):

Uj(Φ,X ) =
sj
2

∑
x∈X ,µ

(∂µϕx)2 + zjL
−2j

∑
x∈X ,σ=±

e iσαϕx + · · ·



Ej

Ωj Ωj+1

RG

(
Uj ,Kj

) (
Uj+1,Kj+1

)

(
Ũj , K̃j

)

I Vertical arrows:

Ωj(Φ,Λ) =
∑
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eUj (Φ,Λ\X )
∏

Y∈Cj (X )

Kj(Φ,Y ), Φ = (J, ϕ)

I Uj determined by coupling constants (sj , zj ,Zj , Z̄j):

Uj(Φ,X ) =
sj
2

∑
x∈X ,µ

(∂µϕx)2 + zjL
−2j

∑
x∈X ,σ=±

e iσαϕx + · · ·



Ej
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RG
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)

I Vertical arrows:
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Y∈Cj (X )

Kj(Φ,Y ), Φ = (J, ϕ)

I Uj determined by coupling constants (sj , zj ,Zj , Z̄j):

Uj(Φ,X ) =
sj
2

∑
x∈X ,µ

(∂µϕx)2 + zjL
−2j

∑
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e iσαϕx + · · ·



Charge decomposition isolates expanding parts
K has the property that it is invariant under

ϕx 7→ ϕx +
2π

α
.

Any function F (ϕ) with this property can be written as

F (ϕ) =
∑
q∈Z

F̂ (q, ϕ),

such that, for all constants ϑ,

F̂ (q, ϕ) = e iqαϑF̂ (q, ϕ− ϑ).

Fix a base point x0 and set ϑ = ϕx0 . Then

F̂ (q, ϕ) = e iqαϕx0 F̂ (q, ϕ− ϕx0).

Interpretation: q is charge and F̂ (q, ϕ− ϕx0) represents dipoles.
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Charge power counting

In Sine–Gordon picture: charge q at site x is represented by e iqαϕx .

EΓj
[e iqαϕx ] = e−

1
2
q2α2Γj (x ,x) ∼ L−q

2 α2

4π

I L−q
2 α2

4π beats the volume factor L2 if |q| ≥ 2 or α2 > 8π.

I Along KT line q = ±1 is marginal. Recall the KT line:

α2

4π
= 2.



Estimates by complex translation

Recall EΓ applies to fluctuation field ζ. For F analytic, by

ζ 7→ ζ + iΓf in ϕ = ϕ′ + ζ

EΓ[F (ϕ)] = e
1
2

(f ,Γf )EΓ[e−i(ζ,f )F (ϕ+ iΓf )]

If F behaves like e iqαϕx choose f so that iqαζx − i(ζ, f ) = 0.

McBryan, O. A. and Spencer, T. (1977). On the decay of correlations in SO(n)-symmetric ferromagnets.
Comm. Math. Phys., 53(3):299–302

Fröhlich, J. and Spencer, T. (1981). On the statistical mechanics of classical Coulomb and dipole gases.
J. Stat. Phys, 24:617–701

Dimock, J. and Hurd, T. R. (2000). Sine-Gordon revisited.
Ann. Henri Poincaré, 1(3):499–541



Complex translation ϕ→ ϕ+ iΓf applied to

F̂ (q, ϕ) = e iqαϕx0 F̂ (q, ϕ− ϕx0)

gives

EΓ[F̂ (q, ϕ)] = e
1
2

(f ,Γf )−αq(Γf )x0

EΓ[e iqαϕx0−i(ζ,f )F̂ (q, ϕ− ϕx0︸ ︷︷ ︸
δϕ

+ iΓf − i(Γf )x0︸ ︷︷ ︸
iδψ

)] .

The optimal choice is fx = αqδx0,x , but it would require analyticity
of F in a strip of width O(q) — which is unbounded.

Instead choose fx = α sign(q)δx0,x . Then

e
1
2

(f ,Γf )−αq(Γf )x0 = e−(|q|− 1
2

)α2Γj (0) ∼ L−2(2|q|−1)α
2

8π .

I Still decays faster than volume factor L2 if |q| ≥ 2 or α2 > 8π.

I Using q instead of sign(q) would have recovered L−q
2 α2

8π .
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Estimates by complex translation (ii)

Still need to estimate:

e iqαϕ
′
x0EΓ[e iqαζx0−i(ζ,f )F̂ (q, δζ + δϕ′ + iδψ)] .

This is a function of the field at the next scale ϕ′.

Use carefully chosen norm on such functions.

I Product property
→ charged and dipolar parts can be estimated individually.

I Norm guarantees analyticity in a strip.

I Tests against fields of typical size of Gaussian fluctuation field.
→ implements scaling heuristics for ∇ϕ
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Norm (i): small fields

The fluctuation covariance obeys

∇αΓj(x) = O(L−j |α|j ).

Thus: ‖ζ‖C2
j (B) is bounded for a typical fluctuation field ζ.

First attempt: for F = F (ϕ,X ) define

‖F‖h,Tj
= sup

ϕ

∑
n≥0

hn

n!
sup

‖ζk‖C2
j

(X )≤1

|Dn
ϕF (ϕ,X ) · (ζ1, . . . , ζn)|.

I Guarantees analyticity in a strip of width h.

I Product property (Taylor series of product is product of Taylor
series).

Issue: sup over ϕ too strong.



Norm (ii): large fields
Fluctuation fields typically obeys ∇ζ = O(L−j).

Implement this using a weight:

Gj(ϕ,X ) = e
c1κL‖∇jϕ‖2

L2
j

(X )
+···

Lemma
If κL = c(log L)−1 with c > 0 and small enough: for X small,

Ej

[
Gj(ϕ

′ + ζ,X )
]
≤ CGj+1(ϕ′, X̄ ).

Norm weighted in the field:

‖F (X )‖h,Tj
= sup

ϕ

1

Gj(ϕ,X )

[∑
n≥0

hn

n!
(· · · )

]

I Effectively reduces estimates to ∇ϕ = O( 1√
κL

).



Norm (iii): large sets

Given a parameter A > 1

‖F‖h,Tj
= sup

X
A|X |j‖F (X )‖h,Tj

I Only small X are important (locality).



Estimate of charged part

Have so far expressed (recall: ϕ = ϕ′ + ζ)

EΓ[F̂ (q, ϕ)] = L−2(2|q|−1)α
2

8π e iqαϕ
′
x0EΓ[e iqαζx0−i(ζ,f )F̂ (q, δζ+δϕ′+iδψ)] .

The charge is potentially dangerous:

‖e iqαϕ
′
x0‖h,Tj+1(ϕ′,X ) ≤ eh|q|α.

For |q| ≥ 2 this is okay since h is independent of L and the good
prefactor can be made arbitrarily small by choosing L large.

Summary:

I |q| ≥ 2: Irrelevant.

I |q| = 1: Marginal.

I |q| = 0: Dipole gas [do not do complex translation].



Dipolar part

After restricting to a charge sector, F̂ (q, ϕ) is effectively a function
of ∇ϕ (gradient field). Only need to consider q = 0,±1.

I |q| = 0: constants are relevant, (∇ϕ)2 is marginal;

I |q| = 1: constants marginal.

For example consider |q| = 1. Then by Taylor expansion in δϕ′:∣∣∣F̂ (q, δζ + δϕ′ + iδψ)− F̂ (q, δζ + 0 + iδψ)
∣∣∣

≤ O(L−1)
(

1 + L‖δϕ′‖C2
j (X )

)
Gj(ϕ,X ) ‖F‖h,Tj



Taylor expansion:∣∣∣F̂ (q, δζ + δϕ′ + iδψ)− F̂ (q, δζ + 0 + iδψ)
∣∣∣

≤ O(L−1)
(

1 + L‖δϕ′‖C2
j (X )

)
Gj(ϕ

′,X ) ‖F‖h,Tj

Factor L−1 � 1 from change of test fields:

ϕ′ is smoother than ϕ = ζ + ϕ′ ,

∇ϕ′ ∼ L−(j+1) vs. ∇ϕ ∼ L−j .



Taylor expansion:∣∣∣F̂ (q, δζ + δϕ′ + iδψ)− F̂ (q, δζ + 0 + iδψ)
∣∣∣

≤ O(L−1)
(

1 + L‖δϕ′‖C2
j (X )

)
Gj(ϕ

′,X ) ‖F‖h,Tj

Analyticity strip is uniform:

L−1h + ‖δψ‖C2
j (X ) ≤ h .



Taylor expansion:∣∣∣F̂ (q, δϕ′ + iδψ)− F̂ (q, 0 + iδψ)
∣∣∣

≤ O(L−1)
(

1 + L‖δϕ′‖C2
j (X )

)
Gj(ϕ

′,X ) ‖F‖h,Tj

Due to weight Gj , can effectively assume

1 + L‖δϕ′‖C2
j (X ) = O

(
1√
κL

)
= O(

√
log L) .

In fact, for small X ,

Ej

[(
1 + L‖δϕ′‖C2

j (X )

)
Gj(ϕ,X )

]
≤ O

(
1
√
κL

)
Gj+1(ϕ′, X̄ ) .



Upshot

Recall:
Ωj(Φ) =

∑
X∈Pj

eUj (Φ,Λ\X )
∏

Y∈Cj (X )

Kj(Φ,Y )

Theorem
There exist Ũj and K̃j such that

Ωj(Φ) =
∑
X∈Pj

eŨj (Φ,Λ\X )
∏

Y∈Cj (X )

K̃j(Φ,Y )

with K̃j given by the irrelevant parts of Kj .

I (Uj ,Kj) 7→ Ũj are nonperturbative third-order adjustments to
coupling constants (corrections in ≈ in KT equations).

Brydges, D. C. (2009). Lectures on the renormalisation group.
In Statistical Mechanics, volume 16 of IAS/Park City Math. Ser., pages 7–93. Amer. Math. Soc., Providence, RI

Brydges, D. C. and Slade, G. (2015). A Renormalisation Group Method. V. A Single Renormalisation Group Step.
J. Stat. Phys., 159(3):589–667
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I (Uj ,Kj) 7→ Ũj are nonperturbative third-order adjustments to
coupling constants (corrections in ≈ in KT equations).

Brydges, D. C. (2009). Lectures on the renormalisation group.
In Statistical Mechanics, volume 16 of IAS/Park City Math. Ser., pages 7–93. Amer. Math. Soc., Providence, RI

Brydges, D. C. and Slade, G. (2015). A Renormalisation Group Method. V. A Single Renormalisation Group Step.
J. Stat. Phys., 159(3):589–667



The renormalisation group

Ej

Ωj Ωj+1

RG

(
Uj ,Kj

) (
Uj+1,Kj+1

)

(
Ũj , K̃j

)

Theorem
For the combination of the blue and magenta arrows
(Uj ,Kj) 7→ Kj+1 is contractive.



Definition of (Uj ,Kj) 7→ Kj+1

Expand Ωj =∑
X∈Pj

eŨj (Φ,Λ\X )
∏

Y∈Cj (X )

K̃j(Φ,Y )

using, in each small block,

ϕ = ϕ′ + ζj

eŨj (ϕ
′+ζj ) = eUj+1(ϕ′) + difference.

Sum over configurations with fixed closure X . For a small X ,

Kj+1(X ) ≈ Ej

(
sum over ways to fill X

)
≈

∑
Y=X ,|Y |j≤2d

EK̃j(Y )

≈ O(L2)O(L−3(log L)3/2)‖Kj‖ .
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eŨj (Φ,Λ\X )
∏

Y∈Cj (X )

K̃j(Φ,Y )

using, in each small block,

ϕ = ϕ′ + ζj
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Pierluigi’s list of open problems
In a talk given in 2011 (video on IAS website), Pierluigi mentioned
the following open problems.

I Correlation functions including logarithmic corrections [solved]

I Analyticity in z inside the dipole phase and Borel summability
on the KT line.

I Extension to other models discussed by Fröhlich–Spencer?
XY, Villain, discrete Gaussian, Zn-clock, and solid-on-solid.

I Equivalence of Coulomb gas and other 2D probabilitic models
at criticality: Ashkin–Teller, six-vertex, Q-state and
antiferromagnetic Potts model, O(n)-models including
self-avoiding walk.

Falco, P. (2013). Critical exponents of the two dimensional coulomb gas at the Berezinskii-Kosterlitz-Thouless
transition.
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Nienhuis, B. (1987)). Coulomb gas formulation of two-dimensional phase transitions.
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