The Coulomb gas in two dimensions

Contributions of Pierluigi Falco

Roland Bauerschmidt
Postdoc
Department of Mathematics Harvard University

David C. Brydges
Prof. emeritus
Mathematics Department
University of British Columbia

Frascati, June 2015

2D Coulomb gas

2D Coulomb gas

- Periodic lattice $\Lambda \subset \mathbb{Z}^{2}$

2D Coulomb gas

- Periodic lattice $\Lambda \subset \mathbb{Z}^{2}$
- charged particles $\left(x_{i}, \sigma_{i}\right) \in \Lambda \times\{ \pm 1\}$

2D Coulomb gas

- Periodic lattice $\Lambda \subset \mathbb{Z}^{2}$
- charged particles $\left(x_{i}, \sigma_{i}\right) \in \Lambda \times\{ \pm 1\}$
- Neutral n-particle configurations $\omega \in \Omega_{n}^{0}$

2D Coulomb gas

- Periodic lattice $\Lambda \subset \mathbb{Z}^{2}$
- charged particles $\left(x_{i}, \sigma_{i}\right) \in \Lambda \times\{ \pm 1\}$
- Neutral n-particle configurations $\omega \in \Omega_{n}^{0}$

Energy of configuration ω :

$$
\begin{gathered}
H_{\Lambda}(\omega)=\lim _{m^{2} \downarrow 0} \frac{1}{2} \sum_{i, j=1}^{n} \sigma_{i} \sigma_{j} w_{\Lambda}\left(x_{i}-x_{j}\right) \\
w_{\Lambda}(x-y)=\left(m^{2}-\Delta\right)_{x, y}^{-1}
\end{gathered}
$$

2D Coulomb gas

- Periodic lattice $\Lambda \subset \mathbb{Z}^{2}$
- charged particles $\left(x_{i}, \sigma_{i}\right) \in \Lambda \times\{ \pm 1\}$
- Neutral n-particle configurations $\omega \in \Omega_{n}^{0}$

Energy of configuration ω :

$$
\begin{gathered}
H_{\wedge}(\omega)=\lim _{m^{2} \downarrow 0} \frac{1}{2} \sum_{i, j=1}^{n} \sigma_{i} \sigma_{j} w_{\Lambda}\left(x_{i}-x_{j}\right) \\
w_{\wedge}(x-y)=\left(m^{2}-\Delta\right)_{x, y}^{-1}
\end{gathered}
$$

Grand Canonical partition function:

$$
Z_{\Lambda}(\beta, z)=\sum_{n \geq 0} \frac{z^{n}}{n!} \sum_{\omega \in \Omega_{n}^{0}} e^{-\beta H_{\Lambda}(\omega)}
$$

- Fractional test charges

$$
\begin{gathered}
p_{1}=(x, \eta), \quad p_{2}=(y,-\eta), \\
\eta \in(0,1)
\end{gathered}
$$

- Fractional test charges

$$
\begin{gathered}
p_{1}=(x, \eta), \quad p_{2}=(y,-\eta), \\
\eta \in(0,1)
\end{gathered}
$$

- Augmented configuration $\omega \wedge\left\{p_{1}, p_{2}\right\}$
- Fractional test charges

$$
\begin{gathered}
p_{1}=(x, \eta), \quad p_{2}=(y,-\eta), \\
\eta \in(0,1)
\end{gathered}
$$

- Augmented configuration $\omega \wedge\left\{p_{1}, p_{2}\right\}$
$-Z_{\Lambda}^{p_{1}, p_{2}}(\beta, z)=\sum_{n \geq 0} \frac{z^{n}}{n!} \sum_{\omega \in \Omega_{n}^{0}} e^{-\beta H_{\Lambda}\left(\omega \wedge\left\{p_{1}, p_{2}\right\}\right)}$
- Fractional test charges

$$
\begin{gathered}
p_{1}=(x, \eta), \quad p_{2}=(y,-\eta), \\
\eta \in(0,1)
\end{gathered}
$$

- Augmented configuration $\omega \wedge\left\{p_{1}, p_{2}\right\}$
$-Z_{\Lambda}^{p_{1}, p_{2}}(\beta, z)=\sum_{n \geq 0} \frac{z^{n}}{n!} \sum_{\omega \in \Omega_{n}^{0}} e^{-\beta H_{\Lambda}\left(\omega \wedge\left\{p_{1}, p_{2}\right\}\right)}$

Fractional charge correlation function:

$$
\rho_{\eta}(x-y)=\lim _{\Lambda \rightarrow \infty} \frac{Z_{\Lambda}^{p_{1}, p_{2}}(\beta, z)}{Z_{\Lambda}(\beta, z)}
$$

Debye and Hückel 1923

Theorem (Wei-Shih Yang 1987)

For the grand canonical Coulomb system on \mathbb{R}^{2} with β small, $\rho_{\eta}(x, y)$ decays exponentially to zero as $|x-y| \rightarrow \infty$.

Open problems: (1) implicit hypothesis on z; (2) free boundary conditions; (3) extend range of β.

Theorem (Fröhlich-Spencer 1981)

For the Coulomb system on \mathbb{Z}^{2} exponential screening does not hold for β large.

Fröhlich, J. (1976). Classical and quantum statistical mechanics in one and two dimensions: two-component Yukawa- and Coulomb systems.
Comm. Math. Phys., 47(3):233-268
Yang, W.-S. (1987). Debye screening for two-dimensional Coulomb systems at high temperatures.
J. Statist. Phys., 49:1-32

Fröhlich, J. and Spencer, T. (1981). The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas.
Comm. Math. Phys., 81(4):527-602

KT Picture

$\beta_{\text {eff }}=:$ where trajectories cross horizontal axis.
$\rho(a-b)$ decays as $|a-b|^{-2 \kappa}$ for $\eta \in\left(0, \frac{1}{2}\right]$ and $\beta_{\text {eff }} \geq 8 \pi$.
$\kappa=\frac{\beta_{\text {eff }}}{4 \pi} \eta^{2}$ with log corrections for $\beta_{\text {eff }}=8 \pi$.

Berezinskiĭ, V. L. (1970). Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems.
Ž. Èksper. Teoret. Fiz., 59:907-920
Kosterlitz, M. and Thouless, D. J. (1973). Ordering, metastability and phase transitions in two-dimensions. J. Phys. C, 6:1181-1203

Kosterlitz, J. M. (1974). The critical properties of the two-dimensional xy model.
Journal of Physics C: Solid State Physics, 7(6):1046

Theorem (Pierluigi Falco, 2013)
KT picture, including differential equations for trajectories, holds with explicit log corrections to κ for $\beta_{\text {eff }}=8 \pi$ and z small.

The FS result was improved to $\beta_{\text {eff }}>8 \pi$, (see Marchetti-Klein 1991).

Falco, P. (2012). Kosterlitz-Thouless transition line for the two dimensional Coulomb gas.
Comm. Math. Phys., 312(2):559-609
Falco, P. (2013). Critical exponents of the two dimensional coulomb gas at the Berezinskii-Kosterlitz-Thouless transition.
http://arxiv.org/abs/1311.2237

Sine-Gordon transformation

Gaussian field:

$$
\mathbb{E}_{m}\left[\varphi_{x} \varphi_{y}\right]=\left(-\Delta+m^{2}\right)^{-1}(x, y)
$$

Sine-Gordon transformation:

$$
\begin{aligned}
Z_{\Lambda}(\beta, z) & =\lim _{m \rightarrow 0} \mathbb{E}_{m} e^{z \sum_{x} 2 \cos \beta^{1 / 2} \varphi_{x}} \\
\rho_{\eta}(x-y) & =\lim _{\Lambda \rightarrow \infty} \lim _{m \rightarrow 0}\left\langle e^{i \eta \beta^{1 / 2} \varphi_{x}} e^{-i \eta \beta^{1 / 2} \varphi_{y}}\right\rangle_{m, \Lambda}
\end{aligned}
$$

Generating functional and interaction

$$
\begin{aligned}
\Omega(J, \Lambda) & =\lim _{m \rightarrow 0} \mathbb{E}_{m} \exp \left[z \sum_{x, \sigma= \pm} e^{i \sigma \beta^{1 / 2} \varphi_{x}}+\sum_{x \in \Lambda, \sigma= \pm} J_{x, \sigma} e^{i \eta \sigma \beta^{1 / 2} \varphi_{x}}\right] \\
& =\lim _{m \rightarrow 0} \mathbb{E}_{m}\left[e^{\mathcal{V}(J, \varphi)}\right]
\end{aligned}
$$

where

$$
\begin{gathered}
\mathcal{V}(J, \varphi)=\frac{s}{2} \sum_{x, \mu}\left(\partial^{\mu} \varphi_{x}\right)^{2}+z \sum_{x, \sigma= \pm} e^{i \sigma \alpha \varphi_{x}}+\sum_{x, \sigma= \pm} J_{x, \sigma} e^{i \eta \alpha \sigma \varphi_{x}} \\
s \in\left(0, \frac{1}{2}\right), \quad \alpha^{2}=\beta(1-s)
\end{gathered}
$$

Dropping multiplicative constants.

2D GFF

Assume period $(\Lambda)=L^{R}$.
\exists multiscale covariance decomposition:

$$
\left(-\Delta+m^{2}\right)^{-1}=\sum_{0 \leq j<R} \Gamma_{j}+\Gamma_{R}^{\prime}
$$

For $\zeta_{j} \sim N\left(\Gamma_{j}\right)$,

- Finite range property: $\zeta_{j}(x)$ independent of $\zeta_{j}(y)$ if $|x-y| \geq O\left(L^{j}\right)$
- Scaling estimates:

$$
\begin{gathered}
\nabla^{\alpha} \zeta_{j} \approx L^{-j|\alpha|_{1}} \\
\zeta_{j} \approx \sqrt{\log L}, \quad \Gamma_{j}(0) \sim \frac{1}{2 \pi} \log L
\end{gathered}
$$

Evaluate Ω progressively:

$$
\begin{gathered}
\Omega_{0}(J, \varphi)=e^{\mathcal{V}(J, \varphi)}, \quad \Omega_{j+1}(J, \varphi)=\mathbb{E}_{j}\left[\Omega_{j}\left(J, \varphi+\zeta_{j}\right)\right] \\
\Omega(J, \varphi)=\Omega_{R}(J, \varphi)
\end{gathered}
$$

- \mathbb{E}_{j} acts only on the fluctuation field ζ_{j}.

Begin definition of RG:

- Real valued bulk coupling constants s_{j}, z_{j}
- Real valued observable coupling constants Z_{j}, \bar{Z}_{j}
- K_{j} in Banach space

Definition of vertical arrows: step 1

Given $\left(s_{j}, z_{j}, Z_{j}, \bar{Z}_{j}\right) \in \mathbb{R}^{4}$, define functions of $\Phi=(J, \varphi)$.

$$
\begin{aligned}
& V_{0, j}(\Phi, B)=\frac{s_{j}}{2} \sum_{x \in B, \mu}\left(\partial^{\mu} \varphi_{x}\right)^{2}+z_{j} L^{-2 j} \sum_{x \in B, \sigma= \pm} e^{i \sigma \alpha \varphi_{x}} \\
& \begin{array}{ll}
V_{1, j}(\Phi, B) & =Z_{j} L^{-2 j} \sum_{x \in B, \sigma= \pm} J_{x, \sigma} e^{i \eta \alpha \sigma \varphi_{x}} \\
\quad+\bar{Z}_{j} L^{-2 j} \sum_{x \in B, \sigma= \pm} J_{x, \sigma} e^{i \bar{\eta} \alpha \sigma \varphi_{x}}, & \bar{\eta}=1-\eta . \\
V_{j}(\Phi, B)=V_{0, j}(\Phi, B)+V_{1, j}(\Phi, B)
\end{array}
\end{aligned}
$$

Definition of vertical arrows: step 2

Let

$$
U_{j}(\Phi, B)=V_{j}(\Phi, B)+W_{j}(\Phi, B)
$$

where $W_{j}(\Phi, B)$ is another explicit function of $\Phi=(J, \varphi)$ defined by $\left(s_{j}, z_{j}, Z_{j}, \bar{Z}_{j}\right)$.

It is given by a LARGE formula obtained from second order perturbation theory.

Definition of vertical arrows: final step

Given $K_{j}: X \mapsto$ function of $\left(\varphi_{x}, J_{x}\right)_{x \in X} \square$
Ω_{j} is expressed in terms of $\left(U_{j}, K_{j}\right)$
using

$$
\Omega_{j}(\Phi, \Lambda)=\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y)
$$

K_{j} is there to include the remainder after second order perturbation theory.

Summary

- U_{j} determined by coupling constants $\left(s_{j}, z_{j}, Z_{j}, \bar{Z}_{j}\right)$
- $\Omega_{j}(\Phi, \Lambda)=\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y)$,

Theorem ($\exists \mathrm{RG}$)

For all j such that $\left(s_{j}, z_{j}\right)$ is small, K_{j} is also small, $O\left(s_{j}, z_{j}\right)^{3}$ uniformly in j, and $\left(s_{j}, z_{j}\right)$ follows the KT picture:

$$
s_{j+1} \approx s_{j}-a z_{j}^{2}, \quad z_{j+1} \approx L^{2} e^{-\frac{\alpha^{2}}{2} \Gamma_{j}(0)}\left[z_{j}-b s_{j} z_{j}\right]
$$

Theorem ($\exists \mathrm{RG}$)

For all j such that $\left(s_{j}, z_{j}\right)$ is small, K_{j} is also small, $O\left(s_{j}, z_{j}\right)^{3}$ uniformly in j, and $\left(s_{j}, z_{j}\right)$ follows the KT picture:

$$
s_{j+1} \approx s_{j}-a z_{j}^{2}, \quad z_{j+1} \approx L^{2} e^{-\frac{\alpha^{2}}{2} \Gamma_{j}(0)}\left[z_{j}-b s_{j} z_{j}\right]
$$

Theorem (Best choice of s)
For $\alpha^{2}=8 \pi$, for $z_{0}=z$ small, there is a unique $s_{0}=s_{0}(z)$ such that $\left(s_{j}, z_{j}, K_{j}\right)$ is in the domain of $R G$ for $j \leq R$ and $\left(s_{R}, z_{R}, K_{R}\right)$ tends to zero.

Theorem ($\exists \mathrm{RG}$)

For all j such that $\left(s_{j}, z_{j}\right)$ is small, K_{j} is also small, $O\left(s_{j}, z_{j}\right)^{3}$ uniformly in j, and $\left(s_{j}, z_{j}\right)$ follows the KT picture:

$$
s_{j+1} \approx s_{j}-a z_{j}^{2}, \quad z_{j+1} \approx L^{2} e^{-\frac{\alpha^{2}}{2} \Gamma_{j}(0)}\left[z_{j}-b s_{j} z_{j}\right]
$$

Theorem (Best choice of s)
For $\alpha^{2}=8 \pi$, for $z_{0}=z$ small, there is a unique $s_{0}=s_{0}(z)$ such that $\left(s_{j}, z_{j}, K_{j}\right)$ is in the domain of $R G$ for $j \leq R$ and $\left(s_{R}, z_{R}, K_{R}\right)$ tends to zero.
$z_{R} \rightarrow 0$ means there are no dipoles at macroscopic scales.
$s_{R} \rightarrow 0$ means that $\alpha \varphi$ is "the best" gaussian approximation to the Coulomb gas at the KT transition.

Since $\Gamma_{j}(0) \sim \frac{1}{2 \pi} \log L$ as $j \rightarrow \infty$,

$$
L^{2} e^{-\frac{\alpha^{2}}{2} \Gamma_{j}(0)} \sim L^{2-\frac{\alpha^{2}}{4 \pi}}
$$

So if

$$
\alpha^{2}=8 \pi, \quad \text { KT point }
$$

then z_{j} is marginal.

To have $\alpha^{2}=8 \pi$, by the definition $\alpha^{2}=\left(1-s_{0}(z)\right) \beta$,

$$
\beta=\frac{8 \pi}{1-s_{0}(z)}
$$

Calculation of $\rho(a, b)$

After R steps Λ becomes a single block so that

$$
\Omega_{R}(\Phi, \Lambda)=e^{U_{R}(\Phi, \Lambda)}+K_{R}(\Phi, \Lambda)
$$

Put this into

$$
\rho_{\eta}(x, y)=\left.\frac{1}{\Omega_{R}(\Phi, \Lambda)} \frac{\partial^{2} \Omega_{R}(\Phi, \Lambda)}{\partial J_{x} \partial J_{y}}\right|_{J=0} .
$$

In the infinite volume limit $R \rightarrow \infty, K_{R}$ becomes zero and makes no contribution!

In fact $\rho(a, b)$ is completely determined by the double derivative of W_{R} and the (s, z, Z, \bar{Z}) flow.

- First paper [CMP 2012]: External field $J=0$ ("bulk").

$$
\left(s_{j}, z_{j}, K_{j}^{J=0}\right) \mapsto\left(s_{j+1}, z_{j+1}, K_{j+1}^{J=0}\right)
$$

- Second paper [arXiv 2013]: Extension to $J \neq 0$.

This is really an extension, in the sense that Z_{j}, \bar{Z}_{j} and J do not feed back into the bulk coordinates.

Recall the magenta arrow

$\left(U_{j}, K_{j}\right) \longrightarrow\left(U_{j+1}, K_{j+1}\right)$

Provisional definition of $\left(U_{j}, U_{j+1}, K_{j}\right) \mapsto K_{j+1}$

Expand $\Omega_{j}=$

$$
\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y)
$$

using, in each small block,

$$
\begin{gathered}
\varphi=\varphi^{\prime}+\zeta_{j} \\
e^{U_{j}\left(\varphi^{\prime}+\zeta_{j}\right)}=e^{U_{j+1}\left(\varphi^{\prime}\right)}+\text { difference. }
\end{gathered}
$$

Provisional definition of $\left(U_{j}, U_{j+1}, K_{j}\right) \mapsto K_{j+1}$

Expand $\Omega_{j}=$

$$
\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y)
$$

using, in each small block,

$$
\begin{gathered}
\varphi=\varphi^{\prime}+\zeta_{j} \\
e^{U_{j}\left(\varphi^{\prime}+\zeta_{j}\right)}=e^{U_{j+1}\left(\varphi^{\prime}\right)}+\text { difference. }
\end{gathered}
$$

Sum over configurations with fixed closure X.

Provisional definition of $\left(U_{j}, U_{j+1}, K_{j}\right) \mapsto K_{j+1}$

Expand $\Omega_{j}=$

$$
\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y)
$$

using, in each small block,

$$
\begin{gathered}
\varphi=\varphi^{\prime}+\zeta_{j} \\
e^{U_{j}\left(\varphi^{\prime}+\zeta_{j}\right)}=e^{U_{j+1}\left(\varphi^{\prime}\right)}+\text { difference. }
\end{gathered}
$$

Sum over configurations with fixed closure X.

Provisional definition of $\left(U_{j}, U_{j+1}, K_{j}\right) \mapsto K_{j+1}$

Expand $\Omega_{j}=$

$$
\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y)
$$

using, in each small block,

$$
\begin{gathered}
\varphi=\varphi^{\prime}+\zeta_{j} \\
e^{U_{j}\left(\varphi^{\prime}+\zeta_{j}\right)}=e^{U_{j+1}\left(\varphi^{\prime}\right)}+\text { difference. }
\end{gathered}
$$

Sum over configurations with fixed closure X.
Finite range: expectation factors over connected components.

Provisional definition of $\left(U_{j}, U_{j+1}, K_{j}\right) \mapsto K_{j+1}$

Expand $\Omega_{j}=$

$$
\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y)
$$

using, in each small block,

$$
\begin{gathered}
\varphi=\varphi^{\prime}+\zeta_{j} \\
e^{U_{j}\left(\varphi^{\prime}+\zeta_{j}\right)}=e^{U_{j+1}\left(\varphi^{\prime}\right)}+\text { difference. }
\end{gathered}
$$

Sum over configurations with fixed closure X.
Finite range: expectation factors over connected components.
For a connected union X of big blocks,
$K_{j+1}(X)=\mathbb{E}_{j}($ sum over ways to fill $X)$.

Linear part on small sets

$X \mapsto K_{j+1}(X)$ is a power series in K_{j}. The linear term in this series is

$$
X \mapsto \sum_{Y: \bar{Y}=X,|Y|_{j} \leq 2^{d}} \mathbb{E} K_{j}(Y)
$$

when coupling constants are zero.

By very general arguments, the theorems above reduce to showing that this part of K_{j+1} is contractive as a function of K_{j}.

Brydges, D. C. (2009). Lectures on the renormalisation group.
In Statistical Mechanics, volume 16 of IAS/Park City Math. Ser., pages 7-93. Amer. Math. Soc., Providence, RI
Brydges, D. and Yau, H.-T. (1990). Grad ϕ perturbations of massless Gaussian fields.
Comm. Math. Phys., 129(2):351-392

Example

Consider a scale $j+1$ block B.

The linearisation of $K_{j} \mapsto K_{j+1}(B)$ is

$$
\sum_{b \in \mathcal{B}_{j}(B)} K_{j}(b)
$$

Making no assumptions on K_{j}, it would expand by L^{2} because there are L^{2} little blocks b inside B.

Progressive integration

- Represented Coulomb gas as lattice Sine-Gordon model
- Goal is to understand the generating functional

$$
\Omega(J)=\lim _{m \rightarrow 0} \mathbb{E}_{m} \exp \left[z \sum_{x, \sigma= \pm} e^{i \sigma \beta^{1 / 2} \varphi_{x}}+\sum_{x \in \Lambda, \sigma= \pm} J_{x, \sigma} e^{i \eta \sigma \beta^{1 / 2} \varphi_{x}}\right]
$$

- Evaluate progressively:

$$
\Omega_{j+1}(J, \varphi)=\mathbb{E}_{j}\left[\Omega_{j}\left(J, \varphi+\zeta^{(j)}\right)\right], \quad \Omega_{0}(J, \varphi)=e^{\mathcal{V}(J, \varphi)}
$$

using finite range decomposition

$$
\left(-\Delta+m^{2}\right)^{-1}=\Gamma_{1}+\cdots+\Gamma_{R}
$$

Then $\Omega(J)=\Omega_{R}(J, 0)$.

Local coordinates

Represented $\Omega_{j} \mapsto \Omega_{j+1}$ via $\left(U_{j}, K_{j}\right) \mapsto\left(U_{j+1}, K_{j+1}\right)$ and

$$
\Omega_{j}(\Phi)=\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y), \quad \Phi=(J, \varphi) .
$$

- $U_{j} \equiv\left(s_{j}, z_{j}, Z_{j}, \bar{Z}_{j}\right)$ coupling constants \rightsquigarrow KT picture;
- K_{j} remainder coordinate.
- \mathcal{P}_{j} : unions of blocks of side L^{j};
- \mathcal{C}_{j} : connected unions of blocks;

So far: Evolution $\left(U_{j}, K_{j}\right) \mapsto K_{j+1}$ still contained relevant/marginal directions. Not contractive.

Now: How to make $\left(U_{j}, K_{j}\right) \mapsto K_{j+1}$ contractive.

- Vertical arrows:

$$
\Omega_{j}(\Phi, \Lambda)=\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y), \quad \Phi=(J, \varphi)
$$

- U_{j} determined by coupling constants $\left(s_{j}, z_{j}, Z_{j}, \bar{Z}_{j}\right)$:

$$
U_{j}(\Phi, X)=\frac{s_{j}}{2} \sum_{x \in X, \mu}\left(\partial^{\mu} \varphi_{x}\right)^{2}+z_{j} L^{-2 j} \sum_{x \in X, \sigma= \pm} e^{i \sigma \alpha \varphi_{x}}+\cdots
$$

- Vertical arrows:

$$
\Omega_{j}(\Phi, \Lambda)=\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y), \quad \Phi=(J, \varphi)
$$

- U_{j} determined by coupling constants $\left(s_{j}, z_{j}, Z_{j}, \bar{Z}_{j}\right)$:

$$
U_{j}(\Phi, X)=\frac{s_{j}}{2} \sum_{x \in X, \mu}\left(\partial^{\mu} \varphi_{x}\right)^{2}+z_{j} L^{-2 j} \sum_{x \in X, \sigma= \pm} e^{i \sigma \alpha \varphi_{x}}+\cdots
$$

- Vertical arrows:

$$
\Omega_{j}(\Phi, \Lambda)=\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y), \quad \Phi=(J, \varphi)
$$

- U_{j} determined by coupling constants $\left(s_{j}, z_{j}, Z_{j}, \bar{Z}_{j}\right)$:

$$
U_{j}(\Phi, X)=\frac{s_{j}}{2} \sum_{x \in X, \mu}\left(\partial^{\mu} \varphi_{x}\right)^{2}+z_{j} L^{-2 j} \sum_{x \in X, \sigma= \pm} e^{i \sigma \alpha \varphi_{x}}+\cdots
$$

Charge decomposition isolates expanding parts

K has the property that it is invariant under

$$
\varphi_{x} \mapsto \varphi_{x}+\frac{2 \pi}{\alpha} .
$$

Any function $F(\varphi)$ with this property can be written as

$$
F(\varphi)=\sum_{q \in \mathbb{Z}} \widehat{F}(q, \varphi),
$$

such that, for all constants ϑ,

$$
\widehat{F}(q, \varphi)=e^{i q \alpha \vartheta} \widehat{F}(q, \varphi-\vartheta) .
$$

Charge decomposition isolates expanding parts

K has the property that it is invariant under

$$
\varphi_{x} \mapsto \varphi_{x}+\frac{2 \pi}{\alpha} .
$$

Any function $F(\varphi)$ with this property can be written as

$$
F(\varphi)=\sum_{q \in \mathbb{Z}} \widehat{F}(q, \varphi)
$$

such that, for all constants ϑ,

$$
\widehat{F}(q, \varphi)=e^{i q \alpha \vartheta} \widehat{F}(q, \varphi-\vartheta) .
$$

Fix a base point x_{0} and set $\vartheta=\varphi_{x_{0}}$. Then

$$
\widehat{F}(q, \varphi)=e^{i q \alpha \varphi_{x_{0}}} \widehat{F}\left(q, \varphi-\varphi_{x_{0}}\right)
$$

Interpretation: q is charge and $\widehat{F}\left(q, \varphi-\varphi_{x_{0}}\right)$ represents dipoles.

Charge power counting

In Sine-Gordon picture: charge q at site x is represented by $e^{i q \alpha \varphi_{x}}$.

$$
\mathbb{E}_{\Gamma_{j}}\left[e^{i q \alpha \varphi_{x}}\right]=e^{-\frac{1}{2} q^{2} \alpha^{2} \Gamma_{j}(x, x)} \sim L^{-q^{2} \frac{\alpha^{2}}{4 \pi}}
$$

- $L^{-q^{2} \frac{\alpha^{2}}{4 \pi}}$ beats the volume factor L^{2} if $|q| \geq 2$ or $\alpha^{2}>8 \pi$.
- Along KT line $q= \pm 1$ is marginal. Recall the KT line:

$$
\frac{\alpha^{2}}{4 \pi}=2
$$

Estimates by complex translation

Recall \mathbb{E}_{Γ} applies to fluctuation field ζ. For F analytic, by

$$
\begin{gathered}
\zeta \mapsto \zeta+i \Gamma f \quad \text { in } \varphi=\varphi^{\prime}+\zeta \\
\mathbb{E}_{\Gamma}[F(\varphi)]=e^{\frac{1}{2}(f, \Gamma f)} \mathbb{E}_{\Gamma}\left[e^{-i(\zeta, f)} F(\varphi+i \Gamma f)\right]
\end{gathered}
$$

If F behaves like $e^{i q \alpha \varphi_{x}}$ choose f so that $i q \alpha \zeta_{x}-i(\zeta, f)=0$.

McBryan, O. A. and Spencer, T. (1977). On the decay of correlations in $\mathrm{SO}(n)$-symmetric ferromagnets. Comm. Math. Phys., 53(3):299-302

Fröhlich, J. and Spencer, T. (1981). On the statistical mechanics of classical Coulomb and dipole gases. J. Stat. Phys, 24:617-701

Dimock, J. and Hurd, T. R. (2000). Sine-Gordon revisited.
Ann. Henri Poincaré, 1(3):499-541

Complex translation $\varphi \rightarrow \varphi+i \Gamma f$ applied to

$$
\widehat{F}(q, \varphi)=e^{i q \alpha \varphi_{x_{0}}} \widehat{F}\left(q, \varphi-\varphi_{x_{0}}\right)
$$

gives

$$
\begin{aligned}
\mathbb{E}_{\Gamma}[\widehat{F}(q, \varphi)]= & e^{\frac{1}{2}(f, \Gamma f)-\alpha q(\Gamma f)_{x_{0}}} \\
& \mathbb{E}_{\Gamma}[e^{i q \alpha \varphi_{x_{0}}-i(\zeta, f)} \widehat{F}(q, \underbrace{\varphi-\varphi_{x_{0}}}_{\delta \varphi}+\underbrace{i \Gamma f-i(\Gamma f)_{x_{0}}}_{i \delta \psi})] .
\end{aligned}
$$

Complex translation $\varphi \rightarrow \varphi+i \Gamma f$ applied to

$$
\widehat{F}(q, \varphi)=e^{i q \alpha \varphi_{x_{0}}} \widehat{F}\left(q, \varphi-\varphi_{x_{0}}\right)
$$

gives

$$
\begin{aligned}
\mathbb{E}_{\Gamma}[\widehat{F}(q, \varphi)]= & e^{\frac{1}{2}(f, \Gamma f)-\alpha q(\Gamma f)_{x_{0}}} \\
& \mathbb{E}_{\Gamma}[e^{i q \alpha \varphi_{x_{0}}-i(\zeta, f)} \widehat{F}(q, \underbrace{\varphi-\varphi_{x_{0}}}_{\delta \varphi}+\underbrace{i \Gamma f-i(\Gamma f)_{x_{0}}}_{i \delta \psi})] .
\end{aligned}
$$

The optimal choice is $f_{x}=\alpha q \delta_{x_{0}, x}$, but it would require analyticity of F in a strip of width $O(q)$ - which is unbounded.

Complex translation $\varphi \rightarrow \varphi+i \Gamma f$ applied to

$$
\widehat{F}(q, \varphi)=e^{i q \alpha \varphi_{x_{0}}} \widehat{F}\left(q, \varphi-\varphi_{x_{0}}\right)
$$

gives

$$
\begin{aligned}
\mathbb{E}_{\Gamma}[\widehat{F}(q, \varphi)]= & e^{\frac{1}{2}(f, \Gamma f)-\alpha q(\Gamma f)_{x_{0}}} \\
& \mathbb{E}_{\Gamma}[e^{i q \alpha \varphi_{x_{0}}-i(\zeta, f)} \widehat{F}(q, \underbrace{\varphi-\varphi_{x_{0}}}_{\delta \varphi}+\underbrace{i \Gamma f-i(\Gamma f)_{x_{0}}}_{i \delta \psi})] .
\end{aligned}
$$

The optimal choice is $f_{x}=\alpha q \delta_{x_{0}, x}$, but it would require analyticity of F in a strip of width $O(q)$ - which is unbounded. Instead choose $f_{x}=\alpha \operatorname{sign}(q) \delta_{x_{0}, x}$. Then

$$
e^{\frac{1}{2}(f, \Gamma f)-\alpha q(\Gamma f)_{x_{0}}}=e^{-\left(|q|-\frac{1}{2}\right) \alpha^{2} \Gamma_{j}(0)} \sim L^{-2(2|q|-1) \frac{\alpha^{2}}{8 \pi}}
$$

- Still decays faster than volume factor L^{2} if $|q| \geq 2$ or $\alpha^{2}>8 \pi$.
- Using q instead of $\operatorname{sign}(q)$ would have recovered $L^{-q^{2} \frac{\alpha^{2}}{8 \pi}}$.

Estimates by complex translation (ii)

Still need to estimate:

$$
e^{i q \alpha \varphi_{x_{0}}^{\prime}} \mathbb{E}_{\Gamma}\left[e^{i q \alpha \zeta_{x_{0}}-i(\zeta, f)} \widehat{F}\left(q, \delta \zeta+\delta \varphi^{\prime}+i \delta \psi\right)\right]
$$

This is a function of the field at the next scale φ^{\prime}.

Estimates by complex translation (ii)

Still need to estimate:

$$
e^{i q \alpha \varphi_{x_{0}}^{\prime} \mathbb{E}_{\Gamma}\left[e^{i q \alpha \zeta_{x_{0}}-i(\zeta, f)} \widehat{F}\left(q, \delta \zeta+\delta \varphi^{\prime}+i \delta \psi\right)\right]}
$$

This is a function of the field at the next scale φ^{\prime}.

Use carefully chosen norm on such functions.

- Product property
\rightarrow charged and dipolar parts can be estimated individually.
- Norm guarantees analyticity in a strip.
- Tests against fields of typical size of Gaussian fluctuation field. \rightarrow implements scaling heuristics for $\nabla \varphi$

Norm (i): small fields

The fluctuation covariance obeys

$$
\nabla^{\alpha} \Gamma_{j}(x)=O\left(L^{-j|\alpha|_{j}}\right)
$$

Thus: $\|\zeta\|_{C_{j}^{2}(B)}$ is bounded for a typical fluctuation field ζ.
First attempt: for $F=F(\varphi, X)$ define

$$
\|F\|_{h, T_{j}}=\sup _{\varphi} \sum_{n \geq 0} \frac{h^{n}}{n!} \sup _{\left\|\zeta_{k}\right\|_{C_{j}^{2}(X) \leq 1}}\left|D_{\varphi}^{n} F(\varphi, X) \cdot\left(\zeta_{1}, \ldots, \zeta_{n}\right)\right| .
$$

- Guarantees analyticity in a strip of width h.
- Product property (Taylor series of product is product of Taylor series).
Issue: sup over φ too strong.

Norm (ii): large fields

Fluctuation fields typically obeys $\nabla \zeta=O\left(L^{-j}\right)$.
Implement this using a weight:

$$
G_{j}(\varphi, X)=e^{c_{1} \kappa_{L}\left\|\nabla_{j} \varphi\right\|_{L_{j}}^{2}(x)+\cdots}
$$

Lemma
If $\kappa_{L}=c(\log L)^{-1}$ with $c>0$ and small enough: for X small,

$$
\mathbb{E}_{j}\left[G_{j}\left(\varphi^{\prime}+\zeta, X\right)\right] \leq C G_{j+1}\left(\varphi^{\prime}, \bar{X}\right) .
$$

Norm weighted in the field:

$$
\|F(X)\|_{h, T_{j}}=\sup _{\varphi} \frac{1}{G_{j}(\varphi, X)}\left[\sum_{n \geq 0} \frac{h^{n}}{n!}(\cdots)\right]
$$

- Effectively reduces estimates to $\nabla \varphi=O\left(\frac{1}{\sqrt{\kappa_{L}}}\right)$.

Norm (iii): large sets

Given a parameter $A>1$

$$
\|F\|_{h, T_{j}}=\sup _{X} A^{|X|_{j}}\|F(X)\|_{h, T_{j}}
$$

- Only small X are important (locality).

Estimate of charged part

Have so far expressed (recall: $\varphi=\varphi^{\prime}+\zeta$)
$\mathbb{E}_{\Gamma}[\widehat{F}(q, \varphi)]=L^{-2(2|q|-1) \frac{\alpha^{2}}{8 \pi}} e^{i q \alpha \varphi_{x_{0}}^{\prime}} \mathbb{E}_{\Gamma}\left[e^{i q \alpha \zeta_{x_{0}}-i(\zeta, f)} \widehat{F}\left(q, \delta \zeta+\delta \varphi^{\prime}+i \delta \psi\right)\right]$.
The charge is potentially dangerous:

$$
\left\|e^{i q \alpha \varphi_{x_{0}}^{\prime}}\right\|_{h, T_{j+1}\left(\varphi^{\prime}, X\right)} \leq e^{h|q| \alpha}
$$

For $|q| \geq 2$ this is okay since h is independent of L and the good prefactor can be made arbitrarily small by choosing L large.

Summary:

- $|q| \geq 2$: Irrelevant.
- $|q|=1$: Marginal.
- $|q|=0$: Dipole gas [do not do complex translation].

Dipolar part

After restricting to a charge sector, $\widehat{F}(q, \varphi)$ is effectively a function of $\nabla \varphi$ (gradient field). Only need to consider $q=0, \pm 1$.

- $|q|=0$: constants are relevant, $(\nabla \varphi)^{2}$ is marginal;
- $|q|=1$: constants marginal.

For example consider $|q|=1$. Then by Taylor expansion in $\delta \varphi^{\prime}$:

$$
\begin{aligned}
& \left|\widehat{F}\left(q, \delta \zeta+\delta \varphi^{\prime}+i \delta \psi\right)-\widehat{F}(q, \delta \zeta+0+i \delta \psi)\right| \\
& \leq O\left(L^{-1}\right)\left(1+L\left\|\delta \varphi^{\prime}\right\|_{C_{j}^{2}(X)}\right) G_{j}(\varphi, X)\|F\|_{h, T_{j}}
\end{aligned}
$$

Taylor expansion:

$$
\begin{aligned}
& \left|\widehat{F}\left(q, \delta \zeta+\delta \varphi^{\prime}+i \delta \psi\right)-\widehat{F}(q, \delta \zeta+0+i \delta \psi)\right| \\
& \leq O\left(L^{-1}\right)\left(1+L\left\|\delta \varphi^{\prime}\right\|_{C_{j}^{2}(X)}\right) G_{j}\left(\varphi^{\prime}, X\right)\|F\|_{h, T_{j}}
\end{aligned}
$$

Factor $L^{-1} \ll 1$ from change of test fields:
φ^{\prime} is smoother than $\varphi=\zeta+\varphi^{\prime}$,

$$
\nabla \varphi^{\prime} \sim L^{-(j+1)} \quad \text { vs. } \quad \nabla \varphi \sim L^{-j}
$$

Taylor expansion:

$$
\begin{aligned}
& \left|\widehat{F}\left(q, \delta \zeta+\delta \varphi^{\prime}+i \delta \psi\right)-\widehat{F}(q, \delta \zeta+0+i \delta \psi)\right| \\
& \leq O\left(L^{-1}\right)\left(1+L\left\|\delta \varphi^{\prime}\right\|_{C_{j}^{2}(X)}\right) G_{j}\left(\varphi^{\prime}, X\right)\|F\|_{h, T_{j}}
\end{aligned}
$$

Analyticity strip is uniform:

$$
L^{-1} h+\|\delta \psi\|_{C_{j}^{2}(X)} \leq h
$$

Taylor expansion:

$$
\begin{aligned}
& \left|\widehat{F}\left(q, \delta \varphi^{\prime}+i \delta \psi\right)-\widehat{F}(q, 0+i \delta \psi)\right| \\
& \leq O\left(L^{-1}\right)\left(1+L\left\|\delta \varphi^{\prime}\right\|_{C_{j}^{2}(X)}\right) G_{j}\left(\varphi^{\prime}, X\right)\|F\|_{h, T_{j}}
\end{aligned}
$$

Due to weight G_{j}, can effectively assume

$$
1+L\left\|\delta \varphi^{\prime}\right\|_{C_{j}^{2}(X)}=O\left(\frac{1}{\sqrt{\kappa_{L}}}\right)=O(\sqrt{\log L})
$$

In fact, for small X,

$$
\mathbb{E}_{j}\left[\left(1+L\left\|\delta \varphi^{\prime}\right\|_{C_{j}^{2}(X)}\right) G_{j}(\varphi, X)\right] \leq O\left(\frac{1}{\sqrt{\kappa_{L}}}\right) G_{j+1}\left(\varphi^{\prime}, \bar{X}\right)
$$

Upshot

Recall:

$$
\Omega_{j}(\Phi)=\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y)
$$

Upshot

Recall:

$$
\Omega_{j}(\Phi)=\sum_{X \in \mathcal{P}_{j}} e^{U_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} K_{j}(\Phi, Y)
$$

Theorem
There exist \tilde{U}_{j} and \tilde{K}_{j} such that

$$
\Omega_{j}(\Phi)=\sum_{X \in \mathcal{P}_{j}} e^{\tilde{U}_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} \tilde{K}_{j}(\Phi, Y)
$$

with \tilde{K}_{j} given by the irrelevant parts of K_{j}.

- $\left(U_{j}, K_{j}\right) \mapsto \tilde{U}_{j}$ are nonperturbative third-order adjustments to coupling constants (corrections in \approx in KT equations).

Brydges, D. C. (2009). Lectures on the renormalisation group.
In Statistical Mechanics, volume 16 of IAS/Park City Math. Ser., pages 7-93. Amer. Math. Soc., Providence, RI
Brydges, D. C. and Slade, G. (2015). A Renormalisation Group Method. V. A Single Renormalisation Group Step. J. Stat. Phys., 159(3):589-667

The renormalisation group

Theorem
For the combination of the blue and magenta arrows
$\left(U_{j}, K_{j}\right) \mapsto K_{j+1}$ is contractive.

Definition of $\left(U_{j}, K_{j}\right) \mapsto K_{j+1}$

Expand $\Omega_{j}=$

$$
\sum_{X \in \mathcal{P}_{j}} e^{\tilde{U}_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} \tilde{K}_{j}(\Phi, Y)
$$

using, in each small block,

$$
\begin{gathered}
\varphi=\varphi^{\prime}+\zeta_{j} \\
e^{\tilde{U}_{j}\left(\varphi^{\prime}+\zeta_{j}\right)}=e^{U_{j+1}\left(\varphi^{\prime}\right)}+\text { difference. }
\end{gathered}
$$

Definition of $\left(U_{j}, K_{j}\right) \mapsto K_{j+1}$

Expand $\Omega_{j}=$

$$
\sum_{X \in \mathcal{P}_{j}} e^{\tilde{U}_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} \tilde{K}_{j}(\Phi, Y)
$$

using, in each small block,

$$
\begin{gathered}
\varphi=\varphi^{\prime}+\zeta_{j} \\
e^{\tilde{U}_{j}\left(\varphi^{\prime}+\zeta_{j}\right)}=e^{U_{j+1}\left(\varphi^{\prime}\right)}+\text { difference. }
\end{gathered}
$$

Sum over configurations with fixed closure X.

Definition of $\left(U_{j}, K_{j}\right) \mapsto K_{j+1}$

Expand $\Omega_{j}=$

$$
\sum_{X \in \mathcal{P}_{j}} e^{\tilde{U}_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} \tilde{K}_{j}(\Phi, Y)
$$

using, in each small block,

$$
\begin{gathered}
\varphi=\varphi^{\prime}+\zeta_{j} \\
e^{\tilde{U}_{j}\left(\varphi^{\prime}+\zeta_{j}\right)}=e^{U_{j+1}\left(\varphi^{\prime}\right)}+\text { difference. }
\end{gathered}
$$

Sum over configurations with fixed closure X. For a small X,
$K_{j+1}(X) \approx \mathbb{E}_{j}($ sum over ways to fill $X) \approx \quad \sum \mathbb{E} \tilde{K}_{j}(Y)$

$$
\begin{aligned}
& \bar{Y}=X,|Y|_{j} \leq 2^{d} \\
\approx & O\left(L^{2}\right) O\left(L^{-3}(\log L)^{3 / 2}\right)\left\|K_{j}\right\| .
\end{aligned}
$$

Definition of $\left(U_{j}, K_{j}\right) \mapsto K_{j+1}$

Expand $\Omega_{j}=$

$$
\sum_{X \in \mathcal{P}_{j}} e^{\tilde{U}_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} \tilde{K}_{j}(\Phi, Y)
$$

using, in each small block,

$$
\begin{gathered}
\varphi=\varphi^{\prime}+\zeta_{j} \\
e^{\tilde{U}_{j}\left(\varphi^{\prime}+\zeta_{j}\right)}=e^{U_{j+1}\left(\varphi^{\prime}\right)}+\text { difference. }
\end{gathered}
$$

Sum over configurations with fixed closure X. For a small X,
$K_{j+1}(X) \approx \mathbb{E}_{j}($ sum over ways to fill $X) \approx \quad \sum \mathbb{E} \tilde{K}_{j}(Y)$

$$
\begin{aligned}
& \bar{Y}=X,|Y|_{j} \leq 2^{d} \\
\approx & O\left(L^{2}\right) O\left(L^{-3}(\log L)^{3 / 2}\right)\left\|K_{j}\right\| .
\end{aligned}
$$

Definition of $\left(U_{j}, K_{j}\right) \mapsto K_{j+1}$

Expand $\Omega_{j}=$

$$
\sum_{X \in \mathcal{P}_{j}} e^{\tilde{U}_{j}(\Phi, \Lambda \backslash X)} \prod_{Y \in \mathcal{C}_{j}(X)} \tilde{K}_{j}(\Phi, Y)
$$

using, in each small block,

$$
\begin{gathered}
\varphi=\varphi^{\prime}+\zeta_{j} \\
e^{\tilde{U}_{j}\left(\varphi^{\prime}+\zeta_{j}\right)}=e^{U_{j+1}\left(\varphi^{\prime}\right)}+\text { difference. }
\end{gathered}
$$

Sum over configurations with fixed closure X. For a small X,
$K_{j+1}(X) \approx \mathbb{E}_{j}($ sum over ways to fill $X) \approx \quad \sum \mathbb{E} \tilde{K}_{j}(Y)$

$$
\begin{aligned}
& \bar{Y}=X,|Y|_{j} \leq 2^{d} \\
\approx & O\left(L^{2}\right) O\left(L^{-3}(\log L)^{3 / 2}\right)\left\|K_{j}\right\| .
\end{aligned}
$$

Pierluigi's list of open problems

In a talk given in 2011 (video on IAS website), Pierluigi mentioned the following open problems.

- Correlation functions including logarithmic corrections [solved]
- Analyticity in z inside the dipole phase and Borel summability on the KT line.
- Extension to other models discussed by Fröhlich-Spencer? XY, Villain, discrete Gaussian, Z_{n}-clock, and solid-on-solid.
- Equivalence of Coulomb gas and other 2D probabilitic models at criticality: Ashkin-Teller, six-vertex, Q-state and antiferromagnetic Potts model, $O(n)$-models including self-avoiding walk.

Falco, P. (2013). Critical exponents of the two dimensional coulomb gas at the Berezinskii-Kosterlitz-Thouless transition.
http://arxiv.org/abs/1311.2237
Fröhlich, J. and Spencer, T. (1981). The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas.
Comm. Math. Phys., 81(4):527-602
Nienhuis, B. (1987)). Coulomb gas formulation of two-dimensional phase transitions.
In Domb, C. and Lebowitz, J., editors, Phase Transitions and Critical Phenomena, volume 11, New York. Academic Press

Further References

Brydges, D. and Martin, P. A. (1999). Coulomb systems at low density: a review.
J. Statist. Phys., 96(5-6):1163-1330

Nienhuis, B. (1987)). Coulomb gas formulation of two-dimensional phase transitions.
In Domb, C. and Lebowitz, J., editors, Phase Transitions and Critical Phenomena, volume 11, New York. Academic Press

Fröhlich, J. and Park, Y. (1978). Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems.
Commun. Math. Phys., 59:235-266
Brydges, D. C. and Slade, G. (2015). A Renormalisation Group Method. V. A Single Renormalisation Group Step. J. Stat. Phys., 159(3):589-667

