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I In spite of the fact that HTSC was discovered nearly 30 years ago in
LaBaCuO there are still many open problems which limit our
understanding about this phenomenon.

I Those compounds are characterized essentially by High Critical
Temperatures of order Tc ≈ 10Tconv

c

I Contrary to what happens with the conventional SCs for T > Tc,
the cuprates are very poor metals, at low dopings.
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I Besides, if we change its chemical composition by reducing the
number of charge carriers, the SC phase is completely destroyed
and, at sufficiently low doping, these materials become Mott
insulators!

I Mott insulators are antiferromagnetic insulators which result
from strong electron-electron interactions.

I In conventional SCs the presence of magnetic impurities destroy
the SC. Moreover, above Tc, these compounds become good
conductors.

I The conventional SC is a result of attractive interactions induced
by phonons and electron-electron interactions do not play an
important role in this case.
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I As time went on, with the increase in experimental accuracy, it
became clear that the cuprates constitute a new class of
materials.

I In fact, many concepts which are successful in describing
conventional metals and SCs are no longer applicable to the
so-called strongly correlated electronic systems, among whom
the cuprates are the most notorious example.

I The schematic phase diagram “T x doping p” is displayed next:
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I It is beyond doubt the close relationship between d-wave
superconductivity and antiferromagnetism.

I The origin of the AF state is well understood in a representation in
which there is a strong coupling between electrons and the
presence of the “superexchange” interaction J between localized
spins. This coupling is such that J ≈ 1/U where U is the the
Coulomb repulsion.

I Although there is no doubt about the magnetic origin of the SC in
the cuprates, there are other instabilities which make themselves
present and we do not know yet in fact how exactly this state
comes about.
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I The SC in the cuprates has d-type symmetry: the SC wave
function changes its sign if we rotate it by 90◦ and there are
gapless quasiparticle excitation modes along certain directions in
k-space.

I In others non-conventional SCs, e.g. heavy fermions metals
(UGe2, UPt3,...), the organic superconductors
((BEDT−TTF)2M,...), the pnictides (PuCoGa5,...), the
cobaltes (NaxCoO4,...), the ruthenates (Sr2Ru4,...), Tc is
easily supressed to zero with a small concentration of impurities.
That is not the case in HTSCs!

I Another notable fact about the HTSCs is the presence of a new
state, called the pseudogap, which is manifested immediately above
Tc for hole doping (.) optimal doping.
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Model Fermi Surface (FS) for the Cuprates

I In the vicinity of optimal doping, for T > Tc, ARPES
measurements indicate that the Fermi Surface (FS) of the
cuprates has the following shape:



I This FS is large, hole-like and it can be described by a single band
with a single particle dispersion

ξk = −2t(cos kx + cos ky)− 4t′ cos kx cos ky − µ (1)

I where t is the nearest neighbour hopping, t′ is the next to
nearest neighbour hopping with t′ ∼= −0.3t and µ is the chemical
potential.
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I Suppose to begin with that we are dealing with an ordinary Fermi
Liquid (FL).

I An appropriate action S for this FL state is

S =

∫
dt
∑
k,σ

Z ψ†σ(k, t) [ i∂t − ξk ]ψσ(k, t) (2)

−
∫
dt
∑
σ,σ′

δ(k1 + k2 − k3 − k4)Z2 ψ†σ(k3, t)ψ
†
σ′(k4, t)

gB({ki})ψσ′(k2, t)ψσ(k1, t)

I where gB is the 4-fermion coupling and Z is the quasiparticle
renormalization factor.
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I At half-filling for t′ = 0, the FS is the so-called “magnetic zone
boundary”.

I For this FS the gB flows to strong coupling and the FL is turned
into a Mott Insulator!

I How does the breakdown of the FL state take place?
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I Let us analyse this problem from the perspective of the
renormalization group (RG) approach.

I It is clear that the proximity to the antiferromagnetic (AF) phase
is a very important feature for the cuprates. This should show itself
up in our RG calculations.

I In the quantum criticality community this AF signature is treated as
a Spin Density Wave (SDW) instability.
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I This SDW fluctuation is treated phenomenologically by the
so-called “Spin-Fermion Model” (Abanov and Chubukov, PRL
84, 5608 (2008)).

I This approach was revitalized by Metlitski and Sachdev (PRB 82,
075128 (2010)).

I They assume that the Quantum Critical Point (QCP) is well
described by the “hot spot” FS and the effective low-energy
lagrangian whose fermionic part is displayed as follows.
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L =
1

2
Ψ†l1 ( ∂τ − iv1

l · ∇ ) Ψl
1 + (3)

1

2
Ψ†l2 ( ∂τ − iv2

l · ∇ ) Ψl
2 +

+λφ · ( Ψ†l1 σ Ψl
2 + h.c. )

I with Ψl
i =

 ψli

iσ2ψ†li

, l = 1, 2, 3, 4 ,

φ being a bosonic field representing the SDW fluctuations and σ’s
are the Pauli matrices.



I The single part energies are linearized around the “hot spots” and
the Fermi velocities vi

l’s are related by simple π
2 rotations:

vi
l =

(
Rπ

2

)l−1 · vi
l=1 (4)

I This lagrangian is SU(2) symmetric. This pseudospin symm
indicates that the d-wave superconducting(d-SC) ordering is
related to a d-wave bond ordering (BDW) by a SU(2) rotation!

I This led Efetov et al (Nature Physics 9, 442 (2013)) to postulate
that the pseudogap state results from the pre-formation of pairs
produced by this combined d-SC and d-CDW excitation.

I That there is indeed an emergent d-CDW ordering was confirmed
by several experiments (NMR, hard and soft X-ray scatt, STM,
ultrasound).
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I However, the d-CDW is peaked at low doping for x ≈ 1
8 with a

dome like shape and with a modulation vector

(±Q0 , 0) or (0 , ±Q0)

I as opposed to the modulation (±Q0 , ±Q0) predicted by the
theory!

I Moreover the d-CDW can be suppresed by pressure effects while
the pseudogap is unaffected by that.
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I To begin with let us consider the simplified “hot spot” FS in a
fermionic framework.

I An appropriate low-energy lagrangian for that is given next(see,
e.g. E.Correa e A.F., Eur. Phys. JB 873 (2014)51):
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I The renormalized couplings are directly related to their
corresponding one-particle irreducible functions at the “hot
spots”:

Γ4
iR(k1,k2;k3,k4)

∣∣∣∣
HS

= −igRi

I Using diagrammatic techniques one calculates their respective
counterterms up to 2-loop order.
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I Let me now report the RG results of Carvalho and Freire (Annals of
Phys 348, 32 (2014)) and Whitsitt and Sachdev (PRB 90, 104505
(2014)).
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I The renormalized coupling satisfy the RG flow equations:
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I with Z(w) determined perturbatively from the self-energy
corrections:
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I Following this scheme we display Carvalho and Freire’s 1 and
2-loop results for the HSM (Ann. of Phys. 348, 32 (2014)):
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Non-Trivial Fixed Point and Main Instabilities of Hot Spots
Model

I As we can see from those RG flows there exists a non-trivial fixed
point for the Hubbard like model with initial condition

gRi = 0.5 , for all i’s (9)

I At this fixed point
γ(w)→ γ∗ ∼= 2.01 . (10)
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I As a result there is a complete breakdown of the FL regime since
now:

GR(p0,p = kF, w) =
1
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N(p0) = pγ
∗
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I In other words there is a power law suppression of single particle
states at the “hot spots”
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I The hot spots are washed out by the interactions from the FS.

I However it is amusing to note that the pseudo-spin symm is
restored at the FP as we can see from Carvalho and Freire
calculations of χ∗SSC−s and χ∗BDW :
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Renormalization of the FS Induced by Interactions: The
Two-Coupled Chains Example

I In the absence of interactions the 2 Luttinger chains coupled by a
transverse hopping t⊥ can be diagonalized exactly and mapped
into a system of 2–bands:



I t⊥ is measured directly by the difference ∆kF = kbF − kaF .

I The TCCM was imagined as a possible prototype of a Luttinger
liquid in dimension D > 1.

I At very weak coupling the physical system is driven to a FL regime.

I This result was confirmed by both RG and bosonization
approaches.

I However P. W. Anderson argued that those results were all based
on weak coupling approximations and he predicted a strong
coupling regime in which t⊥ → 0 due to interactions.
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I Using the field theoretical RG framework we replace the bare
lagrangian LTCM by a renormalized lagrangian LrenormTCM which is
essentially given by
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(
ψR, ψR, vFR, k

b
FR, k

a
FR, {giR}

)
+∆LTCM (12)
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I In the TCCM, which is essentially a 1D problem, there are 4
different forward like couplings.

I It turns out that among those 4 the most relevant is the so–called
backscattering gB (From the left to the right we have g0, gF , gU
and gB).
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I The upper panel is the
quasiparticle weight Z and
anomalous dimension γ∗ as a
function of giniB .

I The bottom panel is the ∆kFR
as a function of the initial
couplings giniB .

I Here, all couplings vary
assuming that that the initial
coupling values are such that
gini0 − giniF = −0.003 and
giniB = giniU .
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I It turns out that the ∆kFR can indeed flow to zero, but when it
does so the associated single–particle propagator is such that
γ∗ > 1 & the fermions become gapped(CDW).

I Here we display the transition from a metallic NFL regime to an
insulating fluid characterized by the QCR regime through ∆kFR
and the anomalous dimension γ∗ as a function of giniB for
gini0 − giniF = −0.1, giniU = 0.1 as initial conditions.
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I Our goal is to consider the full non–interacting FS of the cuprates,
taking into account the curvature effects & the hot spots physics.

I For a given set of initial conditions (i.e., initial values of
renormalized couplings + underlying FS) we run all the RG
flows for the renormalized coupling functions, Fermi velocities,
Fermi momenta & the FS itself.

I The couplings now vary continuously along FS &, in practice, the
# of couplings is infinite.

I We learned from the 2–chains problem that the Fermi momenta
are indeed renormalized by interactions. Therefore the same will
happen with the FS with 8–hot spots.
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Conclusion

I Although the “hot spots”model was able to correctly predict the
existence of d-CDW intertwined with d-SC instabilities it is not
able to determine neither the correct modulation vector in
agreement with experiments nor to establish what really produces
the pseudogap phase.

I One possible way out of that is to take into account that the FS is
renormalized by interaction.

I For that we should introduce new couplings and compute how
the “hot spots”interact with both neighbouring“luke warm”as
well as with ‘cold spots”points of the FS.
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