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Abstract

In the last twenty-five years, many people in Rome have
studied various types of Fermion models, by applying rigorous
RG techniques. This line of research was open in 1990 by
Giovanni Gallavotti and myself in a paper, published on JSP, on
the weakly interacting Fermi gas in one and three dimensions.

In this talk I will give a brief review of the results that have been
obtained by Pierluigi Falco, Vieri Mastropietro and myself, in the
case of the one dimensional extended Hubbard model, (a gas
of fermions of spin 1/2 on the one dimensional lattice) at weak
coupling and generic short range interaction, satisfying a
positivity condition, to be defined later.



3

Abstract

In the last twenty-five years, many people in Rome have
studied various types of Fermion models, by applying rigorous
RG techniques. This line of research was open in 1990 by
Giovanni Gallavotti and myself in a paper, published on JSP, on
the weakly interacting Fermi gas in one and three dimensions.

In this talk I will give a brief review of the results that have been
obtained by Pierluigi Falco, Vieri Mastropietro and myself, in the
case of the one dimensional extended Hubbard model, (a gas
of fermions of spin 1/2 on the one dimensional lattice) at weak
coupling and generic short range interaction, satisfying a
positivity condition, to be defined later.



4

These results are the content of two long papers published on
CMP on January 2014, after almost three years of work. This is
the last work that Pierluigi could see published in his too brief
life.

I have to say that we could achieve this result mainly because
Pierluigi first convinced Vieri and me to write a new paper on
the subject, by completing the research we had done before,
and, in the following, stimulated our efforts to make it as
self-containing as possible, as requested by the CMP referees.
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Results

I Existence of the zero temperature limit of the Grand
Canonical Ensemble.

I Universal relations satisfied by some critical indices and
certain thermodynamical quantities (depending on the
coupling and all other details of the model).
These universal relations were conjectured many years
ago in the physical literature, but were checked only in
some special solvable spinless fermion models.

I Borel summability of perturbation theory.
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The model
We study the Grand Canonical state

〈A〉L,β :=
Tr[e−βH A]

Tr[e−βH ]
, with

H = −1
2

∑
x∈C
s=±

(a+
x ,sa−x+1,s + a+

x ,sa−x−1,s) + µ̄
∑
x∈C

s=±1

a+
x ,sa−x ,s+

+ λ
∑
x,y∈C

s,s′=±1

vL(x − y)a+
x ,sa−x ,sa+

y ,s′a
−
y ,s′

I C is a 1D periodic lattice of L sites (hence H is a finite
dimensional operator)

I vL(x) = v(x) for −[L/2] ≤ x ≤ [(L− 1)/2], with
v(x) = v(−x) and |v(x)| ≤ Ce−κ|x |

I −µ̄ ∈ (−1,+1) is the chemical potential
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In particular, in the case

µ̄ = cos(p̄F ) 6= 0, v̂(2p̄F ) > 0, 0 ≤ λ ≤ ε0

we study the Ground State Energy

E(λ) := − lim
β→∞

lim
L→∞

(Lβ)−1 log Tr[e−βH ]

and limβ→∞ limL→∞ of the Schwinger functions

Sβ,L
n (x1, ε1, s1; ...; xn, εn, sn) = 〈T{aε1

x1,s1
· · · aε1

xn,sn}〉
T
β,L

I a±x,s = ex0Ha±x e−Hx0 , x = (x , x0) , 0 ≤ x0 < β

I 〈 · 〉TL,β is the truncated expectation
I T is the operator of time ordering
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We study also the response functions associated to the
densities

ρC
x =

∑
s=±

a+
x,sa−x,s, ρSi

x =
∑

s,s′=±
a+

x,sσ
(i)
s,s′a

−
x,s′

ρSC
x =

1
2

∑
s=±
ε=±

s aεx,saεx,−s, ρTCi
x =

1
2

∑
s,s′=±
ε=±

aεx,sσ̃
(i)
s,s′a

ε
x+e,s′

where i = 1,2,3, e = (1,0) and

σ(1) =

(
0 1
1 0

)
σ(2) =

(
0 −i
i 0

)
σ(3) =

(
1 0
0 −1

)
σ̃(1) =

(
1 0
0 0

)
σ̃(2) =

(
0 1
1 0

)
σ̃(3) =

(
0 0
0 1

)
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and the paramagnetic current

Jx =
1
2i

∑
s=±

[a+
x+e,sa−x,s − a+

x,sa−x+e,s]

The density and current response functions are defined by

Ωα,β,L(x− y) := 〈Tραxραy 〉
T
β,L := 〈Tραxραy 〉β,L − 〈ρ

α
x 〉β,L〈ρ

α
y 〉β,L

Ωj,j,β,L(x− y) := 〈TJxJy〉Tβ,L := 〈TJxJy〉β,L − 〈Jx〉β,L〈Jy〉β,L

If x− y = (ξ, τ), they are L-periodic in ξ ∈ Z and β-periodic in
τ ∈ R; hence, if Fβ,L is any function of this type,

F̂β,L(p) =

∫ β
2

−β2
dx0

∑
x∈C

eipx Fβ,L(x)

p = (p,p0), p = 2πn
L , −[L

2 ] ≤ n ≤ [L−1
2 ], p0 ∈ 2π

β Z.
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We are interested in the zero temperature limit of the Schwinger
functions, response functions and the vertex functions

G2,1
ρ,β,L(x,y, z) := 〈Tρ(C)

x a−y a+
z 〉

T
β,L

G2,1
j,β,L(x,y, z) := 〈TJxa−y a+

z 〉T ,β,L
calculated in the thermodynamic limit (same symbols, deprived
of the β and L labels).

Several important thermodynamic quantities can be deduced
from the knowledge of the response functions. In particular the
susceptibility, which is given by

κ := lim
p→0

lim
p0→0

Ω̂C(p)

and the Drude weight, which is defined as

D = −〈τx〉 − lim
p0→0

lim
p→0

D(p), D(p) ≡ Ω̂j,j(p)

τx = −1
2

∑
s=±

[a+
x,sa−x+e,s + a+

x+e,sa−x,s]
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If one assumes analytic continuation in p0 around p0 = 0, one
can compute the conductivity in the linear response
approximation by the Kubo formula, that is

σ = lim
ω→0

lim
δ→0

D̂(−iω + δ, 0)

−iω + δ

Therefore, a nonvanishing D indicates infinite conductivity.
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The free model
In absence of interaction, the Hamiltonian looks like

H0 = −1
2

∑
x∈C
s=±

(a+
x ,sa−x+1,s + a+

x ,sa−x−1,s) + µ
∑
x∈C

s=±1

a+
x ,sa−x ,s

Being H0 quadratic, every correlation function can be easily
calculated in terms of the free propagator

gβ,L(x− y) =
Tr
[
e−βH0T(a−x a+

y )
]

Tr[e−βH0 ]
=

= lim
N→∞

1
β

∑
k∈DL,β ,|k0|≤N

e−ik(x−y)

−ik0 + e(k)
, e(k) = µ− cos k

DL,β := DL ×Dβ, DL :=
2π
L
C, Dβ :=

2π
β

(Z +
1
2

)

x− y 6= (0,nβ) Ultraviolet singularity
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e−ik(x−y)

−ik0 + e(k)
, e(k) = µ− cos k

DL,β := DL ×Dβ, DL :=
2π
L
C, Dβ :=

2π
β

(Z +
1
2

)

x− y 6= (0,nβ) Ultraviolet singularity
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If µ = cos pF and g(x) ≡ limβ,L→∞ gβ,L(x)

g(0,0) = g(0,0−) = −pF/π, g(0,0+)− g(0,0−) = 1

The Fermi momentum pF appears also in the infrared
singularity of ĝ(k) at k = (0,±pF ), which produces a large
distance behavior of the propagator of the form

g(x) ∼
∑
ω=±

e−iωpF x

vF x0 + iωx
, vF ≡ sin pF

where ∼ means up to faster decaying terms; vF is usually
called the Fermi velocity.
Analogously, the response functions are sums of non oscillating
and oscillating terms (with period π/pF ) decaying as |x− y|−2.
Finally the susceptibility and the Drude weight are given by:

κ =
1
πvF

, D =
vF

π
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Anomalous exponents and logarithmic corrections

Given pF 6= 0, π/2, π and an interaction λv(x) with v̂(2pF ) > 0,
there exists λ0 > 0 and a unique chemical potential

−µ̄ = −µ− ν(λ, µ), µ = cos pF , vF = sin pF

such that, if 0 ≤ λ ≤ λ0,

I ν(λ, µ) is smooth and O(λ) and this equation can be
solved with respect to pF : pF (µ̄, λ) = pF + O(λ).

I if we take the limit L =∞, followed from the limit β =∞,
then
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S2(x) := 〈T{a−x,sa+
x,s}〉 ∼

[
S̄0(x) + R2(x)

]L(x)ζz

|x̃|1+η

S̄0(x) :=
vF

π

x0 cos pF − x
|x̃|

, x̃ := (x , vF x0)

I L(x) = 1 + bλv̂(2pF ) log |x|, b = 2(πvF )−1

I |R2(x)| ≤ Cθλ
1−θ, θ < 1

I η = η(λ) = aλ2 + O(λ3), a > 0
I ∼ means up to terms bounded by C|x|−1−θ

I ζz = O(λ)
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For the charge and spin density response functions (α = C or
α = Si ), we get

Ωα(x) ∼ Ω̄0(x) + Rα(x)

π2|x̃|2
+ cos(2pF x)

L(x)ζα

π2|x̃|2Xα

[
1 + R̃α(x)

]

Ω̄0(x) :=
(vF x0)2 − x2

(vF x0)2 + x2 , x̃ := (x , vF x0)

I |Rα(x)|, R̃α(x)| ≤ Cθλ
1−θ, θ < 1

I XC = XSi = 1 + O(λ)

I ∼ means up to terms bounded by C|x|−2−θ

Similar results for the other response functions.
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Universal relations

There are two functions of λ,

K (λ) = 1− cλ+ O(λ2), K̄ (λ) = 1− cλ+ O(λ2)

c =
2v̂(0)− v̂(2pF )

πvF

such that the critical exponents of the model satisfy the
extended scaling relations

4η = K + K−1 − 2 , 2XC = 2XSi = K + 1 ,

2XTCi = 2XSC = K−1 + 1 , 2X̃SC = K + K−1 .
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and the equations

Ω̂C(p) =
K̄
πv

v2p2

p2
0 + v2p2

+ A(p)

D̂(p) =
v
π

K̄
p2

0

p2
0 + v2p2

+ B(p)

I A(p), B(p) continuous and vanishing at p = 0
I v = vF + O(λ)

I κ = K̄
πv = 1

πvF
+ O(λ), D = v

π K̄ = vF
π + O(λ) ⇒

Luttinger liquid relation v2 = D/κ
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Borel summability
Given δ ∈ (0, π/2), there exists ε =
ε(δ) > 0, such that the free energy,
the two-points Schwinger functions
and the density correlations are an-
alytic in the set

Dε,δ = {λ ∈ C : 0 < |λ| < ε,

|Arg λ| < π − δ}

continuous in the closure D̄ε,δ and
satisfy the hypotheses of Watson
Theorem on Borel summability at
λ = 0.

f (λ) =
n∑

k=0

akλ
k + Rk (λ)

|ak | ≤ Cσkk !, |Rk (λ)| ≤ C(σ|λ|)k+1(k + 1)!
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The proof is based on a Lemma reported in a Lesniewski
paper, which says that, to prove the Watson Theorem it is
sufficient to prove a property, which can be checked more
easily in a multiscale problem.

Let us consider, for example, the free energy
E(λ) = limh→−∞

∑0
h Ej(λ). We have to check that, for any h,

Eh(λ) is analytic in a set

D(h)
ε,δ = Dε,δ ∪

{
|λ| ≤ c0

1 + |h|

}
and that |Eh(λ)| ≤ c1e−κ|h|. This condition is a very simple
consequence of our analysis.
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The strategy

Multiscale renormalized perturbative expansion, which is
proved to be meaningful, by using Lesniewski expansion,
combined with Gram-Hadamard inequality.

Gauge Invariance in presence of an infrared cutoff for a
solvable reference model with the same asymptotic behavior.

The correlations and the critical indices can be exactly
computed in the reference model, when the infrared cutoff is
removed, in terms of the coupling. This allows to prove in this
model some simple scaling relations.
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It is possible to choose the parameters in the reference model,
so that its asymptotic behavior is exactly the same as that of
the Hubbard model, up to logarithmic corrections. The critical
indices are the same, then satisfy the same scaling relations.

The charge and current correlations of the Hubbard model and
of the reference model are asymptotically the same (no
logarithmic corrections), up to some renormalization constants,
which can not be explicitely calculated. The Luttinger Liquid
relation follows from some relations between these constants,
which derive both from the Gauge Invariance of the reference
model and the exact Ward identities verified by the Hubbard
model.
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The generating functional
To control the perturbation expansion, it is convenient to use
the functional representation, which allows very simply to make
the needed resummations, before performing the bounds.

W(J, η) = log
∫

P(dψ) exp[−V(ψ) + B(ψ, J, η)]

V(ψ) = λ
∑

s,s′=±

∫
dxdy ψ+

x,sψ
−
x,sv(x−y)ψ+

y,s′ψ
−
y,s′+ν

∑
s=±

∫
dx ψ+

x,sψ
−
x,s

B(ψ, J, η) =
∑
α

∫
dxJαx ρ

α
x +

∑
s

∫
dx[η+

x,sψ
−
x,s + ψ+

x,sη
−
x,s]

v(x− y) = δ(x0 − y0)vL(x − y),

∫
dx :=

∑
x∈C

∫ β/2

−β/2
dx0

∫
P(dψ)ψ−x,sψ

+
y,s = g(x− y)
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W(J, η) = log
∫

P(dψ) exp[−V(ψ) + B(ψ, J, η)]

V(ψ) = λ
∑

s,s′=±

∫
dxdy ψ+

x,sψ
−
x,sv(x−y)ψ+

y,s′ψ
−
y,s′+ν

∑
s=±

∫
dx ψ+

x,sψ
−
x,s

B(ψ, J, η) =
∑
α

∫
dxJαx ρ

α
x +

∑
s

∫
dx[η+

x,sψ
−
x,s + ψ+

x,sη
−
x,s]

v(x− y) = δ(x0 − y0)vL(x − y),

∫
dx :=

∑
x∈C

∫ β/2

−β/2
dx0

∫
P(dψ)ψ−x,sψ

+
y,s = g(x− y)
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The decomposition of the free measure

There is no IR problem at β finite, since |k0| ≥ π/β, but there is
a mild UV problem, since [−ik0 + e(k)]−1 is not L1 in k0.

To get good bounds on the perturbation theory at finite β, one
has to introduce an UV cutoff on k0 and use a multiscale
expansion.
If χ(k′) and χ0(k0) are two suitable
compact support cutoff functions,
L >> β, γ > 1 and π/β = γhβ

1 = lim
M→∞

M∑
h=1

f̂1(k)f̃h(k0) +
0∑

h=hβ

∑
ω=±1

f̂h(k − ωpF , k0)

f̂1(k) := [1− χ(k − pF , k0)− χ(k + pF , k0)]

f̃h(k0) = χ(γ−hk0)−χ(γ−h+1k0), f̂h(k′) = χ(γ−hk′)−χ(γ−h+1k′)
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The effective potentials

g(x) = g(1)(x) +
0∑

h=hβ

∑
s,ω=±1

e−iωpF xg(h)
ω,s(x)

ψ±x = ψ
(1)±
x +

0∑
h=hβ

∑
s,ω=±1

e−iωpF xψ
(h)±
x,ω,s

The limit M →∞ is essentially trivial; one has only to resum the
tadpole graphs and to adjust their values by some finite
counterterms to control the multiscale expansion and get the
right perturbation theory.
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Hence, we consider the model with an UV cutoff on the scale
h = 0 and an IR cutoff on scale hL,β, such that
γhL,β = min{π/L, π/β}. Hence we define, for any h such that
hL,β ≤ h ≤ 0:

eWL,β = e−LβEh+Sh(J,η)

∫
P(dψ≤h) e−V

(h)(ψ(≤h))+B(h)(ψ(≤h),J,η)

In the limit L, β →∞, the free energy is given by limh→−∞ Eh,
while the Schwinger functions and the correlation functions of
the ρα densities are obtained by suitable functional derivatives
at J = η = 0 of S−∞(J, η).
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The tree expansion for V (h)

In order to describe the tree expansion, it is sufficient to
consider only the case J = η = 0, which is all we need to
calculate the free energy.

V(h−1)(ψ(≤h−1)) + Lβeh =
∞∑

s=1

(−1)s+1

s!
ET

h

[
V(h)(ψ(≤h)); s

]

ψ(≤h) = ψ(≤h−1) + ψ(h), Eh =
0∑

j=h

ej

By iteration, we see that the r.h.s. can be written as

∞∑
n=1

∑
τ∈Tn

V̄(h)(τ, ψ(≤h))
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Tn is a family of la-
beled trees with a root
and n ordered end-
points, each one asso-
ciated with one of the
two terms in the inter-
action.

There are trivial and non trivial vertices. With each vertex v , we
associate a scale label hv , a set of external legs Pv and a
Kernel Kv (xv ), where xv is the set of vertices where the
external legs are based on .
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The dimensional bound without renormalization

V̄(h)(τ, ψ(≤h)) =
∑

Pv0 ,ε,s,ω

∫
dxv0G(xv0)ψ̃(Pv0 , ε, s, ω,xv0)

(Lβ)−1
∫

dxv0 |G(xv0)| ≤ (Cε0)n
∑

{hv ,Pv ,v>v0}

∑
T

·

· γ−(Dv0 +n2,v0 )h
[ ∏

v non trivial

1
sv !

γ−(hv−hv′ )(Dv +n2,v )
]

where ε0 = max{|λ|, |ν|}, n2,v is the number of endpoints of
type ν following v , and

Dv = −2 +
1
2
|Pv | scaling dimension
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Renormalization

eW(J,η) = e−LβEj +Sj (J,η)

∫
PZj (dψ

≤j) e−V
(j)(
√

Zjψ
(≤j))+B(j)(

√
Zjψ

(≤j),J,η)

PZ (dψ) ∼ dψ
N

exp

{
− Z

Lβ

∑
ω,s

∑
k∈D

Ch,hβ (k)(−ik0 + ωvF k)ψ̂+
k,ω,sψ̂

−
k,ω,s

}

Ch,hβ (k) =

 h∑
j=hβ

f̂j(k)

−1
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We take any cluster appearing in the expansion of

V̄(j)(τ, ψ(≤j)) =
∑

Pv0 ,ε,s,ω

∫
dxv0G(xv0)ψ̃(Pv0 , ε, s, ω,xv0)

and, if |xv0 | = 2,4, we localize it by choosing a point x in the set
xv0 and by doing a Taylor expansion with rest of order z(|Pv0 |)
at x of the fields based on the other points of xv0 , with

z(4) = 1, z(2) = 2

If we include in the interaction the functional B(ψ, J, η), we have
to consider clusters with J and η fields, whose scale dimension
is

Dv = −2 +
1
2
|Pv |+ mJ,v +

3
2

mη,v

so that we have to renormalize only a new cluster, that with
mJ,v = 1 and mη,v = 0, through a Taylor expansion of order 0.
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Let us come back to the tree expansion for the free energy. If
we sum over all trees, we get

LV(j)(
√

Zjψ) = γ jnjFν(
√

Zjψ) + ajFα(
√

Zjψ) + zjFz(
√

Zjψ)

+ l1,jF1(ψ) + l2,jF2(
√

Zjψ) + l4,jF4(
√

Zjψ)
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Fν =
∑
ω,s

∫
dxψ+

x,ω,sψ
−
x,ω,s, F1 =

1
2

∑
ω,s,s′

∫
dxψ+

x,ω,sψ
−
x,−ω,sψ

+
x,−ω,s′ψ

−
x,ω,s′

Fα =
∑
ω,s

∫
dxψ+

x,ω,sDψ−x,ω,s, F2 =
1
2

∑
ω,s,s′

∫
dxψ+

x,ω,sψ
−
x,ω,sψ

+
x,−ω,s′ψ

−
x,−ω,s′

Fz =
∑
ω,s

∫
dxψ+

x,ω,s∂0ψ
−
x,ω,s, F4 =

1
2

∑
ω,s

∫
dxψ+

x,ω,sψ
−
x,ω,sψ

+
x,ω,−sψ

−
x,ω,−s
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I zj [Fα(
√

Zjψ) + Fz(
√

Zjψ)] is moved to the free measure:

Zj → Zj−1 = Zj(1 + zj), Z0 = 1

I the field is rescaled:

V(j)(
√

Zjψ
(≤j))→ V̂(j)(

√
Zj−1ψ

(≤j))

LV̂(j)(ψ) = γ jνjFν(ψ)+δjFα(ψ)+g1,jF1(ψ)+g2,jF2(ψ)+g4,jF4(ψ)

νj =

√
Zj√

Zj−1
nj , δj =

√
Zj√

Zj−1
(aj−zj), gi,j =

( √
Zj√

Zj−1

)2

li,j

I PZj−1(dψ≤j) = PZj−1(dψ(≤j−1))P̃Zj−1(dψ(j))

I Dv + n2,v → Dv + z(|Pv |) > 0, ∀v > v0
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Beta function
The tree expansion is an analytic function of the r.c.c.
{vh := (g1,h,g2,h,g4,h, δh, νh); hL,β < h ≤ 0} in a small
neighborhood of 0. Hence, the problem is to show that the r.c.c.
stay in this small neighborhood of 0 for all h, if λ ∈ Dε,δ.

vα,j−1 = Aαvα,j + β(j)
α (vj ; ..., v0;λ, ν)

Aν = γ, Aα = 1 forα 6= ν
One can show that, if ν is suitably chosen, then

|νj | ≤ ξ|λ|γθj , θ < 1, δ−∞ = O(λ)

|g1,h| ≤
c0δ
−1|λ|

1 + a|λ||h|
, a > 0

g2,−∞ = g2,0 −
1
2

g1,0 + O(|λ|3/2), g4,−∞ = g4,0 + O(|λ|2)
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Asymptotic Gauge Invariance
The three properties that allow us to control the flow are:

1 - Asymptotic freedom of the g1 interaction

g1,j−1 ' g1,j − ag2
1,j , a > 0

so that, if λ ∈ Dε,δ, |g1,h| ≤ c0δ
−1|λ|

1+a|λ||h|

2 - Partial vanishing of the beta function

vα,j−1 ∼ vα,j + O(g2
1,j), α = 2,4, δ

thanks to the local gauge invariance of the effective model

ψ±x,ω,s → e±iαx,ω,sψ±x,ω,s

a non Hamiltonian model with linear dispersion relation and non
local interaction,whose beta function is asymptotically
vanishing.
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1 - Asymptotic freedom of the g1 interaction

g1,j−1 ' g1,j − ag2
1,j , a > 0

so that, if λ ∈ Dε,δ, |g1,h| ≤ c0δ
−1|λ|

1+a|λ||h|

2 - Partial vanishing of the beta function

vα,j−1 ∼ vα,j + O(g2
1,j), α = 2,4, δ

thanks to the local gauge invariance of the effective model

ψ±x,ω,s → e±iαx,ω,sψ±x,ω,s

a non Hamiltonian model with linear dispersion relation and non
local interaction,whose beta function is asymptotically
vanishing.
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3 - Smoothness properties of the tree expansion
A small change in the system parameters produces a small
change in the running couplings and in the renormalization
constants.

The most difficult part of the proof is to take care rigorously of
the fact that the local gauge invariance of the reference model
is broken by the cutoffs.
We solve this problem by writing explicitly the correction term
ad showing that its effect does not vanish as the cutoffs are
removed.
On the contrary, it is essential to explain the anomalies.
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Lattice Ward Identities
The Schwinger, response and vertex functions are not all
independent one from the other, but there are exact Ward
identities (WI), following from the conservation law

∂ρC
x

∂x0
= eHx0 [H, ρx ]e−Hx0 = −i∂(1)

x Jx ≡ −i[Jx ,x0 − Jx−1,x0 ]

where ∂(1)
x denotes the lattice derivative.

Our results on the susceptibility and the Drude weight depend
on the WI’s

−ip0Ĝ2,1
ρ,β,L(k,k + p)− i(1− e−ip)Ĝ2,1

j,β,L(k,k + p) = Ŝβ,L
2 (k)− Sβ,L

2 (k + p)

−ip0Ω̂C,β,L(p)− i(1− e−ip)Ω̂j,ρ,β,L(p) = 0

−ip0Ω̂ρ,j,β,L(p)− i(1− e−ip)Ω̂j,j,β,L(p) = 0

where Ωρ,j,β,L(x,y) = 〈ρC
x Jy〉Tβ,L and Ωj,ρ,β,L(x,y) = 〈Jxρ

C
y 〉

T
β,L.
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