Quantum simulation with atomic Bose-Einstein condensates: from cosmology to color confinement

Gabriele Ferrari

INO-CNR BEC Center, TIFPA-INFN and Dipartimento di Fisica, Università di Trento

What Next, 6 maggio 2015

outline

- Defects in BECs
- Defect creation mechanism
- Dynamics and interactions
- Simulation of color confinement with ultracold atoms

Satellite: Planck Depicts: Cosmic Microwave Background Copyright: ESA, Planck Collaboration

T. W. B. Kibble, J. Phys. A **9**, 1387 (1976)

W.H. Zurek, Nature **317**, 505 (1985)

the Kibble-Zurek mechanism

In a second-order phase transition crossed at a finite rate, the order parameter is chosen locally within domains, defects spontaneously create at the domain boundaries

G. F., Science 347, 127 (2015)

the Kibble-Zurek mechanism

A. del Campo, W. H. Zurek, Int. J. Mod. Phys. A 29, 1430018 (2014)

Liquid crystals: isotropic/nematic

I. Chuang et al. (1991)

Liquid ³He: normal/SF

C. Bauerle et al. (1996) V.M.H Ruutu et al. (1996)

 $^{0.1}\tau_{0}(s)$

R. Monaco et al. (2009)

Bose gases: thermal/BEC, D < 3

L. Corman et al. (2014)

Hom. Bose gases: thermal/BEC

Bose gases: ferromagnetic

L. E. Sadler et al. (2006)

Bose gases: thermal/BEC

C.N. Weiler et al. (2008)

T=0 Bose gases: Mott/SF

1×10-3

0.01

experimental setup in Trento

G. Lamporesi *et al.*, Rev. Sci. Instrum. **84**, 063102 (2013)

ToF expansion of a BEC

2ms 4ms 7ms 10ms 14ms 18ms 22ms 26ms 30ms 34ms 39ms

expansion time limited to ~ 40 ms due to the gravity fall

magnetic levitation against the gravity to increase the expansion time

Defect creation

Observation of the KZ mechanism

Defect detection

Statistics

G. Lamporesi et al., Nat Phys 9, 656 (2013)

The lifetime puzzle

Solitons are expected to be unstable

THERMALLY (unless at T=0)

DYNAMICALLY (due to snake instabilities)

(also in DFG at MIT)

Yefsah *et al.*, Nature **499**, 426 (2013)

... and to decay into vortex rings

spherical BEC (JILA) Anderson *et al.*, PRL **86** 2926 (2001)

Reichl *et al*., PRA **88**, 053626 (2013)

Vortex oriented perpendicularly to the axis of an axisymmetric elongated trap.

- Quantized vorticity
- Anisotropic phase pattern
- Planar density depletion

Brand et al., JPB 34, L113 (2001)

ξ

 R_1

γc

0

Komineas et al., PRA 68, 043617 (2003)

Brand et al., PRA 65, 043612 (2002)

Density in trap

Phase

Density after free expansion

M. Tylutki et al., EPJ-ST 224, 577 (2015)

Triaxial absorption imaging after long TOF

S. Donadello et al., PRL 113, 065302 (2014)

ace 6227 **RANDOM SIGN** VORTEX ANTIVORTEX output A output B output A output B

RANDOM NUMBER

Real-time imaging of defect dynamics

Method: Real-time imaging of a small out-coupled fraction μ w pulse $|1, -1\rangle \longrightarrow |2, -2\rangle$ (Δ N/N₀ = 4%) Antitrapped expansion with optical levitation $N_0 - \Delta N$ $N_0 - 2\Delta N$ ΔN μW N₀ μW ΔN . . . Image state 2 Image state 2

D. V. Freilich *et al.*, Science **329**, 1182 (2010)

SINGLE VORTEX DYNAMICS

Select BEC with 1 vortex Long sampling time (81 ms (Tz=77 ms)) Period variation with time (check model)

Soliton oscillation period

$$T = \sqrt{2} T_z$$

Vortex orbital period

$$T = T_z \frac{4}{3} \frac{\mu_0}{\hbar\omega_\perp} (1 - \frac{A_z^2}{R_z^2}) / \ln(\frac{2\mu_0}{\hbar\omega_\perp})$$

$$T = T_z \frac{4}{3} \frac{\mu_0}{\hbar\omega_\perp} (1 - \frac{A_z^2}{R_z^2}) / ln(\frac{2\mu_0}{\hbar\omega_\perp})$$

MANY VORTICES DYNAMICS (INTERACTION & DECAY)

Select BECs with more than 1 vortex Short sampling time (27 ms (Tz=77 ms)) Observation of phase shifts Anomalous decay of vortex number

- Vortex annihilation
- Vortex decay
- Vortex reconnection (tail exchange)

QUANTUM TURBULENCE

Chuang et al., Science 251, 1336 (1991)

Reconnection in liquid crystals

No perturbation at crossing point No apparent interaction

Resonantly coupled spinor BECs

Coherent coupling between two internal states of a spinor BEC

Generation of topological defects (domain walls on the relative phase)

$$E[\varphi_1, \varphi_2] = \int d^3 \mathbf{x} \left[\frac{\hbar^2}{2m} [n_1 (\nabla \varphi_1)^2 + n_2 (\nabla \varphi_2)^2] -\hbar \Omega \sqrt{n_1 n_2} \cos(\varphi_1 - \varphi_2) \right]$$
$$\varphi_A \equiv \varphi_1 - \varphi_2 = 4 \arctan e^{kz}, \quad k^2 = \frac{m\Omega}{\hbar} \frac{n}{\sqrt{n_1 n_2}}$$
$$C$$
In a finite-site

D

In a finite-sized 3D geometry \longrightarrow vortex lines at the domain wall boundaries

In 2D vortices exsist only as vortex-antivortex bound states with binding force independent on the relative distance

Domain walls of relative phase in two-component BECs D. T. Son & M. A. Stephanov, Phys. Rev. A 65, 063621 (2002).

Resonantly coupled spinor BECs

Analogy vortex/antivortex molecule $\rightarrow q\bar{q}$ bound state in a meson

The binding energy of the vortex/antivortex molecule (bound by the domain wall) simulates the attraction between quark and antiquark

Simulation of a string breaking

These vortex/antivortex molecules can be generated by setting the BEC into rotation

Vortex Molecules in Coherently Coupled Two-Component BECs K. Kasamatsu *et al.*, PRL **93**, 250406 (2004).

Resonantly coupled spinor BECs

Analogy vortex/antivortex molecule $\leftrightarrow q\bar{q}$ bound state in a meson

Realization of a new experimental apparatus, with highly-stabilized magnetic fields (μ G), dedicated to the production of spinor ²³Na BECs.

The behavior of the vortex/antivortex molecule will be studied (at equilibrium or dynamically after a quench) as a function of:

- Interactions between particles / density of the gas
- Total angular momentum
- Intensity of the coherent coupling
- External perturbing potentials simulating the breaking of the molecule

Summary

dynamics

μm 200 100 -100 -200 -200

interaction

nature

QS of string braking

Thank you!

Simone Serafini Simone Donadello Matteo Barbiero Michele Debortoli Giacomo Lamporesi Marek Tylutki Fabrizio Larcher Lev Pitaevskii Franco Dalfovo

