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Outline

• Challenges for high precision measurements 
on antiatoms

– temperature

– flux

– laser sources

• Possible experimental schemes for advanced 
measurements

– positronium & antiproton cooling

– antihydrogen cooling

– light-pulse atom interferometry on antihydrogen

– 1S-2S spectroscopy
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Challenges

• High precision measurements on atomic systems

– acceleration -> atom interferometry

– frequencies ->  high resolution laser spectroscopy

• Measurement precision is limited by 

– number of detected atoms (SNR)

– RMS velocity (i.e. temperature)

– both are much worse when working with     as compared to H, since 
antimatter is produced from its charged constituents

– requires state of the art technologies from accelerator physics, ion 
trapping and atom optics

• Light-pulse atom interferometry with hydrogen is demanding

– large transition frequencies –> requirements on laser sources

– small mass –> large recoil temperature

• One advantage over ordinary matter is the possibility to 
detect atoms via annihilation products

5/19/15F. Sorrentino3

H



High precision g measurement

• Current effort (see AEgIS) is to 
measure g on antiH with low 
precision (1% at most) using 
deflectometry on material 
gratings 

– T~0.1 K

– flux ~ 1 atom /min

• Higher precision (10-4÷10-6) is 
possible by light-pulse atom 
interferometry

– need a suitable AI scheme

– larger antihydrogen flux

– X 100 with ELENA

– lower temperatures

– is 1 mK cold enough?

– how to achieve it?
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Raman interferometry gravimeter
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Numerical examples
• Bragg scattering on 1S with far-off detuned laser  [P. Hamilton et al., 

Phys. Rev. Lett. 112 , 121102 (2014)]

–  

– e.g. with a 1064 nm laser 

– 1 mK requires 30 MW/cm2 on ~100 ns pulses

• Raman or Bragg on Lyman-alpha

–  

– IS=43 W/cm2

– 1 mK and 10 GHz detuning would require ~400 W/cm2

– CW laser sources @ 121 nm achieve 6 µW  [D. Kolbe et al., Phys. Rev. Lett. 
109 , 063901 (2012)].
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AI on metastable 2S state
• Raman interferometry with a laser 

intensity of ~10 W/cm2 @ 657 nm 
and 40 ns pulses (to interrogate 
atoms @1 mK)

• State-sensitive detection by 
sequentially pushing F=1 and F=0 
atoms towards the detector

• Reasonable requirements on laser 
intensity

– 6W/cm2 with 10 GHz detuning
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Requirements on atomic source
• Temperature:  

– atom optics splitters are velocity selective: higher temperatures require 
higher Rabi frequency -> larger laser intensity

– expansion of atomic cloud: RMS velocity is 3 m/s @1mK

• Atomic flux: 

– SNR is determined by the number of detected atoms

– in the QPN limit, sensitivity scales as √ (number of detected atoms per 
shot)

• Numerical example

– Raman interferometry @657 nm

– T=1 ms (compatible with 1 mK temperature) 

– 50% contrast

– 60 atoms/cycle

– repetition rate ~ 1 cycle/min

– -> sensitivity ~ 1.3×10-3 g /shot

– Down to 3×10-6 g  after 5 months integration time
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Producing ultracold antihydrogen

• Possible approaches to achieve antiH at ~1 mK or sub-mK 
temperatures

– laser cooling (after “standard” generation from thermal charged 
constituents)

– pre-cooling of antihydrogen constituents

– antiprotons

– positronium

– combination of the two strategies

– adiabatic cooling on antihydrogen

– other methods (e.g. sympathetic cooling on Hbar+)

• Measurement geometry

– magnetic trapping of antihydrogen

– allows for natural Rydberg de-excitation

– free fall

– minimal perturbation in view of precision measurements
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Producing ultracold antihydrogen

• Possible approach to achieve high-flux antiH 
at ~1mK temperature

– charge exchange between laser-cooled Ps* and 
sympathetically cooled positrons

– Ps produced by collisions of positrons on 
nanoporous material (transmission target)
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Antiproton sympathetic cooling

• two-species Coulomb crystal

• laser cooling on a large ensemble of negative ions will reduce the temperature of 
antiprotons

• heating due to trap micro-motion will not occur for ions on the axis

– µK regime in principle achievable for ensembles up to ~50 antiprotons

• however temperature limit on antiH will be limited to a few mK by heating in 
charge transfer (see a few slides ahead)

– may be convenient to trade-off temperature for a larger number of antiprotons
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Towards ultracold antiprotons
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• Collisions of antiprotons with negative ions or molecules laser cooled and 
trapped with them

• Negative ions: work in progress@Heidelberg  (A. Kellerbauer et al.)  Os-   La-
• Negative molecules: D. Comparat (AEgIS)

• Experimental procedure:

1. Capture of anions in Penning or Paul 
trap

2. Pre-cooling of anions with electrons

3. Laser cooling of anions

4. Simultaneous confinement of 
antiprotons
in the trap

5. Sympathetic cooling of 
antiprotons by
anions

[A. K. & J. Walz, New J. Phys. 8 (2006) 45]
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Antiproton cooling with La-
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Expected levels Excited levels detected in 

[C. W. Walter et al.,
  Phys. Rev. Lett. 113 (2014) 063001]

3680 nm
Transition rate Γ ≈ 4.5 kHz

99.98% closed transition

First La- resonances detected
by AEgIS collaborators
(A. Kellerbauer et al.,Heidelberg)

prelim
inary

[S. M. O’Malley & D. R. Beck,
  Phys. Rev. A  81 (2010) 032503]



Positronium cooling
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E. Liang Optics Comm. 65 (6) 1988 (419)
H. Iijima et al.  Journ. Phys. Soc. Japan 70 11 
(2001) 3255
NIMA 455 (2000) 104
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2P

243 nm

3.2 ns,  100 µsec annihilation 
=1.5 103 m/s

It is enough to scatter  30 photons to get a significant 
collimation
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Beam collimation and de-excitation

• Distribution on different Rydberg levels detrimental for 
precision measurements

– systematics due to large sensitivity to external fields

– hard to find unique atom optics tools for wavepacket manipulation

• However, Stark force on Rydberg atoms can be employed to 
reduce the radial velocity prior to de-excitation

• Two-steps de-excitation to 2S

– laser de-excitation to 3P level requires a laser at 835 nm with 
bandwidth <100 GHz 

– 3P-2S decay with ~30% BR

– optionally recycle atoms in 1S with 243 nm laser pulse

5/19/15F. Sorrentino20



Laser cooling of antihydrogen
• Doppler temperature

• Recoil temperature

• cooling on the Lyman-alpha line

– Requires technol. development on laser source

• cooling on the 2-photon 1S-2S line

– PHYSICAL REVIEW A 73, 063407 2006

• 1S-2S-3P pulsed Sisyphus cooling 

– PRL 106, 213001 (2011)

• theoretical limits in the 1÷2 mK range

– Useful option as an alternative to the other scheme, or to 
dissipate trap extra-heating
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Sub-mK cooling of antihydrogen

• Evaporative cooling

– Demonstrated on hydrogen [I.  D. Setija et al., PRL 
70, 2257 (1993)]

• Adiabatic cooling

– magnetic trapping

– laser cooling to dissipate extra trapping energy

– slow decrease of magnetic trap potential

• Raman sideband cooling

– in magnetic trap or optical lattice trap

• Sympathetic cooling
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High resolution spectroscopy
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• Similar to H, cold antihydrogen beam interrogated with 243 
nm laser

• Single shot sensitivity inversely proportional to SNR and 
interaction time

• Detection of ~30 atoms/cycle, linewidth <10 kHz -> <10-
12/shot statistical uncertainty



Conclusions
• Gravity measurements on antihydrogen are feasible with

– 10-6 precision with ~1 mK and ~30 atom/min flux

– ELENA antiproton source

– laser cooling of Ps to recoil limit (100 mK)

– sympathetic cooling of antiprotons below 1 mK

– Raman interferometry on Balmer-alpha line @ 657 nm

– Sub-µg precision level with temperatures in the µK range

– Adiabatic cooling, evaporative  Raman sideband cooling

• Spectroscopy on 1S-2S transition 

– Possible at 10-12 level in similar conditions
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