



European Research Council Established by the European Commission

#### Detector for Channeled ions in CNT

L.Capparelli<u>, GC</u>, J.Ferretti, D.Mazzilli, A.D.Polosa (INFN and Sapienza Roma) F.Murtas (INFN LNF)

*Roma, Mar 30th 2015* 

# Outline



- Carbon nanotubes (CNT) in a Time Projection Chamber (TPC)
  - A detector for WIMP induced ion recoil
  - Triple-GEM TPC
- Carbon ion channeling experiments
  - Ions elastically scattered by
    - neutrons
    - electrons

#### Perspectives



#### Read-out scheme: exiting C ion







### Read-out scheme: electron drift







G.Cavoto

#### Read-out scheme: amplification







#### Read-out scheme: measurements







#### GEM and read-out pad concept



#### **Electron Microscopy of a GEM Foil**





Quad Timepix ASIC



#### GEMpix detector





### Segmented anode





Anode is an ASIC used to read-out signals from **four** 512x512 **55μm** silicon pixel sensors (MEDIPIX)

In this configuration silicon pixels are removed: the charge signal is generated in the Triple GEM

> GEM(Medi)pix Detector 3x3 cm<sup>2</sup> active area







GEMPix exposed to <sup>55</sup>Fe 5.9 KeV gamma source



For each pixel the deposited charge is measured (Medipix) X-ray seen as a cluster of pixels

Energy resolution ~2 KeV already obtained.



# High energy tracks detection





11

# Range of few KeV ion in Ar

12



Depth vs. Y-Axis Carbon ion (10 KeV) **SRIM MC** in 3mm thick 100 mbar Ar Range / Straggling [µm] **Projected Range** Layer Longitudinal straggling Lateral straggling - 1.5 mm 0 A -- Target Depth --3 mm 10<sup>3</sup> Even with large spread of ionization, the range Carbon ion (10 KeV) measurement might help in 100 mbar Ar to identify the signal 10<sup>2</sup> 10 Energy [KeV]

+ 1.5 mm



## <sup>14</sup>C background

Carbon most common isotope is <sup>14</sup>C

 Beta emitter, cosmo-genic (<sup>14</sup>N transmutation by cosmic rays)



7% of emitted beta from 14C decay are emerging from a 10x10x0.1mm<sup>3</sup> graphite block

Natural isotope concentration (10<sup>-11</sup>) is unacceptable.

Using pure precursor of hydrocarbures in CNT synthesis can reduce it to 10<sup>-18</sup> (see BOREXINO)



erc





- Simple-man calculation:
- About 10<sup>16</sup> 1nm diameter SWCNT can fit on a 10x10 cm<sup>2</sup> substrate
- Surface density of a graphene layer: 1/1315 g/m<sup>2</sup>
- About 2 g CNT on 100cm<sup>2</sup>
- CNT ropes?



How do we test this concept ?



- GEMPix chamber is already available and suited for a proof of principle
- A WIMP ion interaction can be reproduced in lab. by a neutron – ion elastic interaction.
  - A 50 KeV neutron is imparting a similar recoil to a carbon ion as a Galactic WIMP does.
- More precisely, we first want to prove carbon ions of ~10 KeV energy are actually channeled
  - Use carbon ion beam
  - Induce carbon ion recoil with electrons











16

# Experiment with nTOF neutrons



CERN *nTOF* facility: neutron from **F.**Murtas PS 20 GeV protons Energy measurement from time-of-flight **Dump (200 m)**,  $B_4C$  detector [precise proton extraction time] (mm) y (mm)  $Sigma_x = 14.4 \text{ mm}$ Time-of-flight (ms)  $10^{2}$ 10-1 10-2 10  $Sigma_v = 13.7 \text{ mm}$ 10<sup>5</sup> 105 Head-on 70 **Triple GEM** 60 104 detectors 50 with internal 40 10<sup>3</sup> 30 boron target 20 10 10<sup>2</sup> 10 20 30 40 50 60 70 80 90 x (mm)  $10^{-2}$  $10^{-1}$  $10^{2}$  $10^{3}$  $10^{4}$  $10^{5}$  $10^{6}$  $10^7$   $10^8$ 10 Energy (eV) Sigma X = 14.4 mm Sigma Y = 13.7 mm 8 mm resolution



Experiment at Frascati BTF



- Use electron beam at LNF BTF to "extract" carbon ions from CNT
  - One carbon ion elastically scattered by a 500 MeV electron
    - PRO: trigger on scattered electron at well defined angle: beam clearly visible
    - CON: electron beam can induce a sizeable background



# Elastically scattered ions





# Channeling of ion













# Experiment at BTF: micro beam











Signature of ion channeling



#### Intercept beam with CNT

- Beam can be positioned by looking at scattering on silicon substrate
- Perform an angular scan
  - At each point of the angular scan record the number of ion tracks
- Distribution of ion track rate versus rotation angle should have a maximum when CNT axis is parallel to ion emission direction
  - Such distribution should have width of about  $\theta_{C}$

With a 5 10<sup>4</sup> electron per second on a 1 cm thick CNT brush we should expect ~1 event per second







- Demonstration of CNT capability to <u>channel</u> very <u>low</u> <u>energy</u> ion is a prerequisite for a DM directional detector based on CNT.
- We plan to make test at INFN BTF and CERN nTOF with electron and neutron
  - Carbon beam would also be useful (but experimentally more problematic).

