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» Carbon nanotubes (CNT) in a Time Projection
Chamber (TPC)

A detector for WIMP induced ion recoil
Triple-GEM TPC

» Carbon ion channeling experiments
lons elastically scattered by

neutrons
electrons

» Perspectives
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Read-out scheme: exiting C ion
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Carbon ion
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kinetic energy)
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“brush”
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Read-out scheme: electron drift
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Range of 10 KeV ¢C
in 0.1 bar Ar
~ 1mm (TRIM)

Carbon ions
ranging out
In the gas
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Electrons from
ionized gas atom
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anode



Read-out scheme: amplification
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Read-out scheme: measurements
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Must be able
to measure:

- Kinetic energy
(total ionization)

- range
(segmented anode)

- average
direction
(relative
electrons
time-of-flight)



G LM and read-out pad concept

Electron Microscopy of a GEM Foil
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GEMpix detector

Length analysed

Kapton window — [

> Particle beam

Triple GEM

Developed for

various applications

(neutron beam monitoring,
hadrotherapy beam monitoring,...

N

F.Murtas (LNF-CERN) ARggNT
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Segmented anode il

Anode is an ASIC used to read-out
signals from four 512x512 55um
._.:-; 1 silicon pixel sensors

Med|p|x # | (MEDIPIX)

Pad readout ”

In this configuration silicon pixels
are removed: the charge signal is
generated in the Triple GEM

}

GEM(Medi)pix
Detector
3x3 cm? active area

9 G.Cavoto ”‘f’?



Xray KeV detection

GEMPix exposed to °>°Fe 5.9 KeV gamma source

TOT
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Pixel X
For each pixel the deposited charge is measured (Medipix)
X-ray seen as a cluster of pixels
Energy resolution ~2 KeV already obtained.
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High energy tracks detection

Sample frame - 3 GeV mixed proton (2/3), pi+ (1/3)
beam on SPS H6, 30 deg angle of incidence

frame 85 Offline Analysis TOA (1 ADC Ct =20 nS)
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TOA Mode (48 Mhz), 1 Count ~ 20 nS, 0.25 mS frame, chamber gain
= 1350V, gas = ArCO2CF4, drift field = 0.666 kV/cm
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Range / Straggling [um]
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| |
-- Target Depth --

3 mm

Even with large spread of
ionization, the range
measurement might help
to identify the signal



4 background

» Carbon most common isotope is 4C

P(T)

Beta emitter, cosmo-genic
(*N transmutation by cosmic rays)

7% of emitted beta from 14C decay
are emerging from a 10x10x0.1mm?3
graphite block

Spettro di grafite
Spettro di emissione

1.008

1.006

. Natural isotope concentration (10-1)

- is unacceptable.

1.002

0.0 Using pure precursor of hydrocarbures

d 20 40 60 a0 100 120 . . .

B in CNT synthesis can reduce it to 10-18
| (see BOREXINO)
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How to pack enough mass ?

» Simple-man calculation:

» About 10"® 1nm diameter
SWCNT can fit on
a 10x10 cm? substrate

» Surface density of a
graphene layer: 1/1315 g/m?

» About 2 g CNT on 100cm?
» CNT ropes?
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How do we test this concept ?

GEMPix chamber is already available and suited for a
proof of principle

» AWIMP - ion interaction can be reproduced in lab.
by a neutron — ion elastic interaction.

A 50 KeV neutron is imparting a similar recoil to a carbon
ion as a Galactic WIMP does.

» More precisely, we first want to prove carbon ions of
~10 KeV energy are actually channeled

Use carbon ion beam
Induce carbon ion recoil with electrons
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Neutron induced alpha recoil

Measurement with mixed
neutron field at INFN
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Experiment with n'1' O neutrons

CERN nTOF facility: neutron from F Murtas
PS 20 GeV protons
Energy measurement from time-of-flight Dump (200 m), B,C detector
[precise proton extraction time] = F
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Experiment at Frascati BTF
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» Use electron beam at LNF BTF to “extract” carbon ions
from CNT

One carbon ion elastically scattered by a 500 MeV electron

PRO: trigger on
scattered electron at well deflned angle:
beam clearly visible

CON: electron beam > /
can induce a sizeable % e
background <
8 0.0€
o
o 5 deg. electron
O scattering angle
X g
C
o
)
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Elastically scattered ions

Scattered electron E
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» Geant4
simulation of
500 MeV

electron beam
(no beam spread)

z 10x10mm?
y ¥

z e
N 10x0.1mm?




Channeling of ion

lon elastically
scattered
almost at

90 degree

Critical (Lindhard’s) angle

CNT axis
2U0 Potential well depth

O, =] —=2

E Particle energy

electron

~ 8 deg for 6C at 10 KeV

If 0 <6.ions are channeled!
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Beam "I'est Facility at Frascati labs |

Gamma background

P.Valente

500 MeV
| electrohs

Break vacuum and
Put collimator here

Tunable energy 50-500 MeV electron/positron beam

Few mrad divergence, few mm? beam spot:
to be adjusted with a collimator

Remotely controlled movable table and goniometer (0.3mrad resolution)
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Experiment at B'T'E: micro beam

When micro-beam
available,

position can be
adjusted using Rotating 5.8
scattering on Stage B
substrate : ‘
. CNT axis
c I .
g Micro
3| electron beam
o) 0.1x10mm?2
beam spot
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Rotating
Stage

_ CNTaxis Channeled !
—

é Micro

3| electron beam

(S 0.1x10mm?2
beam spot
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Experimentat BTl

Rotation by an angle
wider than 0,

Rotating | = ......
Stage

No Channeling!

electron beam
0.1x10mm?
beam spot

electron
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Experimentat BTl

Rotation by an angle
wider than 0,

Rotating | | — |
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Signature of ion channeling

» Intercept beam with CNT
Beam can be positioned by looking at scattering on silicon
substrate

» Perform an angular scan
At each point of the angular scan record the number of
lon tracks

» Distribution of ion track rate versus rotation angle
should have a maximum when CNT axis is parallel to
lon emission direction

Such distribution should have width of about 6,

With a 5 10* electron per second on a 1 cm thick CNT brush
we should expect ~1 event per second
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Prespectives _F

» Demonstration of CNT capability to channel very low
energy ion is a prerequisite for a DM directional

detector based on CNT.

» We plan to make test at INFN BTF and CERN nTOF
with electron and neutron

Carbon beam would also be useful (but experimentally
more problematic).
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