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Open fundamental question:

Is it possible to apply squeezed light to precision 
measurements of high-density atomic ensembles?

Optical magnetometers Atomic clocks Spin Noise Spectroscopy

Main fundamental noise sources:
atomic projection noise or by the photon shot noise



Optical magnetometers Atomic clocks Spin Noise Spectroscopy

Here we show that we can improve a spin noise spectroscopy 
measurement via polarization squeezing!

Open fundamental question:

Is it possible to apply squeezed light to precision 
measurements of high-density atomic ensembles?



Outline

Spin Noise Spectroscopy (SNS)

• Faraday rotation based SNS

Polarization Squeezing

• Generation and detection

Squeezed Light SNS

• Experimental setup and results



In thermal equilibrium the averaged value < 𝐹𝑧 𝑡 > = 0

However fluctuations are present: < 𝐹𝑧 𝑡 2 > ~ 𝑁

Correlation function < 𝐹𝑧 𝑡 𝐹𝑧 0 >

Spin Noise Spectroscopy (SNS)



Spin Noise Spectroscopy (SNS)

In thermal equilibrium the averaged value < 𝐹𝑧 𝑡 > = 0

However fluctuations are present: < 𝐹𝑧 𝑡 2 > ~ 𝑁

Correlation function < 𝐹𝑧 𝑡 𝐹𝑧 0 >

• Spin Noise (i.e. projection noise) imposes a fundamental limit on 
accurate measurement of spin ensembles (e.g. femtoTesla

magnetometers, atomic clocks, QND measurements)



Spin Noise Spectroscopy (SNS)

In thermal equilibrium the averaged value < 𝐹𝑧 𝑡 > = 0

However fluctuations are present: < 𝐹𝑧 𝑡 2 > ~ 𝑁

Correlation function < 𝐹𝑧 𝑡 𝐹𝑧 0 >

• Spin Noise (i.e. projection noise) imposes a fundamental limit on 
accurate measurement of spin ensembles (e.g. femtoTesla

magnetometers, atomic clocks, QND measurements)

• Spin noise spectroscopy (SNS) allows to measure the physical 
properties of an unperturbed state from its power spectrum
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Spin Noise Spectroscopy (SNS)

In thermal equilibrium the averaged value < 𝐹𝑧 𝑡 > = 0

However fluctuations are present: < 𝐹𝑧 𝑡 2 > ~ 𝑁

Correlation function < 𝐹𝑧 𝑡 𝐹𝑧 0 >

IN PRINCIPLE: 
Spin Noise Spectroscopy completely describes the spin system dynamics

FLUCTUATION – DISSIPATION THEOREM :

The power spectrum of fluctuations is proportional to the frequency response of the 
system to a small driving force



Spin Noise Spectroscopy (SNS)

First Approach:
Nuclear Magnetic 

Resonance 
techniques

In the last decade:
Optical Faraday Rotation techniques

Review Articles:  V. S. Zapasskii et al, Adv. Opt. Photon. 5, 131 (2013)
Hubner et al, Physica Status Solidi (b), 131 (2013)

Nature 431, 49 (2004)
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𝜽𝑭 ∝ 𝑭𝒛 𝑭𝒛 = 𝟎

𝜹𝑭𝒛~ < (𝑵+−𝑵−)
𝟐 >= 𝑵

𝜽𝑭

Spin noise peak at the Larmor
frequency in the power spectrum

• Any random transverse fluctuation of magnetization will precess

around the magnetic field direction at the Larmor frequency;

Faraday rotation SNS



Faraday rotation spin noise spectrum
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0 to 13 dB for atomic 

ensembles
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Squeezing Source
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A. Predojević, Z. Zhai, J. M. Caballero, M. W. Mitchell Phys. Rev. A 78, 063820 (2008)
F. Wolfgramm, A. Cerè, F. A. Beduini, A. Predojević, M. Koschorreck, M. W. Mitchell PRL 105, 053601 (2010) 

 Conventional SPDC source in OPO cavity bandwidth 8 MHz

 PPKTP crystal parametric gain up to 4.6

 Squeezing up to 3.2 dB of quantum noise suppression at a detuning of 

Δ = 20 𝐺𝐻𝑧 from the D1 Line of Rb85
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Magnetic Shielding and Atomic System

 Rb vapor cell with natural abundance & 100 Torr of N2 buffer gas

 Temperature control up to 120 °C, high density up to 1.3*1013 cm-3

 3-axis DC-Fields & gradient coils in the beam propagation direction;

 4 mu-metal layers in a cylindrical geometry (up to 106 efficiency);
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Squeezed-light SNS

“Squeezed-light spin noise spectroscopy” V. G. Lucivero et al. ready for submission
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P = 0.5 mW
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Quantum enhancement due to squeezing
from 2.7 dB( at n= 1.5 x 1012) to 1.6 dB ( at n= 1.3 x 1013)
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Disturbance reduction (due to collisions)
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n= 9 x 1012n= 5 x 1012

The SNR with coherent is equal to the 
SNR with squeezing at roughly twice the density
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Disturbance reduction (absorption)

a) At constant power squeezing enhances the SNR
b) At constant SNR squeezing reduces the disturbance

P = 3mW

P = 1.5 mW

P = 3mW

P = 1.5 mW
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 We demonstrated quantum enhancement of the SNS signal strength via 

polarization squeezing of the probe over the full investigated range;

 For equal SNR line broadening is reduces by squeezing making SNS less 

invasive/perturbative;

 This provides clear evidence that squeezing can improve Faraday rotation 

based measurements with a broad range of applications;

 We are investigating how squeezing reduces the uncertainty in the 

estimation of atomic properties (g-factors, relaxation-rates);

 Our work introduces a new perspective in quantum metrology, we 

demonstrate that squeezing improves the trade-off between statistical 

sensitivity and systematic effects in a high-density atomic measurement.

“Shot-noise-limited magnetometer with sub-picotesla sensitivity at room 
temperature” V. G. Lucivero et al. Rev. Sci. Inst. 85, 113108 (2014)

“Squeezed-light spin noise spectroscopy” V. G. Lucivero et al. ready for submission
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