Out-Of-Equilibrium States and quasi Many-Body Localization in
\section*{Polar Lattice Gases}
Luca Barbiero
Dipartimento di fisica e Astronomia, Università degli studi Padova

in collaboration with

C. Menotti BEC center Trento

A. Recati

BEC center Trento

L. Santos Hannover

Fondazione Cassa di Risparmio di Padova e Rovigo

Plan of the Talk

Introduction (breaf) to repulsive bound atom pairs (only contact intercation)

Introduction (breaf) to dipolar gases

2-body bound states for dipolar particles
2-body dynamics
Many-body dynamics, effective repulsive gas and clusters
Quasi Many-Body localization
Experimental feasibility and Conclusions

Atoms in Optical Lattice

Neutral Atoms (Bosons) trapped in optical lattice are usually well described by single band Hubbard Models

\square Hopping probability

Energy Spectrum Wave Function

Nature 441, 853 (2006)

Repulsive Bound Atom Pairs

$$
H=-J \sum_{\langle i j\rangle} b_{i}^{\dagger} b_{j}+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right) \quad \begin{gathered}
\text { Grimm's group }{ }^{87 R b} \\
\text { Nature 441, } 853 \text { (2006) }
\end{gathered}
$$

The sample is initially prepared with only pairs and empty sites

The Number of pairs is conderved!!!

ABSENCE OF DISSIPATION

BAND STRUCTURE

Analogously if initially the sample is composed only by singlons and empty sites, pair formation is forbidden even for strong attractive U, see

Nagerl's group PRL 108, 215302 (2012)

Systems with Dipolar Interaction

Dipolar 2-body interaction $U_{d d}(\mathbf{r})=\frac{C_{d d}}{4 \pi} \frac{\left(\mathbf{e}_{1} \cdot \mathbf{e}_{2}\right) r^{2}-3\left(\mathbf{e}_{1} \cdot \mathbf{r}\right)\left(\mathbf{e}_{2} \cdot \mathbf{r}\right)}{\mathbf{r}^{5}}$
 external field

$$
U_{d d}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)=\frac{C_{d d}}{4 \pi} \frac{1-3 \cos ^{2} \theta}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}
$$

repulsive
1D optical lattice

Peculiar Dipolar

$$
H=J \sum_{<i j>} b_{i}^{\dagger} b_{j}+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)+V \sum_{i<j} \frac{n_{i} n_{j}}{r_{i j}^{3}}
$$

Magnetic Atoms with a permanent magnetic dipol Cr , Er , Dy (Experiments: Stułtgard, Paris, Innsbruck, Illinois...) $\quad \mu \sim(6-10) \mu_{B}$
Polar Molecules with electric dipolar momentum RbCs, LiCs, KRb, NaK (Experiments: Innsbruck, Jila, Munich, MIT, Trento...) $d \sim(0.5-5.6) D$

2-body bound states with dipolar interaction

$$
H=J \sum_{<i j>} b_{i}^{\dagger} b_{j}+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)+V \sum_{i<j} \frac{n_{i} n_{j}}{r_{i j}^{3}}
$$

2-particles energy spectrum as a function of the center-of-mass quasi-momuntum K, for $U=0$ and $V=-100$

Probability of finding
2 particles r sites apart for $K=0$

2-body dynamical properties

2 particles at $t=0$ localized 6 sites

$$
g_{2}(r, t)=\frac{\left\langle n_{i}(t) n_{i+r}(t)\right\rangle}{\left\langle n_{i}(t)\right\rangle\left\langle n_{i}+r(t)\right\rangle}
$$

The particles feel an effective repulsion!!!the range of repulsion is r_{c}

2 particles at $t=0$ at distance $r<r_{c}$ and $V=-100$

Many-Body Dynamics

4 particles at $t=0$ located at distance $r>r_{c} V=-100$

$\bar{g}_{1}=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} d t\left\langle b_{i}^{\dagger}(t) b_{i+r}(t)\right\rangle \quad J\left(t_{2}-t_{1}\right)=5$
The system equilibrates in an effective repulsive gas!!!
(Super-Tonks?)

Particles form a cluster!!!expanding with J(J/V) ${ }^{N-1}$

Effective Model

singlon S expanding with J 1°-order processes

Doblon D expanding with Swap $D S-S D$ with
$\mathrm{J}_{\mathrm{D}}=8 \mathrm{~J}^{2} / 7 \mathrm{~V} \quad 2^{\circ}$-order processes
$\Omega=4 \mathrm{~J}^{2} / 3 \mathrm{~V} 2^{\circ}$-order processes

$$
H_{e f f}=-\sum_{\langle i j\rangle}\left(J S_{i}^{\dagger} S_{j}+J_{D} D_{i}^{\dagger} D_{j}+\Omega D_{i}^{\dagger} S_{j}^{\dagger} S_{i} D_{j}\right)
$$

Mixture of heavy and light particles!!! many-body localization in absence of quenched disorder???

[^0]
Quasi Many-Body Localization without disorder

MBL:no diffusion and transport. particles explore a small fraction of all possibles states

$$
\left.N_{i}=D_{i}^{\dagger} D_{i} \Delta N=\frac{1}{L} \sum_{j}\left|\langle\psi(t)| N_{j}-N_{j+1}\right| \psi(t)\right\rangle \mid=0 \text { means perfect homogeneity }
$$

$n_{\text {max }}=$ many-body fock states $|V\rangle$ accounting for all possible distributions of S's and D's

Recent Experiment by Bloch's group Science 349, 842 (2015)

Experimental Feasibility and Conclusions

Nak molecules in the lowest ro-vibrational level (MIT,Munich,Trento), partially polarized with $d=1 D$, lattice spacing $a=532 \mathrm{~nm}, V / h \approx 1 \mathrm{KHz}$, lattice depth $18 E_{R}, E_{R} / h \approx 2.75 \mathrm{kHz}, \mathrm{J} / \mathrm{h} \approx 10 \mathrm{~Hz}=|V| / 100$.

Fascinating 2- and many-body dynamics:

Effective repulsive gas
no losses no recombinations

MBL in absence of quenched disorder

MBL ARISES NATURALLY DUE TO THE DIPOLAR INTERACTION!!!

THANK YOU

[^0]: M. Schiulaz, M. Muller AIP Conf. Proc. 1610, 11 (2014); M. Schiulaz, A. Silva, M. Muller PRB 91, 184202 (2015)

