

UNITED KINGDOM · CHINA · MALAYSIA

8th Italian Quantum Information Science Conference

Accessible quantification of multiparticle entanglement

Gerardo Adesso

School of Mathematical Sciences The University of Nottingham United Kingdom

- Identifying quantumness by its most essential and genuine signatures in general composite systems
- Providing novel operational interpretations and satisfactory measures for quantum resources

Entanglement: a quantum resource

Quantum cryptography

Quantum teleportation

Quantum computation

IQIS 2015

Characterising entanglement

Detection 🙂

Is a state entangled?

- NP-hard but feasible for given classes of states and entanglement types
- Essential to distinguish useful versus useless states for quantum applications
- Experimentally *accessible* for bipartite & multipartite systems (e.g. witnesses)

Quantification 😕

- How entangled a state is?
- OK for pure bipartite states, formidable in general even for a known density matrix
- Essential to determine how efficiently a quantum task can be performed
- Experimentally requires *full tomography*, unless the state is partially known

This work

Can we get an experimentallyfriendly and quantitative assessment of multipartite entanglement Quantification $\bigotimes \Rightarrow \bigotimes$?

- ✓ Yes, exactly for a family of Nqubit states, and for a general class of entanglement measures
- ✓ Yes, providing lower bounds for the global multipartite entanglement of arbitrary states
- All based on measuring just
 three correlation functions
- ✓ Useful in current experiments

Marco Cianciaruso, Thomas Bromley & GA, arXiv:1507.01600 (2015)

Multipartite entanglement

Consider a system of N qubits partitioned into $M \le N$ subsystems

A (fully) separable state with respect to this partition is: $\varsigma = \sum_i p_i \tau_i^{(1)} \otimes \tau_i^{(2)} \otimes \cdots \otimes \tau_i^{(M)}$

Geometric measure of (global) multipartite entanglement: distance *D* from the set of (fully) separable states, where *D* is contractive under quantum channels, and jointly convex (e.g. trace distance, Bures distance, relative entropy...)

$$E^{D}(\rho) = \inf_{\varsigma \text{ separable}} D(\rho, \varsigma)$$

M3N states

 M_N^3 states: A family of *N*-qubit mixed states with all maximally mixed marginals, extending the Bell diagonal states of 2 qubits, and defined as

$$\varpi = \frac{1}{2^N} \left(\boldsymbol{I}^{\otimes N} + \sum_{j=1}^3 c_j \sigma_j^{\otimes N} \right)$$

Entirely specified by three *N*-point correlation functions $c_j = \langle \sigma_j^{\otimes N} \rangle_{\varpi}$

Entanglement of M3N states

 M_N^3 states: We evaluate their geometric multipartite entanglement analytically. For even N, it applies to any distance D. For odd N, it applies to the trace distance.

Extremality of M3N states

- Every N-qubit state can be reduced to a M_N^3 state by a LOCC operation
- The M_N^3 states are the *least entangled* among all states with the same $\{c_j\}$
- The geometric quantities evaluated before give *exact analytical lower bounds* to the global multipartite entanglement of arbitrary *N*-qubit states
- These can be *accessed experimentally* just by measuring the three $\{c_j\}$
- The bounds can be *optimised* by local unitary operations prior to the LOCC, i.e. accessed by measuring in some optimal rotated Pauli basis on each qubit

Relevant examples

N	State	$\{\tilde{c}_1, \tilde{c}_2, \tilde{c}_3\}$	$\sum_{j=1}^{3} \tilde{c}_j $	$\{ heta,\psi,\phi\}$
:3	$\varrho^{(3)}_{GHZ}(p)$	$\left\{-\sqrt{\frac{8}{27}}p, \sqrt{\frac{8}{27}}p, -\sqrt{\frac{8}{27}}p\right\}$	$2\sqrt{\frac{2}{3}}p$	$\left\{\cos^{-1}(\frac{1}{\sqrt{3}}), \frac{5\pi}{30}, \frac{\pi}{4}\right\}$
ž	$\varrho_W^{(3)}(q)$	$\left\{\frac{q}{\sqrt{3}}, -\frac{q}{\sqrt{3}}, \frac{q}{\sqrt{3}}\right\}$	$\sqrt{3}q$	$\left\{\cos^{-1}(\frac{1}{\sqrt{3}}), 0, \frac{\pi}{4}\right\}$
	$\varrho_H(\eta)$	$\left\{\frac{g(\eta)}{3}, -\frac{g(\eta)}{3}, \frac{g(\eta)}{3}\right\}$	$g(\eta)$	$\left\{\cos^{-1}(\frac{1}{\sqrt{3}}), 0, \frac{\pi}{4}\right\}$
	$\varrho_{GHZ}^{(4)}(p)$	$\{p, p, p\}$	3 <i>p</i>	$\{0, 0, 0\}$
=	$\varrho_W^{(4)}(q)$	$\left\{\frac{5q}{9}, \frac{5q}{9}, \frac{5q}{9}\right\}$	$\frac{5q}{3}$	$\left\{\cos^{-1}(\frac{1}{\sqrt{3}}), 0, \frac{\pi}{4}\right\}$
Ν	$\varrho_{Wei}^{(4)}(x)$	$\{x, x, 2x - 1\}$	2x+ 2x-1	$\{0, 0, 0\}$
	$ C^{(4)} angle$	$\{1, 1, 1\}$	3	$\left\{0, \frac{\pi}{8}, \frac{\pi}{8}\right\}$
5	$\varrho^{(5)}_{GHZ}(p)$	$\left\{\frac{p}{\sqrt{2}}, \frac{p}{\sqrt{2}}, 0\right\}$	$\sqrt{2}p$	$\left\{0, \frac{\pi}{40}, \frac{\pi}{40}\right\}$
=	$\varrho_W^{(5)}(q)$	$\left\{\frac{7q}{9\sqrt{3}}, -\frac{7q}{9\sqrt{3}}, \frac{7q}{9\sqrt{3}}\right\}$	$\frac{7q}{3\sqrt{3}}$	$\left\{\cos^{-1}(\frac{1}{\sqrt{3}}), 0, \frac{\pi}{4}\right\}$
	$\varrho_{Wei}^{(5)}(x)$	$\left\{\frac{x}{\sqrt{2}}, \frac{x}{\sqrt{2}}, 0\right\}$	$\sqrt{2}x$	$\left\{0, \frac{\pi}{40}, \frac{\pi}{40}\right\}$
= 6	$\varrho_{GHZ}^{(6)}(p)$	$\{p, -p, p\}$	3 <i>p</i>	$\{0, 0, 0\}$
ž	$\varrho_{Wei}^{(6)}(x)$	$\{x, -x, 2x - 1\}$	2x + 2x - 1	$\{0, 0, 0\}$
2	$\varrho_{GHZ}^{(7)}(p)$	$\left\{\frac{p}{\sqrt{2}}, -\frac{p}{\sqrt{2}}, 0\right\}$	$\sqrt{2}p$	$\left\{0, \frac{\pi}{56}, \frac{\pi}{56}\right\}$
Ν	$\varrho_{Wei}^{(7)}(x)$	$\left\{\frac{x}{\sqrt{2}}, -\frac{x}{\sqrt{2}}, 0\right\}$	$\sqrt{2}x$	$\left\{0, \frac{\pi}{56}, \frac{\pi}{56}\right\}$
8	$\varrho_{GHZ}^{(8)}(p)$	$\{p, p, p\}$	3 <i>p</i>	{0, 0, 0}
Ň	$\varrho_{Wei}^{(8)}(x)$	$\{x, x, 2x - 1\}$	2x+ 2x-1	$\{0, 0, 0\}$

The lower bound is nontrivial if $\sum_{j} |\tilde{c}_{j}| \ge 1$

The last column contains the optimised local settings

Useful bounds are found for all relevant states (e.g. GHZ for any *N*, *W*, cluster...)

Example: N-qubit Wei states

Relevant examples (experiments) 🏌

Smolin states are bound entangled states useful for information concentration and locking *Generalised Smolin states are M3N states: we quantify their entanglement exactly!*

PRL 105, 130501 (2010)

PHYSICAL REVIEW LETTERS

week ending 24 SEPTEMBER 2010

Experimental Bound Entanglement in a Four-Photon State

Jonathan Lavoie, Rainer Kaltenbaek, Marco Piani, and Kevin J. Resch

Relevant examples (experiments)

Noisy W and GHZ states of trapped ions (data by T Monz et al at Innsbruck, Blatt's group)

State	Fidelity	Before optimisation: {c	c_1, c_2, c_3	$\sum_{j=1}^{3} c_j $	After optimisation: $\{\tilde{c}_1, \tilde{c}_2, \tilde{c}_3\}$	$\sum_{j=1}^{3} \tilde{c}_j $	$E^{D_{\mathrm{Tr}}}$
$\varrho_{W_A}^{(4)}$	19.4%	{-0.00469, 0.0113, -	0.722}	0.738	$\{-0.404, 0.454, -0.378\}$	1.24	0.0589
$\varrho_{W_R}^{(4)}$	31.4%	{0.0174, 0.0132, -0.	.807}	0.838	$\{0.472, -0.468, -0.446\}$	1.39	0.0963
$\varrho_{GHZ}^{(3)}$	87.9%	$\{0.830, 0.235, -0.0\}$	100}	1.07	$\{0.474, 0.483, -0.488\}$	1.44	0.128
$\varrho_{GHZ}^{(4)}$	80.3%	{0.663, 0.683, 0.90	01}	2.25	$\{0.868, 0.852, 0.915\}$	2.64	0.409

We obtain nontrivial lower bounds to global entanglement even for highly mixed states

Summary of the procedure

Outlook & work in progress

Can we quantify genuine multipartite entanglement (as opposed to global?)

Geometric measure of *genuine* **multipartite entanglement**: distance *D* from the set of *biseparable states* (i.e. mixtures of states, each separable according to some bipartition),

$$G^{D}(\rho) = \inf_{\zeta \text{ biseparable}} D(\rho, \zeta)$$

Outlook & work in progress

Can we quantify genuine multipartite entanglement (as opposed to global?)

NO with the M_N^3 states as they are always biseparable

But, we are looking for a *larger set* (depending on more than 3 correlation functions) rich enough to allow for genuine entanglement, yet still tractable analytically

TO BE CONTINUED...

Thank you

The University of Nottingham

Marco Cianciaruso, Thomas Bromley & GA, arXiv:1507.01600 (2015)

Quantum Correlations Group The University of Nottingham http://quantumcorrelations.weebly.com

European Research Council

Established by the European Commission