

ulm university universität

University of the Basque Country

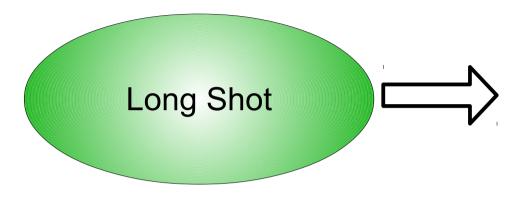
The simplest SU(2) lattice gauge model in 1D Emergent chirality and beyond

12/9/2015

Pietro Silvi

in collaboration with E. Rico, M. Dalmonte, P. Zoller, T. Calarco, and S. Montangero

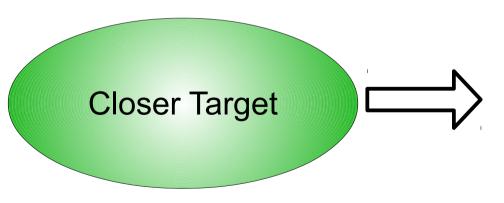
Motivation:



Understanding QCD:

QCD is a non-solved theory, which can not be addressed perturbatively.

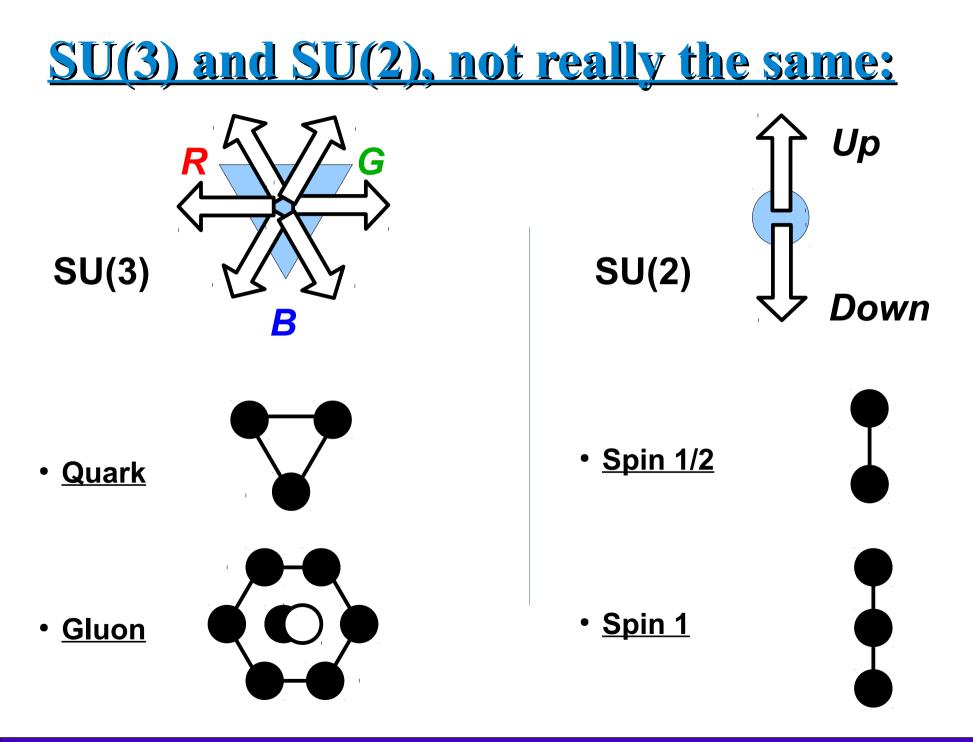
= Big Open Issue



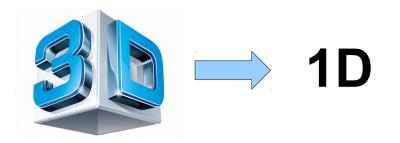
- First non-abelian application of our LGT Tensor Network scheme^{1,2}.
- Search for conjectured phases in simpler scenarios.
- Tool for calibrating an atomic quantum simulator.

P. Silvi. E. Rico, T. Calarco, S. Montangero; New J. Phys. **16** 103015 (2014)
E. Rico, T. Pichler, M. Dalmonte, P. Zoller, S. Montangero, PRL **112**, 201601 (2014)

Pietro Silvi

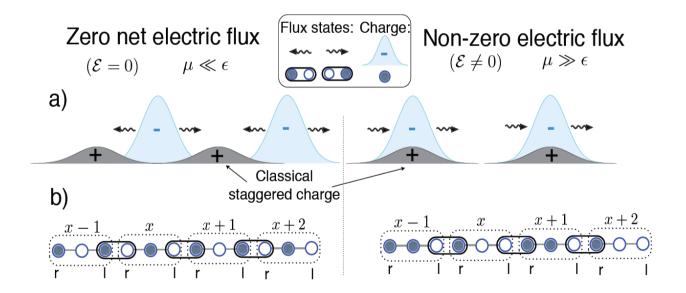


...also not the same dimensionality



And still we can address important questions

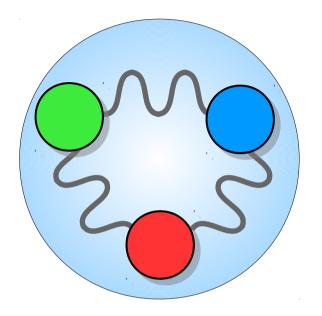
such as Chiral symmetry breaking



In QED² (abelian LGT) charge density wave, is induced by staggered charge background

For SU(2) LGT, can the chiral symmetry be broken spontaneously?

importance of Chiral order



Chiral symmetry breaking allows quarks to arrange in localized triplets: **Baryons**.

Basically 99% of the (stable) matter in the universe.

Let us see if we find it in the simplest SU(2) LGT in 1D.

Other reasons why SU(2) LGT are important:

3) I. Affleck, Z. Zou, T. Hsu, P. W. Anderson, PRB 38, 745 (1988)

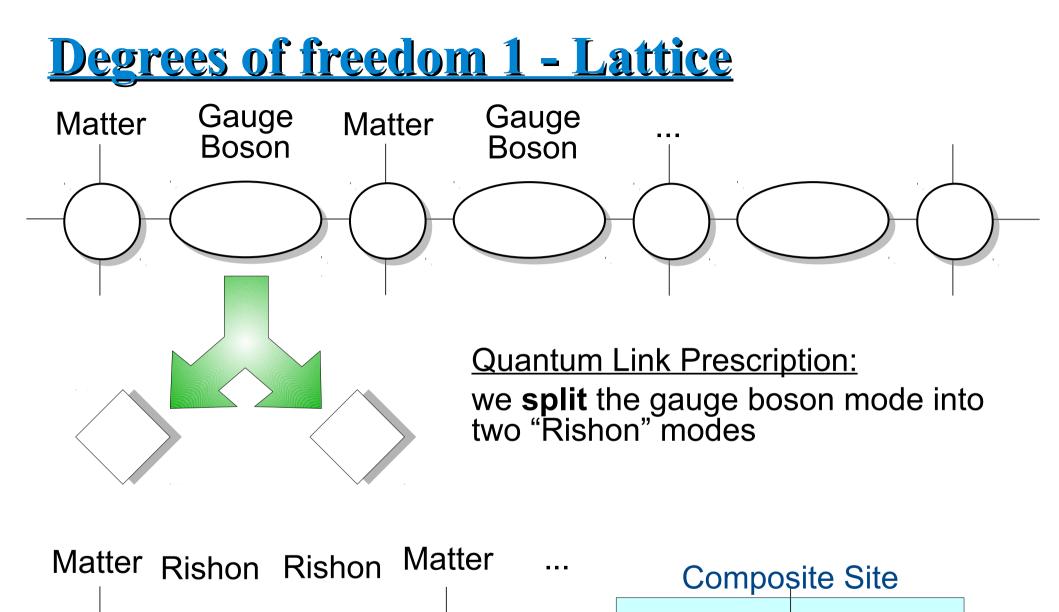
4) E. Dagotto, E. Fradkin, A. Moreo, PRB Rapid 38, 2926 (1988)

Simplest SU(2) lattice gauge model in 1D

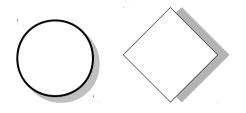
in Quantum Link formulation

$$\begin{split} H &= t \sum_{j} \sum_{a,b=\uparrow,\downarrow} \psi_{j,a}^{\dagger} c_{j,a}^{[L]} c_{j+1,b}^{[R]\dagger} \psi_{j+1,b} + \psi_{j,a} c_{j,a}^{[L]\dagger} c_{j+1,b}^{[R]} \psi_{j+1,b}^{\dagger} \\ &+ \tilde{g} \sum_{j} \left(n_{j,\uparrow}^{[L]} + n_{j,\downarrow}^{[L]} - 2n_{j,\uparrow}^{[L]} n_{j,\downarrow}^{[L]} \right) + \left(n_{j,\uparrow}^{[R]} + n_{j,\downarrow}^{[R]} - 2n_{j,\uparrow}^{[R]} n_{j,\downarrow}^{[R]} \right) \\ &+ \epsilon \sum_{j} c_{j,\uparrow}^{[L]\dagger} c_{j,\downarrow}^{[L]\dagger} c_{j+1,\downarrow}^{[R]} c_{j+1,\uparrow}^{[R]} + c_{j,\downarrow}^{[L]} c_{j,\uparrow}^{[L]} c_{j+1,\uparrow}^{[R]\dagger} c_{j+1,\downarrow}^{[R]\dagger} \\ &+ \sum_{j} (\mu + (-1)^{j} m) \left(n_{j,\uparrow}^{[M]} + n_{j,\downarrow}^{[M]} \right). \end{split}$$

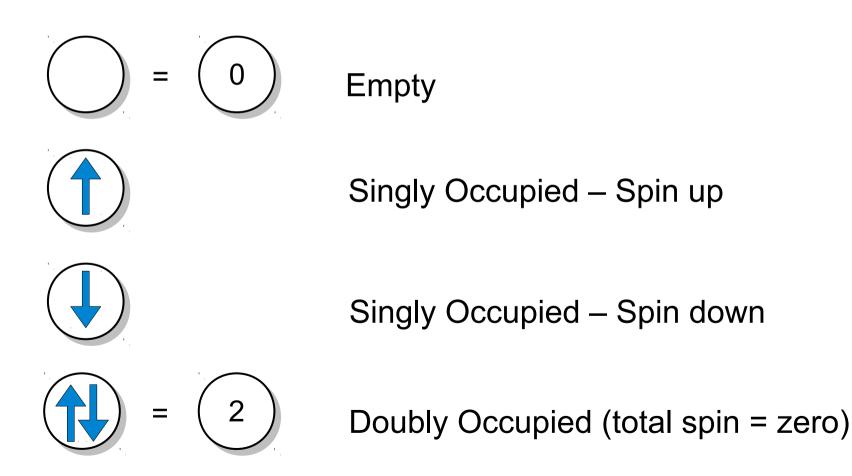
This will not do. Let me give more insight.



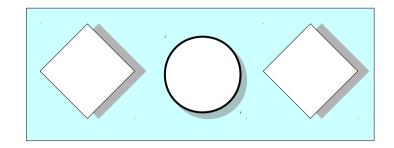
Degrees of freedom 2 – Spin ½ Fermions



Simplest model: both matter and rishon are spin ½ fermionic modes!

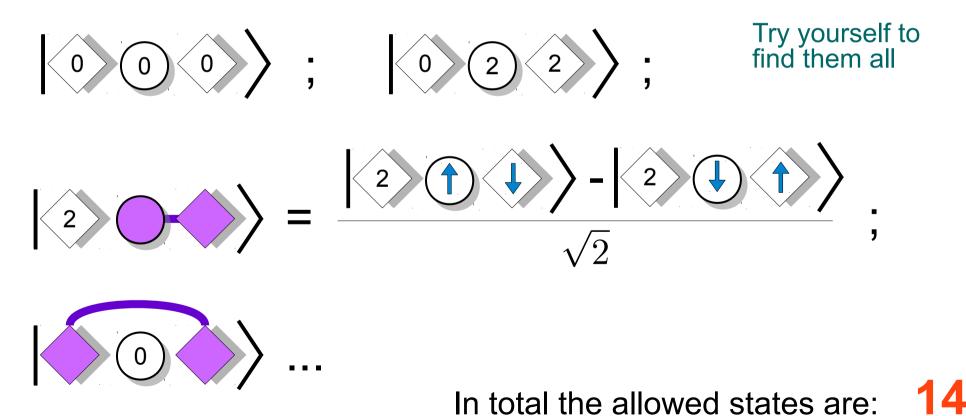


<u>Gauge Invariance 1 – Gauss' Law</u>

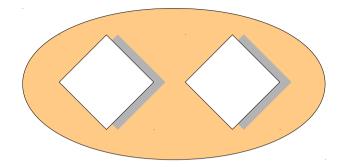


<u>SU(2) Lattice Gauge constraint:</u> The total spin of a *composite site* must be ZERO !!

Examples of allowed states:

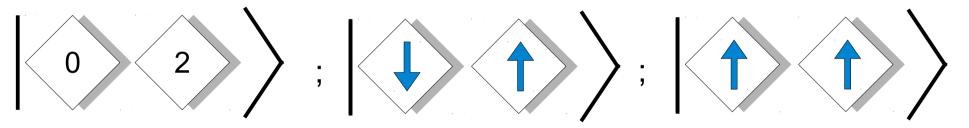


<u>Gauge Invariance 2 – Link constraint</u>

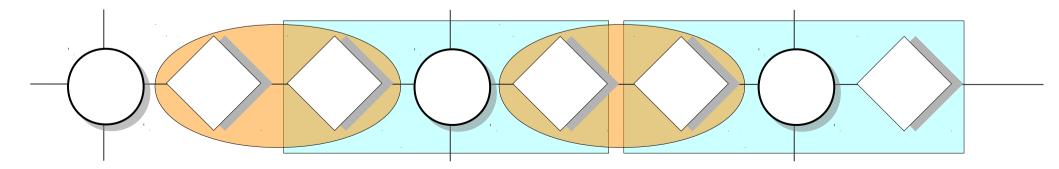


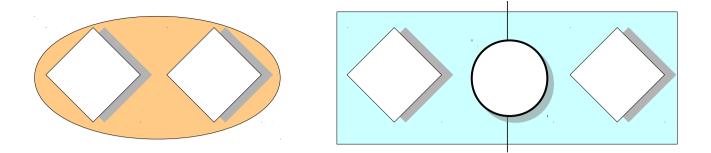
Quantum link constraint: The total *number* of rishons on a link must be **2** !!

Some allowed pairs:



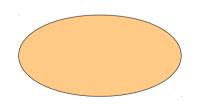
All these constraints mutually commute:





ALSO these constraints are symmetries (they commute with the Hamiltonian) and thus are preserved.

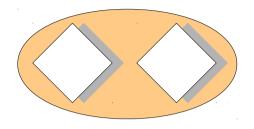
Defines an effective local computational basis, of d = 14 states.



Imposes a (diagonal) selection rule for nearest neighbor states.

We have defined the Gauge invariant Hilbert in a comfortable way

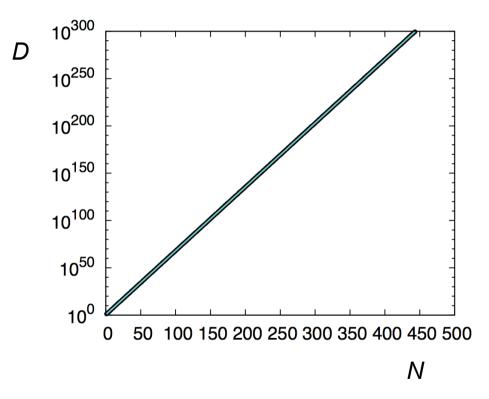
Computational complexity of the problem



The link condition **reduces dramatically** the growth of the Hilbert space with size.

Sites	Total states
1	14
2	66 (< 196)
3	312 (<< 2744)
N	$D \sim b^{N}$

b = 4.7320508

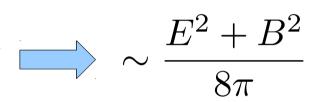


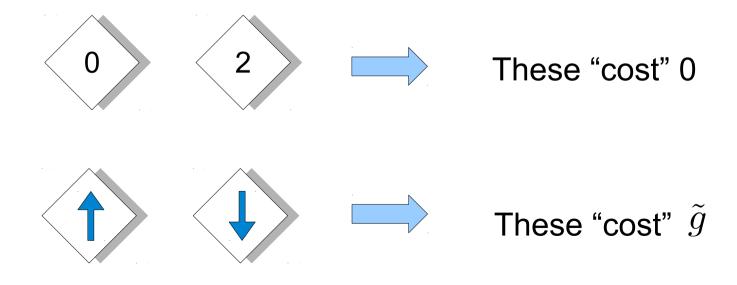
Complexity: easier than a spin-2 model in 1D. This is nice!

<u>Hamiltonian 1 – Free field energy</u>

$$H_{\text{free}} = \tilde{g} \sum_{j} \left(n_{j,\uparrow}^{[L]} + n_{j,\downarrow}^{[L]} - 2n_{j,\uparrow}^{[L]} n_{j,\downarrow}^{[L]} \right) + \left(n_{j,\uparrow}^{[R]} + n_{j,\downarrow}^{[R]} - 2n_{j,\uparrow}^{[R]} n_{j,\downarrow}^{[R]} \right)$$

- Is completely local
- Acts on the rishon modes only
- Acts on the fishon modes only Plays a role equivalent to the energy $\sim \frac{E^2 + B^2}{8\pi}$ density in electromagnetism





<u>Hamiltonian 2 – Matter chemical</u> <u>potentials</u>

$$H_{\rm chem} = \sum_{j} (\mu + (-1)^{j} m) \left(n_{j,\uparrow}^{[M]} + n_{j,\downarrow}^{[M]} \right).$$

- Is completely local
- Acts on the matter modes only
- $_{\it L\!l}$ is used to tune the matter filling (the Hamiltonian conserves total matter)
- m comes from the bare matter mass in the continuous theory. It becomes a *staggered* potential when casting the gauge theory on a lattice.

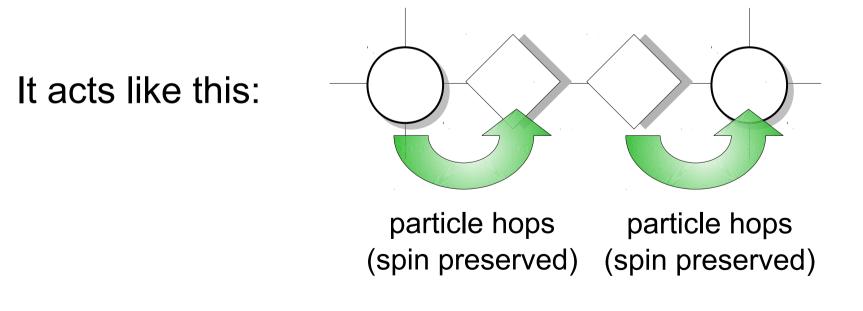
Our current simulations \implies massless m = 0

Our simulations take into account global symmetries: we can work at fixed filling $\longrightarrow \mu$ not needed

Hamiltonian 3 – Coupling

$$H_{\text{int}} = t \sum_{j} \sum_{a,b=\uparrow,\downarrow} \psi_{j,a}^{\dagger} c_{j,a}^{[L]} c_{j+1,b}^{[R]\dagger} \psi_{j+1,b} + \psi_{j,a} c_{j,a}^{[L]\dagger} c_{j+1,b}^{[R]} \psi_{j+1,b}^{\dagger}.$$

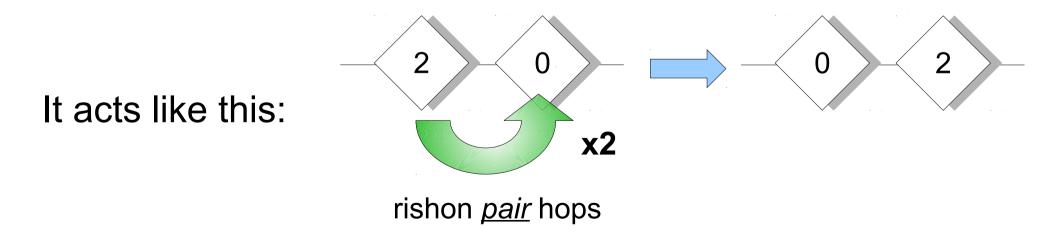
- Defines the interaction between matter and gauge field.
- It is four-body (actually four-operators) which makes it hard.



Hamiltonian 4 – U(1) Breaker

$$H_{\text{break}} = \epsilon \sum_{j} c_{j,\uparrow}^{[L]\dagger} c_{j,\downarrow}^{[L]\dagger} c_{j+1,\downarrow}^{[R]} c_{j+1,\uparrow}^{[R]} + c_{j,\downarrow}^{[L]} c_{j,\uparrow}^{[L]} c_{j+1,\uparrow}^{[R]\dagger} c_{j+1,\downarrow}^{[R]\dagger}.$$

- This term has no physical origin (it is artificial).
- Without it, the LGT would be U(2) invariant (too strong symmetry!), but we want SU(2), so we need it.



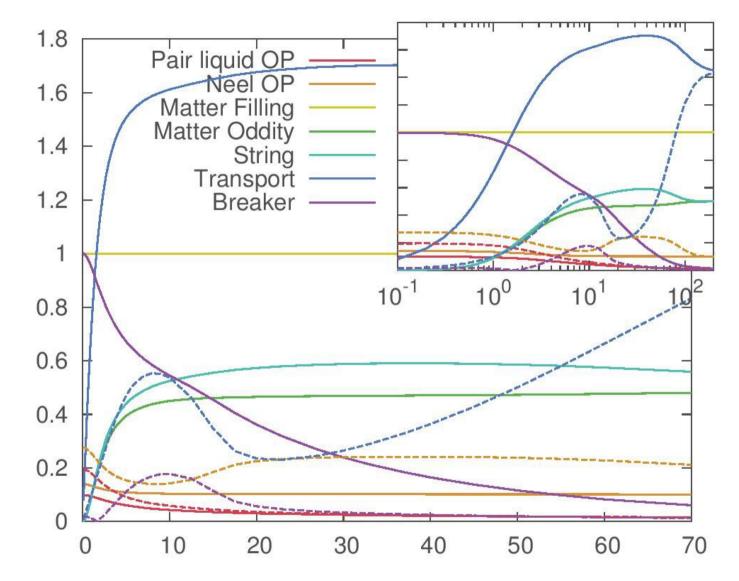
Back to the full Hamiltonian

$$\begin{split} H &= t \sum_{j} \sum_{a,b=\uparrow,\downarrow} \psi_{j,a}^{\dagger} c_{j,a}^{[L]} c_{j+1,b}^{[R]\dagger} \psi_{j+1,b} + \psi_{j,a} c_{j,a}^{[L]\dagger} c_{j+1,b}^{[R]} \psi_{j+1,b}^{\dagger} \\ &+ \tilde{g} \sum_{j} \left(n_{j,\uparrow}^{[L]} + n_{j,\downarrow}^{[L]} - 2n_{j,\uparrow}^{[L]} n_{j,\downarrow}^{[L]} \right) + \left(n_{j,\uparrow}^{[R]} + n_{j,\downarrow}^{[R]} - 2n_{j,\uparrow}^{[R]} n_{j,\downarrow}^{[R]} \right) \\ &+ \epsilon \sum_{j} c_{j,\uparrow}^{[L]\dagger} c_{j,\downarrow}^{[L]\dagger} c_{j+1,\downarrow}^{[R]} c_{j+1,\uparrow}^{[R]} + c_{j,\downarrow}^{[L]} c_{j,\uparrow}^{[L]} c_{j+1,\uparrow}^{[R]\dagger} c_{j+1,\downarrow}^{[R]\dagger}. \end{split}$$

Now we understand it. Time to solve it.

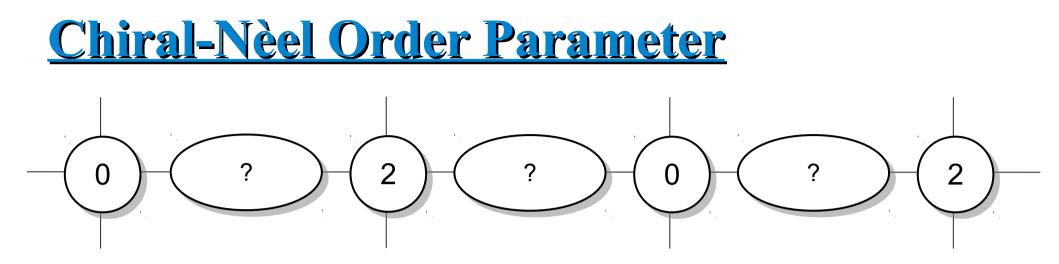
Characterize its complete phase diagram

Lots of quantities to investigate: effort-taking phase detection.



FOCUS: Can we find a phase with *chiral order*?

Pietro Silvi

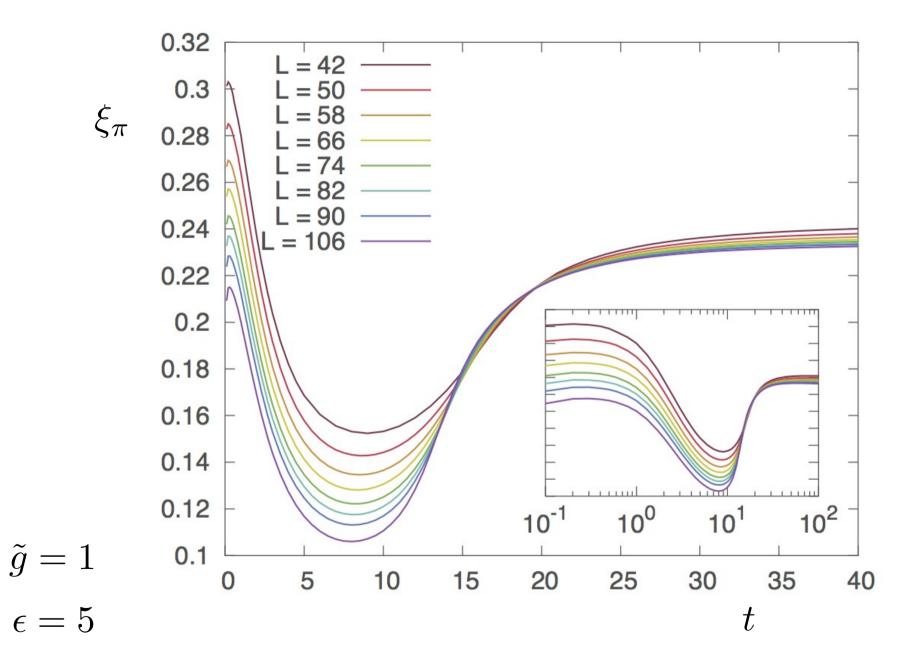


The state is Chiral-Nèel ordered when matter condenses in a crystal of Mesons (charge-density wave, or ising antiferromagnet of pairs).

The symmetry being broken is the particle hole (or spatial inversion). The order parameter is calculated via structure factor:

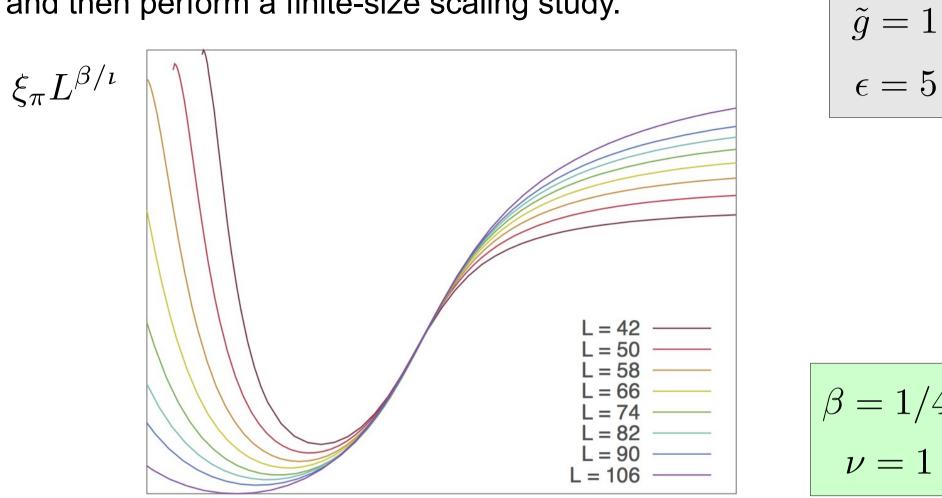
$$\xi_{\pi} = \sqrt{\frac{1}{L(L-1)} \left| \sum_{j \neq j'} (-1)^{(j-j')} \langle (n_{j,\uparrow}^{[M]} + n_{j,\downarrow}^{[M]} - 1) (n_{j',\uparrow}^{[M]} + n_{j',\downarrow}^{[M]} - 1) \rangle \right|},$$

Look for a regime where it converges to a finite value at TD-limit.



Pietro Silvi

... and then perform a finite-size scaling study.



$$\beta = 1/4$$
$$\nu = 1$$

 $(t-t_c)L^{1/\nu}$

- Chiral order is found at $t > t_c = 11.5 + 0.2$.
- The critical exponents suggest XXZ model-like transition

Beyond the chiral phase

Can we find a phase which is XXZ-gapless like?

- Suggested by the critical exponents we found.
- Second order (degenerate) perturbation theory in small *t* provides exactly the XXZ model.

ment

2.6 2.5

2.4

• The entanglement entropy has a critical profile $\begin{array}{c} c \simeq 1 \end{array}$

 $\langle \psi_{j,\uparrow} \psi_{j,\downarrow} \rangle$

120

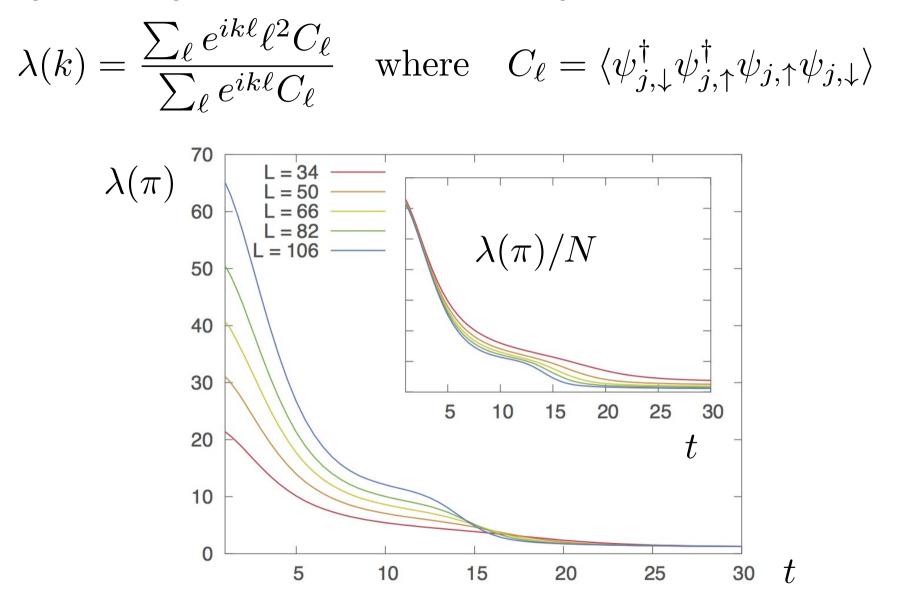
100

80

60

Bond

Investigate divergence of the correlation length

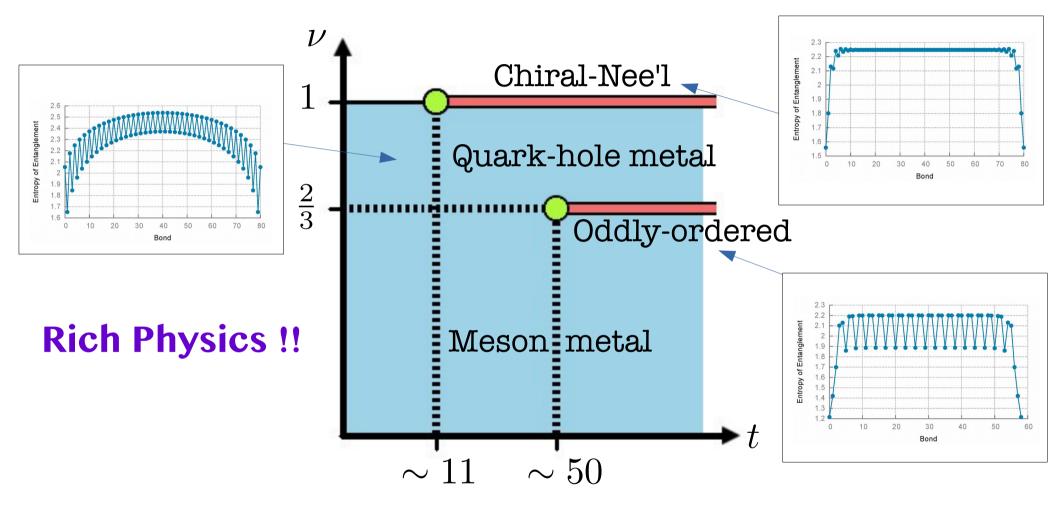


Luttinger Metal phase found!

Pietro Silvi

 $\tilde{q} = 1$ $\epsilon = 5$

Capturing the phase diagram (here in t and the filling u = N/L)



Plans for the future

• Out-of-equilibrium dynamics, open dynamics, larger LG groups ...