

Confined quantum Zeno dynamics of a watched angular momentum

J.M. Raimond Université Pierre et Marie Curie

Zeno's arrow paradox (450 bc)

• If everything when it occupies an equal space is at rest, and if that which is in locomotion is always occupying such a space at any moment, the flying arrow is therefore motionless. —Aristotle, Physics VI:9, 239b30

- A flying arrow cannot move!
 - An interesting paradoxical view on a common situation depicting the difficulty to figure out infinitesimal quantities
 - Of course, the arrow moves (and is famous for moving fast towards Achille's foot)
 - No paradox at all for our modern understanding of space, time and differential calculus

Quantum Zeno effect

- A watched quantum arrow never moves
 - coherent evolution of a system and frequently repeated quantum measurements
 - a quantum jump evolution between eigenstates of the measured quantity
 - Each new measurement has a large probability to project the system back onto its initial state
 - an evolution much slower than without measurements
 - No evolution at all in the limit of zero delay between measurements
 - Observed on a variety of matter/field quantum systems
 - Inhibition of the growth of a coherent field by frequent QND photon number measurement

J. Bernu et al, PRL 101 180402

Quantum Zeno dynamics

- More freedom for a watched quantum system
 - Sets a boundary in the Hilbert space
 - Asking frequently « have you crossed the boundary » makes it impenetrable
 - Coherent evolution with Hamiltonian H
 - Repeated measurement of an observable with a degenerate eigenvalue μ (eigenspace E_{μ} , projector P_{μ})
 - State initially in E_{μ} remains in E_{μ} and evolves under the effective hamiltonian $H_{\mu}=P_{\mu}HP_{\mu}$
- Confined dynamics can be utterly counterintuitive and lead to interesting states
 - State preparation through Hilbert space tailoring
 - Many possibilites for quantum manipulations/quantum information

Equivalent approaches

- Repeated quantum measurement with degenerate eigenspaces E_µ
- Repeated unitary kicks U_k with degenerate eigenspaces E_{μ}
 - Closely related to 'Bang Bang' control techniques
- Continuous application of a state-selective perturbation H with degenerate eigenspaces E_{μ}
 - All lead to a confined dynamics in one of the eigenspaces E_u
 - A 'watched' quantum arrow does move, but in a limited domain

P. Facchi et al J. Phys. A **41** 493001 F. Schäfer et al, Nature Comm, **5** 3194

Towards a cavity QED implementation

Measurement: a yes/no question

Raimond et al, PRL 105, 213601

- Are there exactly *s* photons in the cavity or not ?
- If frequently repeated
 - Confinement of the dynamics in the subspaces with less or more than s photons: a circular wall with radius \sqrt{s} in phase plane
 - Quantum Zeno dynamics in two disjoint subspaces
- Use the dressed states to implement photon-number selectivity
 - And the long interaction times to probe the dressed states with high resolution pulse

Dynamics inside the exclusion circle

• 150 steps, *s*=6

Phase space tweezers

- A radius 1 EC (s=1)
 - Blocks a coherent component
 - No evolution at all: recover standard zeno effect
- Phase space tweezer
 - An EC with s=1 and a slowly varying center (controlled displacements before and after interrogation). No free dynamics
 - The 'blocked' coherent component adiabatically follows the slow motion of the EC even in the absence of other source of evolution
 - A means to pick at will a coherent component and to displace it arbitrarily without affecting others
 - A synthesis of nearly arbitrarily complex cat states

First QZD inplementation in the Stark manifold of a Rydberg atom

- Same basic principle as in cavity QED
 - A simple and rich system
 - A single Rydberg atom in a static electric field
 - A large Hilbert space (2500 levels !)
 - Clear demonstration of the main QZD features
 - Generation of mesoscopic quantum state superpositions
 - Promising perspectives for quantum-enabled metrology

An arrow (angular momentum) in a Rydberg manifold

• Rydberg manifold n_e =51 in an electric field: Stark levels

- From the circular state, a ladder of 51 equidistant levels |k> separated by the linear Stark frequency.
- Driven simultaneously by a resonant σ_+ r.f.; equivalent to a spin J=25.

Unrestricted motion on a generalized Bloch sphere

• Rotation of the angular momentum under resonant r.f. excitation

- At any time in a spin coherent state (SCS): a rotating arrow
- Near the poles: an harmonic oscillator

Probing the unrestricted spin rotation

• Selective measurement of the |k> levels population P(k, t)

- Field ionization resolves manifolds 52 and 51

A simple experimental set-up

- Laser preparation of a high k (low m) state
- Initialization in the circular state (r.f.-induced adiabatic rapid passage in the spin state ladder)
- σ_+ r.f. polarization with a fine tuning of the potentials on the r.f. electrodes

Probing the unrestricted spin rotation

Evolution of P(k, t)

٠

A. Signoles et al. ArXiv 1402.0111 and Nature Physics, 10, 715

0.4 (İ) 1.0 (iii) (11) I) 0.2 0.5 0.0 0.4 Probat $P(k,t_1)$ 0.0 (iii) 0.4 0.2 0.5 0.0 23 0 1 4 5 0.0 k $0.6 \ \ 0.8 \ \ 1.0 \ \ 1.2 \ \ 1.4 \ \ 1.6 \ \ 1.8$ 0.2 0.4 t₁ (μs)

Enforcing Zeno interrogation

• State-selective addressing of the spin states ladder

- A 'gapped' spin ladder
 - First six levels (including +) isolated from the others
 - Confined dynamics in the vicinity of the North pole

 $|n_e, k=0\rangle$

k = 1

k = 7

Timing

- A simple sequence
 - Preparation of the initial circular state
 - Switching on of the Zeno state-selective microwave
 - Application of the rf inducing spin rotation for a time t
 - Slow (adiabatic) switching off of the Zeno microwave
 - Maps the populated dressed state |+> onto |k=5>
 - Probe final spin states populations

Evidence of the confined dynamics

A. Signoles et al. ArXiv 1402.0111 and Nature Physics, 10, 715

Evidence of the confined dynamics

- Time-resolved measurement of the spin's Q function
 - Analogous to the Husimi Q function for a field
 - A positive quasi-probability distribution on the Bloch sphere
 - Proportional to the probability for finding the spin in k=0 after a rotation $R(\Theta,\phi)$
 - Measurement procedure
 - Apply an intense r.f. with adjustable phase and amplitude:
 - Controlled rotation of the spin's state
 - Apply probe microwave to measure *P*(0)
 - Interpolate measurements on the polar cap of the Bloch sphere

Q function snapshots

- Clear evidence of the confinement in the polar cap
 - Zeno interrogation: a Limit Latitude (LL) that the spin cannot cross
- Rapid azimuthal phase inversion when the spin reaches the LL
 - C.f. confined dynamics of a field
- Excellent agreement with a complete numerical simulation
 - Good understanding of the dynamics and measurement process

Coherence at inversion time ?

- Expect a quantum superposition of two Spin Coherent States with opposite azimuthal phases
 - Reminiscent of the Schrödinger cat metaphor
 - An interesting quantum resource for
 - Decoherence studies
 - Electric and magnetic field quantum-enabled metrology
 - Q function does not measure the coherence

- A direct measurement of the spin's Wigner function
 - Adjustable rotation, measurement of the P(k)s for a few k values and many rotation parameters
 - MaxLik reconstruction of the complete atomic density matrix
 - Projection on the spin states
 - 10% population leaks out of the spin ladder due to experimental imperfections
 - Plot the field's Wigner function on the Bloch sphere

Spin's Wigner function at phase inversion time

- A clear nonclassicality criterion
 - Negative W values

- A genuine quantum superposition of two spin coherent states with opposite azimuthal phases
 - Another type of Schrödinger kitten

A. Signoles et al. ArXiv 1402.0111 and Nature Physics 10, 715

3.6

2.4

1.2

0

-1.2

-2.4

-3.6

A movie of the Wigner function

• A theoretical computation of W

- Excellent agreement with measurements at phase inversion time
 - Mutual fidelity 0.93

Perspectives

- Main limitations of the present set-up
 - Static field inhomogeneity limits coherence time to a few μs
 - Limited resolution of the electronic sequencer
- With an improved set-up
 - Larger spaces
 - Quantum-enabled measurements of electric and magnetic fields
 - Alternate interrogation/rotation
 - Transposition of the 'phase space tweezers' proposed in CQED
 - Synthesis of nontrivial complex spin states
 - Quantum control
 - Optimal control techniques for state synthesis
- Applications to quantum enabled metrology
 - Engineer field sensitive state superpositions
 - Time and space-resolved measurements of weak electric and magnetic field

A new dedicated cavity QED set-up

- Achieving long interaction times
 - A set-up with a stationary Rydberg atom in a cavity
 - Circular state
 preparation and detection
 in the cavity
 - Interaction time ms range
 - For QZD and more

A team work

- S. Haroche, M. Brune,
 J.M. Raimond, S. Gleyzes, I. Dotsenko,
 C. Sayrin
- Cavity QED experiments
 - S. Gerlich
 - T. Rybarczyk, A. Signoles,
 - A. Facon, D. Grosso, E.K. Dietsche,
 - V. Métillon, F. Assemat
- Superconducting atom chip
 - Thanh Long Nguyen, T. Cantat-Moltrecht
 - R. Cortinas
- Collaborations:
 - Cavities: P. Bosland, B. Visentin, E. Jacques
 - CEA Saclay (DAPNIA)
 - Feedback: P. Rouchon, M. Mirrahimi, A. Sarlette
 - Ecole des Mines Paris
 - QZD: P. Facchi, S. Pascazio
 - Uni. Bari and INFN
- €€:ERC (Declic), EC (SIQS, CCQED),
 - ANR (QUSCO), CNRS, UMPC, IUF, CdF

Exploring the Quantum Atoms, Cavities, and Photons WWW.CQed.org

Serge Haroche and Jean-Michel Raimond