A4 UPMC

IARI SORBONNE

ECOLE NORMALE SUPERIEURE r
I

Confined quantum Zeno dynamics of a watched
angular momentum

J.M. Raimond
Université Pierre et Marie Curie

\ \ Laboratoire Kastler Brossel

Physique quantique et applications




!eno S adlrow para!ox !!!B EC!

» If everything when it occupies an equal space is at rest, and if that which
is in locomotion is always occupying such a space at any moment, the
flying arrow is therefore motionless. —Aristotle, Physics VI:9, 239b30

« A flying arrow cannot move!
— An interesting paradoxical view on a common situation depicting the
difficulty to figure out infinitesimal quantities
— Of course, the arrow moves (and is famous for moving fast towards
Achille’s foot)
» No paradox at all for our modern understanding of space, time

and differential calculus




Quantum Zeno effect

A watched quantum arrow never moves

— coherent evolution of a system and frequently repeated quantum
measurements

« a quantum jump evolution between eigenstates of the measured
quantity

« Each new measurement has a large probability to project the
system back onto its initial state

— an evolution much slower than without measurements

— No evolution at all in the limit of zero delay between
measurements

» Observed on a variety of matter/field quantum systems

— Inhibition of the growth of a coherent field by frequent QND
photon number measurement

J. Bernu et al, PRL 101 180402
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Quantum Zeno dynamics

* More freedom for a watched quantum system
— Sets a boundary in the Hilbert space

« Asking frequently « have you crossed the boundary » makes it
impenetrable

— Coherent evolution with Hamiltonian H

— Repeated measurement of an observable with a degenerate
eigenvalue u (eigenspace E,, projector P,))

« State initially in £, remains in E, and evolves under the effective
hamiltonian H =P HP,

« Confined dynamics can be utterly counterintuitive and lead to interesting
states

— State preparation through Hilbert space tailoring
— Many possibilites for guantum manipulations/quantum information

P. Facchi and S. Pascazio, PRL, 89 080401



!quwa‘en! approacHes

* Repeated quantum measurement with degenerate eigenspaces E,
* Repeated unitary kicks U, with degenerate eigenspaces E,
— Closely related to ‘Bang Bang’ control techniques

« Continuous application of a state-selective perturbation H with degenerate
eigenspaces E

— All'lead to a confined dynamics in one of the eigenspaces E,
* A ‘watched’ quantum arrow does move, but in a limited domain

P. Facchi et al J. Phys. A 41 493001
F. Schafer et al, Nature Comm, 5 3194
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Towards a cavity QED implementation

. Raimond et al, PRL 105, 213601
 Measurement: a yes/no question

— Are there exactly s photons in the cavity or not ?
» If frequently repeated

— Confinement of the dynamics in the subspaces with less or more than
s photons: a circular wall with radius v/sin phase plane

— Quantum Zeno dynamics in two disjoint subspaces
* Use the dressed states to implement photon-number selectivity

— And the long interaction times to probe the dressed states with high
resolution pulse
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150 steps, s=6




!I !ase Space !weezers

 Avradius 1 EC (s=1)
— Blocks a coherent component
* No evolution at all: recover standard zeno effect

 Phase space tweezer

— An EC with s=1 and a slowly varying center (controlled displacements
before and after interrogation). No free dynamics

» The ‘blocked’ coherent component adiabatically follows the slow
motion of the EC even in the absence of other source of evolution

— A means to pick at will a coherent component and to displace
it arbitrarily without affecting others

— A synthesis of nearly arbitrarily complex cat states

Raimond et al, PRA 86 022120



« Same basic principle as in cavity QED
— A simple and rich system
* A single Rydberg atom in a static electric field

— A large Hilbert space (2500 levels !)

— Clear demonstration of the main QZD features
» Generation of mesoscopic quantum state superpositions

— Promising perspectives for quantum-enabled metrology

See also Schafer et al, Nature Comm 5, 3194
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« Rydberg manifold n,=51 in an electric field: Stark levels

* From the circular state, a ladder of 51 equidistant levels |k> separated by
the linear Stark frequency.

« Driven simultaneously by a resonant o, r.f.; equivalent to a spin J=25.
.



« Rotation of the angular momentum under resonant r.f. excitation

Z North pole
k=0 (m=50)

pole
k=50 (m=0)

— At any time in a spin coherent state (SCS): a rotating arrow
— Near the poles: an harmonic oscillator




‘Probing the unrestricted spin rotation

« Selective measurement of the |k> levels population P(k, t)

‘probe’ microwave
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n, =51

— Field ionization resolves manifolds 52 and 51



A simple experimental set-up

d.c. electrode

Atomic beam

d.c. electrode
Field-ionization
detector
» Laser preparation of a high k (low m) state
« Initialization in the circular state (r.f.-induced adiabatic rapid passage
in the spin state ladder)
» o, r.f. polarization with a fine tuning of the potentials on the r.f. electrodes



Probing the unrestricted spin rotation

« Evolution of P(k, 1)

A. Signoles et al. ArXiv 1402.0111 and Nature Physics, 10, 715
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— A ‘gapped’ spin ladder
 First six levels (including +) isolated from the others
— Confined dynamics in the vicinity of the North pole
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A simple sequence
— Preparation of the initial circular state
— Switching on of the Zeno state-selective microwave
— Application of the rf inducing spin rotation for a time t
— Slow (adiabatic) switching off of the Zeno microwave
» Maps the populated dressed state [+> onto |k=5>

— Probe final spin states populations



Evidence of the confined dynamics

A. Signoles et al. ArXiv 1402.0111 and Nature Physics, 10, 715
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Evidence of the confined dynamics

* Time-resolved measurement of the spin’s Q function

— Analogous to the Husimi Q function for a field
— A positive quasi-probability distribution on the Bloch sphere
— Proportional to the probability for finding the spin in k=0 after a rotation

R(6.¢)

— Measurement procedure
* Apply an intense r.f. with adjustable phase and amplitude:
— Controlled rotation of the spin’s state
* Apply probe microwave to measure P(0)
 Interpolate measurements on the polar cap of the Bloch sphere




Q function snapshots
Experiment

Clear evidence of the confinement in the polar cap

— Zeno interrogation: a Limit Latitude (LL) that the spin cannot cross
Rapid azimuthal phase inversion when the spin reaches the LL

— C.f. confined dynamics of a field

Excellent agreement with a complete numerical simulation

— Good understanding of the dynamics and measurement process

A. Signoles et al. ArXiv 1402.0111 and Nature Physics, 10, 715




Coherence at inversion time ?

» Expect a quantum superposition of two Spin Coherent States with
opposite azimuthal phases

— Reminiscent of the Schrodinger cat metaphor
— An interesting quantum resource for
« Decoherence studies
 Electric and magnetic field quantum-enabled
metrology
— Q function does not measure the coherence

« A direct measurement of the spin’s Wigner function

— Adjustable rotation, measurement of the P(k)s for a few k values and
many rotation parameters

— MaxLik reconstruction of the complete atomic density matrix
— Projection on the spin states

* 10% population leaks out of the spin ladder due to experimental
imperfections

— Plot the field’s Wigner function on the Bloch sphere




» A clear nonclassicality criterion
— Negative W values

« A genuine quantum superposition of twGC states with
opposite azimuthal phases

— Another type of Schrodinger kitten



» A theoretical computation of W

— Excellent agreement with measurements at phase inversion time

» Mutual fidelity 0.93
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Perspectives

* Main limitations of the present set-up
— Static field inhomogeneity limits coherence time to a few us
— Limited resolution of the electronic sequencer
« With an improved set-up
— Larger spaces
* Quantum-enabled measurements of electric and magnetic fields
— Alternate interrogation/rotation
» Transposition of the ‘phase space tweezers’ proposed in CQED
« Synthesis of nontrivial complex spin states
— Quantum control
« Optimal control techniques for state synthesis
« Applications to quantum enabled metrology
— Engineer field sensitive state superpositions

« Time and space-resolved measurements of weak electric and
magnetic field




A new dedicated cavity QED set-up

« Achieving long interaction times
— A set-up with a stationary Rydberg atom in a cavity
— Circular state
preparation and detection

in the cavity

— Interaction time
ms range

- For QZD and more
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