Quantum State Reconstruction and Control on Atom-Chips

Cosimo Lovecchio

September 11, 2015

Goal

State Preparation

State Reconstruction

Outline

- AtomChip Experiment
- Model
- Quantum state reconstruction

- Quantum state preparation
- Conclusions

Outline

- AtomChip Experiment
- Model
- Quantum state reconstruction

- Quantum state preparation
- Conclusions

Atom-Chip Experiment

- ⁸⁷Rb BEC on atom-chip
- From zero to BEC in 8 sec
- Compact, easy-to-use and stable setup
- Integrated auxiliary conductors as RF antenna

"Degenerate Quantum Gases Manipulation on Atom-chips"

I. Herrera, J. Petrovic, P.Lombardi, S. Bartalini and <u>F.S. Cataliotti</u> *Physica Scripta* **T149**, 014002 (2012).

A multi-state interferometer on an atom chip

J. <u>Petrovic</u>, I. Herrera, P. Lombardi, F. Schaefer, <u>F. S. Cataliotti</u> New Journal of Physics **15** (4), 043002 (2013)

 Energy landscape in presence of magnetic field B

• Stern-Gerlach discrimination

 $m_F = -2 \qquad m_F = +2$

IS 2015

Atom-Chip Experiment

Model

$$H_{RWA}(\alpha) = \hbar \begin{pmatrix} \omega_2(B) - 2\omega & \Omega & 0 & 0 & 0 \\ \Omega & \omega_1(B) - \omega & \sqrt{3/2} \Omega & 0 & 0 \\ 0 & \sqrt{3/2} \Omega & \omega_0(B) & \sqrt{3/2} \Omega & 0 \\ 0 & 0 & \sqrt{3/2} \Omega & \omega_{-1}(B) + \omega & \Omega \\ 0 & 0 & 0 & \Omega & \omega_{-2}(B) + 2\omega \end{pmatrix}$$

• Breit-Rabi formula

$$\omega_{mf}(B) = \alpha + \chi B + \eta \sqrt{1 + \gamma B + B^2}$$

• Set of parameter $\alpha = \{\Omega, B, \omega\}$

$$\omega_n(B) - n \omega$$

Outline

- AtomChip Experiment
- Model
- Quantum state reconstruction

- Quantum state preparation
- Conclusions

Unknown state

$$\rho_{in} = \begin{pmatrix} \rho_{11} & \cdots & \rho_{1n} \\ \vdots & \ddots & \vdots \\ \rho_{n1} & \cdots & \rho_{nn} \end{pmatrix}$$

Output channels

 $\{M_i\}_{i=1\dots m}$

Common problems of a standard reconstruction

- Size of the set of operators scale as n^2
- Different measurements are different experimental condition
- Computational time complexity growth exponentially

Solution?

Common problems of a standard reconstruction

- Size of the set of operators scale as n^2
- Different measurements are different experimental condition
- Computational time complexity growth exponentially

Solution?

Different strategy:

- Unknow state as initial point of a known evolution
- Use only one measurement operator
- Try to reproduce the experimental data

- Experimentally set the parameter { Ω , B, ω } in H to defined values and evolve the unknow ρ_{in}
- Same Stern-Gerlach measurement at discrete times, in the time window T

$$p_{i,j} = Tr[\rho_{in}(t_j)\hat{a}_i\hat{a}_i^+], \sigma_{i,j}$$

$$p_{i,j} = Tr[\rho_{in}(t=0)A_i(t_j)]$$

$$A_i(t_j) = U^+(t_j)\hat{a}_i\hat{a}_i^+U(t_j)$$

$$\{M_i\}_{i=1...n} \rightarrow A_i(t_j)$$

$$QIS 2015$$

$$(M_i) = U^+(t_j) = U^+(t_j) = U^+(t_j) = U^+(t_j)$$

- Random initial guess $\rho_0 = \rho(t = 0)$
- Simulate numerically the evolution set by H $\frac{d}{dt}\rho(t) = -i[H,\rho(t)] + \mathcal{L}(\rho(t))$
- Evaluate deviation between theoretical evolution and experimental data

- $\varepsilon(\rho_0) < 3 \times 10^{-6}$
- Uhlmann Fidelity $\mathcal{F} > 0.95$

IQIS 2015

C. Lovecchio et al. arXiv:1504.01963, soon on NJP

2015

The Fidelity of the reconstructed state quickly converges to a maximum

At low Deviation correspond higher Fidelities

C. Lovecchio et al. arXiv:1504.01963, soon on NJP

Outline

- AtomChip Experiment
- Model
- Quantum state reconstruction

- Quantum state preparation
- Conclusions

IQIS 2015

- $H(t, \alpha)$ T_0, ε_0
- $\alpha \to \alpha_i$ $T_s \le T_0, \varepsilon_s \le \varepsilon_0$
- $\alpha \rightarrow \alpha(t)$

|in >

$|out_3>$ $|out_2>$ $|out_1>$

Why?

- Arbitrary state preparation
- Faster than decoherence time scale

$$H_{RWA}(\alpha) = \hbar \begin{pmatrix} \omega_2(B) - 2\omega & \Omega & 0 & 0 & 0 \\ \Omega & \omega_1(B) - \omega & \sqrt{3/2} \Omega & 0 & 0 \\ 0 & \sqrt{3/2} \Omega & \omega_0(B) & \sqrt{3/2} \Omega & 0 \\ 0 & 0 & \sqrt{3/2} \Omega & \omega_{-1}(B) + \omega & \Omega \\ 0 & 0 & 0 & \Omega & \omega_{-2}(B) + 2\omega \end{pmatrix}$$

$$\alpha = \{\Omega, B, \omega\} \to \omega {=} \omega(\mathsf{t})$$

$$\omega_n(B) - n \omega(t)$$

IQIS 2015

 Ω

C. Lovecchio et al. arXiv:1405.6918

ORF.

CRAB optimization

- $\varepsilon = \sum_{i} \frac{|p_i b_i|}{2} \rightarrow \varepsilon_{T_i} \varepsilon_E \ (\varepsilon \ \epsilon [0, 1])$
- $p_i = \rho_{ii}(T)$
- b_i target state population

Experimental constraints

- $\omega(t) \in 2\pi$ [4150, 4600] kHz
- B = 6.1794 Gauss
- $\Omega = 2 \pi 60 \text{ kHz}$
- T=100 μ*s*

T. Caneva, T. Calarco, and S. Montangero, Phys. Rev. A 84, 022326 (2011).

P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106, 190501 (2011).

Target State	ρ ₁₁	ρ ₂₂	ρ ₃₃	$ ho_{44}$	$ ho_{55}$
Α	1/2	0	0	0	1/2
В	1/2	0	0	1/2	0
С	0	1/2	0	1/2	0
D	1/2	1/2	0	0	0
Е	0	1/3	1/3	1/3	0
F	1/5	1/5	1/5	1/5	1/5
G	0	1	0	0	0
Н	0	0	0	1	0
Ι	0	0	1	0	0

 $ho_{11} o m_F = +2$, ... , $ho_{55} o m_F = -2$

IQIS 2015

Target State	ρ ₁₁	ρ ₂₂	ρ ₃₃	$ ho_{44}$	$ ho_{55}$
Α	1/2	0	0	0	1/2
В	1/2	0	0	1/2	0
С	0	1/2	0	1/2	0
D	1/2	1/2	0	0	0
Ε	0	1/3	1/3	1/3	0
F	1/5	1/5	1/5	1/5	1/5
G	0	1	0	0	0
Н	0	0	0	1	0
Ι	0	0	1	0	0

 $ho_{11}
ightarrow m_F = +2$, ... , $ho_{55}
ightarrow m_F = -2$

Target State	ρ ₁₁	ρ ₂₂	ρ ₃₃	$ ho_{44}$	$ ho_{55}$
Α	1/2	0	0	0	1/2
В	1/2	0	0	1/2	0
С	0	1/2	0	1/2	0
D	1/2	1/2	0	0	0
Ε	0	1/3	1/3	1/3	0
F	1/5	1/5	1/5	1/5	1/5
G	0	1	0	0	0
Н	0	0	0	1	0
Ι	0	0	1	0	0

 $ho_{11}
ightarrow m_F = +2$, ... , $ho_{55}
ightarrow m_F = -2$

IQIS 2015

Target State	ρ ₁₁	$ ho_{22}$	ρ ₃₃	$ ho_{44}$	$ ho_{55}$
Α	1/2	0	0	0	1/2
В	1/2	0	0	1/2	0
С	0	1/2	0	1/2	0
D	1/2	1/2	0	0	0
Ε	0	1/3	1/3	1/3	0
F	1/5	1/5	1/5	1/5	1/5
G	0	1	0	0	0
Н	0	0	0	1	0
Ι	0	0	1	0	0

IQIS 2015

Target State	ρ ₁₁	$ ho_{22}$	ρ ₃₃	$ ho_{44}$	$ ho_{55}$
Α	1/2	0	0	0	1/2
В	1/2	0	0	1/2	0
С	0	1/2	0	1/2	0
D	1/2	1/2	0	0	0
Е	0	1/3	1/3	1/3	0
F	1/5	1/5	1/5	1/5	1/5
G	0	1	0	0	0
Н	0	0	0	1	0
Ι	0	0	1	0	0

 $ho_{11}
ightarrow m_F = +2$, ... , $ho_{55}
ightarrow m_F = -2$

IQIS 2015

Target State	ρ ₁₁	$ ho_{22}$	ρ ₃₃	$ ho_{44}$	$ ho_{55}$
Α	1/2	0	0	0	1/2
В	1/2	0	0	1/2	0
С	0	1/2	0	1/2	0
D	1/2	1/2	0	0	0
Ε	0	1/3	1/3	1/3	0
F	1/5	1/5	1/5	1/5	1/5
G	0	1	0	0	0
Н	0	0	0	1	0
Ι	0	0	1	0	0

 $ho_{11}
ightarrow m_F = +2$, ... , $ho_{55}
ightarrow m_F = -2$

IQIS 2015

Target State	ρ ₁₁	ρ ₂₂	ρ ₃₃	$ ho_{44}$	$ ho_{55}$
Α	1/2	0	0	0	1/2
В	1/2	0	0	1/2	0
С	0	1/2	0	1/2	0
D	1/2	1/2	0	0	0
Ε	0	1/3	1/3	1/3	0
F	1/5	1/5	1/5	1/5	1/5
G	0	1	0	0	0
Н	0	0	0	1	0
Ι	0	0	1	0	0

$$ho_{11}
ightarrow m_F = +2$$
 , $...$, $ho_{55}
ightarrow m_F = -2$

IQIS 2015

Target State	ρ ₁₁	ρ ₂₂	ρ ₃₃	$ ho_{44}$	$ ho_{55}$
Α	1/2	0	0	0	1/2
В	1/2	0	0	1/2	0
С	0	1/2	0	1/2	0
D	1/2	1/2	0	0	0
Ε	0	1/3	1/3	1/3	0
F	1/5	1/5	1/5	1/5	1/5
G	0	1	0	0	0
Н	0	0	0	1	0
Ι	0	0	1	0	0

 $ho_{11}
ightarrow m_F = +2$, ... , $ho_{55}
ightarrow m_F = -2$

Target State	ρ ₁₁	ρ ₂₂	ρ ₃₃	$ ho_{44}$	$ ho_{55}$
Α	1/2	0	0	0	1/2
В	1/2	0	0	1/2	0
С	0	1/2	0	1/2	0
D	1/2	1/2	0	0	0
Е	0	1/3	1/3	1/3	0
F	1/5	1/5	1/5	1/5	1/5
G	0	1	0	0	0
Н	0	0	0	1	0
Ι	0	0	1	0	0

$${
ho}_{11} o m_F = +2$$
, ... , ${
ho}_{55} o m_F = -2$

IQIS 2015

Target State	ε _T	ε _E	${\cal F}$
Α	0,04(3)	???	0,71
В	0,04(2)	???	0,67
С	0,04(3)	???	0,11
D	0,03(2)	???	0,71
Ε	0,04(2)	???	0,02
F	0,02(1)	???	0,45
G	0,05(4)	???	0,15
Н	0,04(3)	???	0,07
Ι	0,07(3)	???	0,15

• $\mathcal{F}(\rho_0, \rho_T) = Tr \sqrt{\rho_0^{1/2} \rho_T \rho_0^{1/2}}$ Uhlman fidelity

IQIS 2015

C. Lovecchio et al. arXiv:1405.6918

 $\varepsilon = \sum_{i} \frac{|p_i - b_i|}{2}$

Target State	ε _T	ε _E	${\cal F}$
Α	0,04(3)	0,07(1)	0,71
В	0,04(2)	0,02(1)	0,67
С	0,04(3)	0,04(1)	0,11
D	0,03(2)	0,02(1)	0,71
Е	0,04(2)	0,03(1)	0,02
F	0,02(1)	0,03(1)	0,45
G	0,05(4)	0,04(1)	0,15
Н	0,04(3)	0,03(1)	0,07
Ι	0,07(3)	0,07(1)	0,15

• $\mathcal{F}(\rho_0, \rho_T) = Tr \sqrt{\rho_0^{1/2} \rho_T \rho_0^{1/2}}$ Uhlman fidelity

IQIS 2015

C. Lovecchio et al. arXiv:1405.6918

 $\varepsilon = \sum_{i} \frac{|p_i - b_i|}{2}$

Conclusion

- Good knowledge of quantum dynamics allows for easy full reconstruction of an unknown quantum state
- Optimal control strategy allow to reach any point of the Hilbert space of interest
- The error in the states preparation depends on the time length of the optimized evolution
- By repeated measurements it is also possible to control the size of the Hilbert space in which the system is allowed to evolve [F. Schaefer et al Nat. Comm. 5:3194 (2014)]

Thank you

Filippo Caruso

Prof. Francesco Saverio Cataliotti

Shahid Cherukattil

Murtaza Ali Khan

Augusto Smerzi

IQIS 2015

and Florian Schäefer, Ivan Herrera Simone Montagero, Tommaso Calarco

IQIS 2015

At longer times dephasing from external noise dominates ultimately setting the maximum attainable fidelity

Excited and ground state preparation of the RF driven Hamiltonian

Application to Interferometry

Application to Interferometry

S 2015

- State preparation A, B, C, D
- $\Delta E(B) \cong n \ 2\pi \ 4.3 \ MHz$
- $\Delta \phi \propto n \, \Delta E(B)$
- In the best case $S \propto \Delta E(B)$
- In our case $S/A \propto \Delta E(B)$

