IQIS 2015 - 8th Italian Quantum Information Science Conference

Measuring statistical moments to detect a topological transition in a photonic quantum walk

Filippo Cardano

Physics of Structured Light And Matter, and of their interaction

Physics of Structured Light And Matter, and of their interaction

MariaLorenzoEnricoMaffeiMarrucciSantamato

+ Vittorio Cataudella & Giulio De Filippis

General picture

 $\hat{H} = \hat{H}(\delta)$

physics depending some tunable parameter

The system shows two phases

General picture

 $\hat{H} = \hat{H}(\delta)$

physics depending some tunable parameter

The system shows two phases

General picture

DETECTION OF THE PHASE TRANSITION IN THE CONTEXT OF TOPOLOGICAL PHASES

Short Outline

Quantum Walk at a glance

QWs with twisted photons

Topological phases in QWs

Detection of the phase transition

Short Outline

Quantum Walk at a glance

QWs with twisted photons

Topological phases in QWs

Detection of the phase transition

The classical random walk

The classical random walk

The classical random walk

The quantum walkwith a quantum coin $\widehat{(0)}$ $\widehat{(0)}$ 2D Hilbert Space

Quantum Walk Dynamics *...the simplest scenario...*

 $\hat{S} = |\uparrow\rangle \langle\uparrow |\hat{T}_{+} + |\downarrow\rangle \langle\downarrow |\hat{T}_{-} \qquad \hat{U}_{c} = 1/\sqrt{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ conditional shift $\int \qquad \text{coin rotation}$ $\hat{U} = \hat{S} \cdot (\hat{U}_c \otimes \hat{1})$ single step operator

state evolved after n steps

 $|\psi_f\rangle = \hat{U}^n |\psi_0\rangle$

Quantum vs Classical

Why realizing QWs?

Quantum algorithms and universal quantum computation

Quantum simulations

transport phenomena

topological phases

...

S. E. Venegas-Andraca, *Quantum Information Processing*, **11**(5):1015–1106, 2012.

Short Outline

Quantum Walk at a glance

QWs with twisted photons

Topological phases in QWs

Detection of the phase transition

Needed resources for QW simulation

a qu-*dit*

a qu-bit

the coin rotation

 \hat{S}

the conditional shift

The coin

Left/Right Circular Polarization states

The coin rotation

a suitable combination of half-wave plates (HWP) and quarter-wave plates (QWP)

specific case: Hadamard walk

The walker

The conditional shift: the *q*-plate!

L. Marrucci, C. Manzo, D. Paparo, *Phys. Rev. Lett.* **96**, 163905 (2006) *Appl. Phys. Lett.* **88**, 221102 (2006)

General pattern:
$$\alpha(x, y) = \alpha(r, \varphi) = q\varphi + \alpha_0$$
 with q integer or half-integer

patterned half-wave plate with non uniform orientation

 $|L\rangle \longrightarrow e^{i\,2\alpha}|R\rangle$

The conditional shift: the *q*-plate!

$$|L\rangle_{\pi}|m\rangle_{o} \longrightarrow \cos\frac{\delta}{2}|L\rangle_{\pi}|m\rangle_{o} + i\sin\frac{\delta}{2}|R\rangle_{\pi}|m+2q\rangle_{o}$$
$$|R\rangle_{\pi}|m\rangle_{o} \longrightarrow \cos\frac{\delta}{2}|R\rangle_{\pi}|m\rangle_{o} + i\sin\frac{\delta}{2}|L\rangle_{\pi}|m-2q\rangle_{o}$$

The conditional shift: the *q*-plate!

$$|L\rangle_{\pi}|m\rangle_{o} \longrightarrow$$

 $\delta = \pi$

$$|R\rangle_{\pi}|m\rangle_{o} \longrightarrow$$

$$|R\rangle_{\pi}|m+2q\rangle_{o}$$

$$|L\rangle_{\pi}|m-2q\rangle_{o}$$

Needed resources for QW simulation

a qu-*dit*

a qu-bit

the coin rotation

 \hat{S}

Quantum Walk Dynamics *...the simplest scenario...*

 $\hat{S} = |\uparrow\rangle \langle\uparrow |\hat{T}_{+} + |\downarrow\rangle \langle\downarrow |\hat{T}_{-} \qquad \hat{U}_{c} = 1/\sqrt{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ conditional shift $\int \qquad \text{coin rotation}$ $\hat{U} = \hat{S} \cdot (\hat{U}_c \otimes \hat{1})$ single step operator

state evolved after n steps

 $|\psi_f\rangle = \hat{U}^n |\psi_0\rangle$

Quantum Walk Dynamics ... our implementation...

state evolved after n steps

a single light beam# interferometric stability is intrinsic

Cardano F. et al., Science Advances 1, e1500087 (2015)

Short Outline

Quantum Walk at a glance

QWs with twisted photons

Topological phases in QWs

Detection of the phase transition

A strange feature...

A strange feature...

A strange feature...

Filippo Cardano - IQIS 2015

QW Band Structure

looking for QW eigenstates and eigenvalues (quasi - energies)

 $\hat{U}|\psi\rangle = e^{-iE}|\psi\rangle$

QW Band Structure

eigenstates

translation symmetry + lattice

quasi-momentum k

$$k \in \{-\pi, \pi\}$$

band index s

two possible states in each lattice site

$$s \in \{1, 2\}$$

$$|\psi\rangle = |k, s\rangle = |k\rangle \otimes |\phi_s(k)\rangle$$

walker coin

Coin Eigenstates

3D unit vector on the Poincaré sphere

the winding number W of coin eigenstates is a topological invariant!

Distinct topological phases

Distinct topological phases

Distinct topological phases

Dynamics and topology

Distinct topological phases n = 50

Short Outline

Quantum Walk at a glance

QWs with twisted photons

Topological phases in QWs

Detection of the phase transition

 $|\psi_0
angle = |\phi_0
angle |0
angle$ localized input

Filippo Cardano - IQIS 2015

 $|\psi_0
angle = |\phi_0
angle |0
angle$ localized input

asymptotic analysis (large n)

 $M_2/n^2 = L(\delta) + O(1/n^2)$

Cardano F. et al., Arxiv 1507.01785 (2015)

$$|\psi_0
angle = |\phi_0
angle |0
angle$$
 localized input

asymptotic analysis (large n)

$$M_2/n^2 = L(\delta) + O(1/n^2)$$

$$L(\delta) = \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \left[V_{\delta}(k) \right]^2 = \int_{\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \left[n_y(k) \right]^2$$

IMPORTANT: independent of the coin initial state $|\phi_0
angle$

Filippo Cardano - IQIS 2015

$$\begin{split} |\psi_0\rangle &= |\phi_0\rangle|0\rangle \quad \text{localized input} \\ & \int \text{asymptotic analysis (large n)} \\ \hline M_2/n^2 &= L(\delta) + O(1/n^2) \\ (\delta) &= \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \left[V_{\delta}(k)\right]^2 = \int_{\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \left[n_y(k)\right]^2 \end{split}$$

IMPORTANT: independent of the coin initial state $|\phi_0\rangle$

Filippo Cardano - IQIS 2015

T,

Statistical moments at the quantum transition

Filippo Cardano - IQIS 2015

Experimental layout

Cardano F. et al., Arxiv 1507.01785 (2015)

Experimental detection of the quantum transition

Filippo Cardano - IQIS 2015

Is this result general?

1D systems: no proof, but strong evidences

2D...work in progress!

Conclusions

Novel platform for QW simulations

Cardano F. *et al.*, *Science Advances* **1**, e1500087 (2015)

Dynamical moments detect a topological quantum transition

Cardano F. et al., Arxiv 1507.01785 (2015)

