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The quantum walk
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a quantum walker

with a quantum coin
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2D Hilbert Space

infinite D Hilbert Space



Quantum Walk Dynamics
...the simplest scenario...

| f i = Ûn| 0istate evolved after n steps

Û = Ŝ · (Ûc ⌦ 1̂)
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single step operator



A cartoon quantum walk
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Interference between 
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Why realizing QWs?

Quantum'algorithms'and'universal'quantum'
computation

Quantum'simulations

!transport!phenomena

topological!phases

...
S. E. Venegas-Andraca, Quantum Information Processing, 11(5):1015–1106, 2012. 
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Needed resources for QW simulation
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a qu-bit

the coin rotation

the conditional shiftŜ

Ûc



The coin

Coin States Spin Angular Momentum
(Polarization)

L

R

Left/Right Circular Polarization states
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The coin rotation

QWP @ 45°

|R i

|L i

specific case: Hadamard walk

|Li+ |Rip
2

|Li � |Rip
2

a suitable combination of half-wave plates 
(HWP) and quarter-wave plates (QWP) 
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The walker
Light

Orbital Angular Momentum 
OAM

|mi

Walker States

|xi
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helical modes of single photons
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L. Marrucci, C. Manzo, D. Paparo, Phys. Rev. Lett. 96, 163905 (2006)
                                                       Appl. Phys. Lett. 88, 221102 (2006)
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Engineering spin-orbit interaction: the q-plate

Plate thickness and 
birefringence chosen 
so as to have uniform 
phase retardation ! 
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The optic axis 
orientation in the plate 

is patterned, 
with a central defect of 

topological charge q 

q - plate 

L. Marrucci, C. Manzo, D. Paparo, Phys. Rev. Lett. 96, 163905 (2006)
                                                       Appl. Phys. Lett. 88, 221102 (2006)
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Hybrid quantum walk
novel quantum walk evolution

giovedì 2 luglio 15
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Quantum Walk Dynamics
...our implementation...

state evolved after n steps
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conditional shift coin rotation

single step operator



QW in the OAM space of light

 # a single light beam
 # interferometric stability is intrinsic

Filippo Cardano - IQIS 2015 Cardano F. et al., Science Advances 1, e1500087 (2015)
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Û�



Filippo Cardano - IQIS 2015

M2 =
X

m

m2 P (m)

P (m) = |hm| f i|2q-
pl

at
e

Q
W

P

Û�
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M2 =
X
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m2 P (m)

P (m) = |hm| f i|2

p
M

2
/n

Signature of quantum transitions
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n = 50

statistical moments to investigate phase changes

| 0i = |Ri|0i
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A strange feature...

n = 50

why slope 
discontinuities?



QW  Band Structure
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looking for QW eigenstates and 
eigenvalues (quasi - energies)

Û | i = e�i E | i



QW  Band Structure

Filippo Cardano - IQIS 2015

eigenstates

translation symmetry
+

lattice

quasi-momentum k

two possible states in each 
lattice site s 2 {1, 2}

|k, si = |ki ⌦ |�s(k)i

band index s

k 2 {�⇡,⇡}

walker coin+

| i =



Coin Eigenstates
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|k, si = |ki ⌦ |�s(k)i

coin+

the+winding+number+W+of+coin+eigenstates+
is+a+topological+invariant!

⇡�⇡
n(k)

3D'unit'vector'on'the'Poincaré'sphere

k

� = ⇡



Distinct topological phases
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Dynamics and topology
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V� =
dE�
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= ny(k)
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Moments are linked to topological features
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| 0i = |�0i|0i localized input

Cardano F. et al., Arxiv 1507.01785 (2015)
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2

able to simulate the QW dynamics [19]. In our photonic
platform [20], the walker is encoded in the orbital angular
momentum (OAM) of light [21]; discrete positions on the
lattice are associated with states |mi, where m is an in-
teger, describing a photon carrying m~ of OAM along its
propagation axis. The coin is encoded in the polarization
degree of freedom; vectors |Li and |Ri, representing left
and right circularly polarized photons, respectively, pro-
vide a convenient basis for the associated Hilbert space.
A single step of the walk, described by the unitary evo-
lution operator Û0, is realized through a sequence of a
quarter-wave plate (QWP) and a q-plate (the explicit
expression of the associated operators is reported in the
Supplementary Information). A q-plate is a birefringent
liquid-crystal medium with optic axes having an inhomo-
geneous distribution [22]; their direction is arranged in a
singular pattern, with topological charge q (in our case
q = 1/2), so as to give rise to an engineered spin-orbit
coupling in the light crossing it. Besides the charge q,
the action of this device is determined by the value of
the optical retardation �, a parameter that can be tuned
through an electric field applied to the external faces of
the plate [23]; similarly to the role played by the hopping
amplitudes in the SSH model, this is the parameter that
controls the topological features of our QW system (see
the Supplementary Information for further discussion).
The existence of a non trivial topological phase is related
to the properties of the eigenstates of the operator Û0,
or, equivalently, of the associated e↵ective Hamiltonian
Ĥe↵ (Û0 = e�iĤeff). Such eigenstates, associated with
the energy bands of the system, can be represented as
|k, si = |ki ⌦ |�s,�(k)i; |ki = 1/

p
2⇡

P
m |mie�ikm are

plane waves with quasi-momentum k; |�s,�(k)i are the

eigenstates of the coin part of Û0, where s 2 {1, 2} is
the band index. In close analogy to the Bloch theory
for solids, QW eigenstates are made of two quasi-energy
bands, whose dispersion relations are given by

E�(k) = cos�1


cos (�/2) + sin (�/2) cos (k)p

2

�
, (1)

where E�(k) are the eigenvalues of Ĥe↵; they repre-
sent a quasi-energy defined in a Brillouin zone {�⇡,⇡},
as a consequence of the temporal coordinate (the step-
number) being a discrete variable. In Fig. 1 we report the
main features of the energy bands and of the associated
coin eigenstates; the dispersion relation E�(k) is plotted
in panel b); it can be noted that the two bands show a
finite gap, which vanishes only when � = �1 = ⇡/2 and
� = �2 = 3⇡/2. Accordingly, at these points the group
velocity V� = dE�/dk shows finite jumps [panel c)]. The
coin eigenstates |�s,�(k)i can be conveniently represented
on the Poincaré sphere for the polarization states. The
so called chiral symmetry constrains |�s,�(k)i to lie on a
great circle of such sphere. When k varies in the Bril-
louin zone {�⇡,⇡}, the number of closed loops described
by |�s,�(k)i is the topological invariant W , usually re-
ferred to as winding number [panel d)]. As shown in

panel e), the value of � in the range {0, 2⇡} determines
the existence of two di↵erent topological phases; a non-
trivial phase with W = 2q = 1 occurs when �1 < � < �2,
while W = 0 in the remaining region. As mentioned be-
fore, when � is equal to �1 and �2 the dispersion is locally
linear at k = 0 and k = ⇡, respectively; this e↵ect is typ-
ical for quantum transitions between topological phases
[2]. Here we considered a photon starting its walk in the
position m = 0, with an arbitrary polarization; in the
framework of the SSH model, this would correspond to an
electron positioned initially in a specific cell, in a super-
position of A and B sites. We represent this initial state
as |0i ⌦ |�0i, where |�0i is a generic state in the 2D coin
space. Simulating the quantum walk evolution, it can be
noted that, for n � 1, statistical moments of the proba-
bility distribution P (m), defined as Mj =

P
m mj P (m),

show a discontinuity in their derivative at � = {�1, �2};
interestingly, in the intermediate region, they are equal
to a constant value. A similar behavior manifests in the
SSH model as well, when varying the hopping amplitudes
(see Fig. 6). These moments have a simple expression in
terms of the dispersion relations of the energy bands;
in particular, considering the first and second moments
M1 and M2 (all the others have similar properties), we
proved that

M1/n = (s2 � s3)L(�) +O(1/n) (2)

M2/n
2 = L(�) +O(1/n2) (3)

where si = h�0|�̂i|�0i, with i 2 {1, 2, 3}, are the expec-
tation values of the Pauli operators b�i in the coin space,
calculated with respect to coin initial state |�0i. Inter-
estingly, we observe that M2 is independent of the initial
polarization. The quantity L(�) appearing in Eqs. 2,3
is strongly related to the group velocity V�, and has an
elegant expression given by

L(�) =

Z ⇡

�⇡

dk

2⇡
[V�(k)]

2 . (4)

Here the integral is taken over the first Brillouin zone in
momentum space. Interestingly, Eq. 4 has an analytical
solution, which we reported in the Supplementary
Information. Details about the derivation of Eqs. 2,3
are given in the Supplementary Information as well,
where we show that a similar behavior is present in the
electron dynamic described by the SSH; indeed, the QW
protocol here introduced and the SSH model share the
same symmetries and the associated topological char-
acterization. The quantity L(�) is a piecewise function,
as a consequence of discontinuity present in V�(k), and
present abrupt variations at �1 and �2; in a QW with
a finite number of steps, the statistical moments M1

and M2 have a continuous behavior, converging to L(�)
asymptotically as n ! 1. For M2, this convergence
is visible for values of n small enough to be achieved
in an experimental simulation, whereas for M1 such
process is much slower (see Fig. 5). Thus, as a figure of
merit for the quantum transition, we chose to analyze

| 0i = |�0i|0i localized input

asymptotic analysis (large n)

Cardano F. et al., Arxiv 1507.01785 (2015)
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the energy bands of the system, can be represented as
|k, si = |ki ⌦ |�s,�(k)i; |ki = 1/

p
2⇡

P
m |mie�ikm are

plane waves with quasi-momentum k; |�s,�(k)i are the

eigenstates of the coin part of Û0, where s 2 {1, 2} is
the band index. In close analogy to the Bloch theory
for solids, QW eigenstates are made of two quasi-energy
bands, whose dispersion relations are given by

E�(k) = cos�1


cos (�/2) + sin (�/2) cos (k)p

2

�
, (1)

where E�(k) are the eigenvalues of Ĥe↵; they repre-
sent a quasi-energy defined in a Brillouin zone {�⇡,⇡},
as a consequence of the temporal coordinate (the step-
number) being a discrete variable. In Fig. 1 we report the
main features of the energy bands and of the associated
coin eigenstates; the dispersion relation E�(k) is plotted
in panel b); it can be noted that the two bands show a
finite gap, which vanishes only when � = �1 = ⇡/2 and
� = �2 = 3⇡/2. Accordingly, at these points the group
velocity V� = dE�/dk shows finite jumps [panel c)]. The
coin eigenstates |�s,�(k)i can be conveniently represented
on the Poincaré sphere for the polarization states. The
so called chiral symmetry constrains |�s,�(k)i to lie on a
great circle of such sphere. When k varies in the Brillouin
zone {�⇡,⇡}, the number of closed loops described by
|�s,�(k)i is the topological invariant W , usually referred
to as winding number [panel d)]. As shown in panel e),

the value of � in the range {0, 2⇡} determines the ex-
istence of two di↵erent topological phases; a non-trivial
phase with W = 2q = 1 occurs when �1 < � < �2, while
W = 0 in the remaining region. As mentioned before,
when � is equal to �1 and �2 the dispersion is locally linear
at k = 0 and k = ⇡, respectively; this e↵ect is typical for
quantum transitions between topological phases [2]. Here
we considered a photon starting its walk in the position
m = 0, with an arbitrary polarization; [in the framework
of the SSH model, this would correspond to an electron
positioned initially in a specific cell, in a superposition of
A and B sites IO RIMUOVEREI QUESTA FRASE CHE
FORSE E’ SUPERFLUA ]. We represent this initial state
as |0i ⌦ |�0i, where |�0i is a generic state in the 2D coin
space. Simulating the quantum walk evolution, it can be
noted that, for n � 1, statistical moments of the proba-
bility distribution P (m), defined as Mj =

P
m mj P (m),

show a discontinuity in their derivative at � = {�1, �2};
interestingly, in the intermediate region, they are equal
to a constant value. A similar behavior manifests in the
SSH model as well, when varying the hopping amplitudes
(see Fig. 6). These moments have a simple expression in
terms of the dispersion relations of the energy bands;
in particular, considering the first and second moments
M1 and M2 (all the others have similar properties), we
proved that

M1/n = (s2 � s3)L(�) +O(1/n) (2)

M2/n
2 = L(�) +O(1/n2) (3)

where si = h�0|�̂i|�0i, with i 2 {1, 2, 3}, are the expec-
tation values of the Pauli operators b�i in the coin space,
calculated with respect to coin initial state |�0i. Inter-
estingly, we observe that M2 is independent of the initial
polarization. The quantity L(�) appearing in Eqs. 2,3
is strongly related to the group velocity V�, and has an
elegant expression given by

L(�) =

Z ⇡

�⇡

dk

2⇡
[V�(k)]

2 . (4)

Here the integral is taken over the first Brillouin zone in
momentum space. Interestingly, Eq. 4 has an analytical
solution, which we reported in the Supplementary
Information. Details about the derivation of Eqs. 2,3
are given in the Supplementary Information as well,
where we show that a similar behavior is present in the
electron dynamic described by the SSH; [indeed, the
QW protocol here introduced and the SSH model share
the same symmetries and the associated topological
characterization IO FORSE ELIMINEREI QUESTA
FRASE]. The quantity L(�) is a piecewise function, as
a consequence of discontinuity present in V�(k), and
present abrupt variations at �1 and �2; in a QW with
a finite number of steps, the statistical moments M1

and M2 have a continuous behavior, converging to L(�)
asymptotically as n ! 1. For M2, this convergence
is visible for values of n small enough to be achieved
in an experimental simulation, whereas for M1 such

=
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⇡

dk

2⇡
[ny(k)]
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IMPORTANT: independent of the coin initial state |�0i

asymptotic analysis (large n)
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able to simulate the QW dynamics [19]. In our photonic
platform [20], the walker is encoded in the orbital angular
momentum (OAM) of light [21]; discrete positions on the
lattice are associated with states |mi, where m is an in-
teger, describing a photon carrying m~ of OAM along its
propagation axis. The coin is encoded in the polarization
degree of freedom; vectors |Li and |Ri, representing left
and right circularly polarized photons, respectively, pro-
vide a convenient basis for the associated Hilbert space.
A single step of the walk, described by the unitary evo-
lution operator Û0, is realized through a sequence of a
quarter-wave plate (QWP) and a q-plate (the explicit
expression of the associated operators is reported in the
Supplementary Information). A q-plate is a birefringent
liquid-crystal medium with optic axes having an inhomo-
geneous distribution [22]; their direction is arranged in a
singular pattern, with topological charge q (in our case
q = 1/2), so as to give rise to an engineered spin-orbit
coupling in the light crossing it. Besides the charge q,
the action of this device is determined by the value of
the optical retardation �, a parameter that can be tuned
through an electric field applied to the external faces of
the plate [23]; similarly to the role played by the hopping
amplitudes in the SSH model, this is the parameter that
controls the topological features of our QW system (see
the Supplementary Information for further discussion).
The existence of a non trivial topological phase is related
to the properties of the eigenstates of the operator Û0,
or, equivalently, of the associated e↵ective Hamiltonian
Ĥe↵ (Û0 = e�iĤeff). Such eigenstates, associated with
the energy bands of the system, can be represented as
|k, si = |ki ⌦ |�s,�(k)i; |ki = 1/

p
2⇡

P
m |mie�ikm are

plane waves with quasi-momentum k; |�s,�(k)i are the

eigenstates of the coin part of Û0, where s 2 {1, 2} is
the band index. In close analogy to the Bloch theory
for solids, QW eigenstates are made of two quasi-energy
bands, whose dispersion relations are given by

E�(k) = cos�1


cos (�/2) + sin (�/2) cos (k)p

2

�
, (1)

where E�(k) are the eigenvalues of Ĥe↵; they repre-
sent a quasi-energy defined in a Brillouin zone {�⇡,⇡},
as a consequence of the temporal coordinate (the step-
number) being a discrete variable. In Fig. 1 we report the
main features of the energy bands and of the associated
coin eigenstates; the dispersion relation E�(k) is plotted
in panel b); it can be noted that the two bands show a
finite gap, which vanishes only when � = �1 = ⇡/2 and
� = �2 = 3⇡/2. Accordingly, at these points the group
velocity V� = dE�/dk shows finite jumps [panel c)]. The
coin eigenstates |�s,�(k)i can be conveniently represented
on the Poincaré sphere for the polarization states. The
so called chiral symmetry constrains |�s,�(k)i to lie on a
great circle of such sphere. When k varies in the Bril-
louin zone {�⇡,⇡}, the number of closed loops described
by |�s,�(k)i is the topological invariant W , usually re-
ferred to as winding number [panel d)]. As shown in

panel e), the value of � in the range {0, 2⇡} determines
the existence of two di↵erent topological phases; a non-
trivial phase with W = 2q = 1 occurs when �1 < � < �2,
while W = 0 in the remaining region. As mentioned be-
fore, when � is equal to �1 and �2 the dispersion is locally
linear at k = 0 and k = ⇡, respectively; this e↵ect is typ-
ical for quantum transitions between topological phases
[2]. Here we considered a photon starting its walk in the
position m = 0, with an arbitrary polarization; in the
framework of the SSH model, this would correspond to an
electron positioned initially in a specific cell, in a super-
position of A and B sites. We represent this initial state
as |0i ⌦ |�0i, where |�0i is a generic state in the 2D coin
space. Simulating the quantum walk evolution, it can be
noted that, for n � 1, statistical moments of the proba-
bility distribution P (m), defined as Mj =

P
m mj P (m),

show a discontinuity in their derivative at � = {�1, �2};
interestingly, in the intermediate region, they are equal
to a constant value. A similar behavior manifests in the
SSH model as well, when varying the hopping amplitudes
(see Fig. 6). These moments have a simple expression in
terms of the dispersion relations of the energy bands;
in particular, considering the first and second moments
M1 and M2 (all the others have similar properties), we
proved that

M1/n = (s2 � s3)L(�) +O(1/n) (2)

M2/n
2 = L(�) +O(1/n2) (3)

where si = h�0|�̂i|�0i, with i 2 {1, 2, 3}, are the expec-
tation values of the Pauli operators b�i in the coin space,
calculated with respect to coin initial state |�0i. Inter-
estingly, we observe that M2 is independent of the initial
polarization. The quantity L(�) appearing in Eqs. 2,3
is strongly related to the group velocity V�, and has an
elegant expression given by

L(�) =

Z ⇡

�⇡

dk

2⇡
[V�(k)]

2 . (4)

Here the integral is taken over the first Brillouin zone in
momentum space. Interestingly, Eq. 4 has an analytical
solution, which we reported in the Supplementary
Information. Details about the derivation of Eqs. 2,3
are given in the Supplementary Information as well,
where we show that a similar behavior is present in the
electron dynamic described by the SSH; indeed, the QW
protocol here introduced and the SSH model share the
same symmetries and the associated topological char-
acterization. The quantity L(�) is a piecewise function,
as a consequence of discontinuity present in V�(k), and
present abrupt variations at �1 and �2; in a QW with
a finite number of steps, the statistical moments M1

and M2 have a continuous behavior, converging to L(�)
asymptotically as n ! 1. For M2, this convergence
is visible for values of n small enough to be achieved
in an experimental simulation, whereas for M1 such
process is much slower (see Fig. 5). Thus, as a figure of
merit for the quantum transition, we chose to analyze
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able to simulate the QW dynamics [19]. In our photonic
platform [20], the walker is encoded in the orbital angular
momentum (OAM) of light [21]; discrete positions on the
lattice are associated with states |mi, where m is an in-
teger, describing a photon carrying m~ of OAM along its
propagation axis. The coin is encoded in the polarization
degree of freedom; vectors |Li and |Ri, representing left
and right circularly polarized photons, respectively, pro-
vide a convenient basis for the associated Hilbert space.
A single step of the walk, described by the unitary evo-
lution operator Û0, is realized through a sequence of a
quarter-wave plate (QWP) and a q-plate (the explicit
expression of the associated operators is reported in the
Supplementary Information). A q-plate is a birefringent
liquid-crystal medium with optic axes having an inhomo-
geneous distribution [22]; their direction is arranged in a
singular pattern, with topological charge q (in our case
q = 1/2), so as to give rise to an engineered spin-orbit
coupling in the light crossing it. Besides the charge q,
the action of this device is determined by the value of
the optical retardation �, a parameter that can be tuned
through an electric field applied to the external faces of
the plate [23]; similarly to the role played by the hopping
amplitudes in the SSH model, this is the parameter that
controls the topological features of our QW system (see
the Supplementary Information for further discussion).
The existence of a non trivial topological phase is related
to the properties of the eigenstates of the operator Û0,
or, equivalently, of the associated e↵ective Hamiltonian
Ĥe↵ (Û0 = e�iĤeff). Such eigenstates, associated with
the energy bands of the system, can be represented as
|k, si = |ki ⌦ |�s,�(k)i; |ki = 1/

p
2⇡

P
m |mie�ikm are

plane waves with quasi-momentum k; |�s,�(k)i are the

eigenstates of the coin part of Û0, where s 2 {1, 2} is
the band index. In close analogy to the Bloch theory
for solids, QW eigenstates are made of two quasi-energy
bands, whose dispersion relations are given by

E�(k) = cos�1


cos (�/2) + sin (�/2) cos (k)p

2

�
, (1)

where E�(k) are the eigenvalues of Ĥe↵; they repre-
sent a quasi-energy defined in a Brillouin zone {�⇡,⇡},
as a consequence of the temporal coordinate (the step-
number) being a discrete variable. In Fig. 1 we report the
main features of the energy bands and of the associated
coin eigenstates; the dispersion relation E�(k) is plotted
in panel b); it can be noted that the two bands show a
finite gap, which vanishes only when � = �1 = ⇡/2 and
� = �2 = 3⇡/2. Accordingly, at these points the group
velocity V� = dE�/dk shows finite jumps [panel c)]. The
coin eigenstates |�s,�(k)i can be conveniently represented
on the Poincaré sphere for the polarization states. The
so called chiral symmetry constrains |�s,�(k)i to lie on a
great circle of such sphere. When k varies in the Brillouin
zone {�⇡,⇡}, the number of closed loops described by
|�s,�(k)i is the topological invariant W , usually referred
to as winding number [panel d)]. As shown in panel e),

the value of � in the range {0, 2⇡} determines the ex-
istence of two di↵erent topological phases; a non-trivial
phase with W = 2q = 1 occurs when �1 < � < �2, while
W = 0 in the remaining region. As mentioned before,
when � is equal to �1 and �2 the dispersion is locally linear
at k = 0 and k = ⇡, respectively; this e↵ect is typical for
quantum transitions between topological phases [2]. Here
we considered a photon starting its walk in the position
m = 0, with an arbitrary polarization; [in the framework
of the SSH model, this would correspond to an electron
positioned initially in a specific cell, in a superposition of
A and B sites IO RIMUOVEREI QUESTA FRASE CHE
FORSE E’ SUPERFLUA ]. We represent this initial state
as |0i ⌦ |�0i, where |�0i is a generic state in the 2D coin
space. Simulating the quantum walk evolution, it can be
noted that, for n � 1, statistical moments of the proba-
bility distribution P (m), defined as Mj =

P
m mj P (m),

show a discontinuity in their derivative at � = {�1, �2};
interestingly, in the intermediate region, they are equal
to a constant value. A similar behavior manifests in the
SSH model as well, when varying the hopping amplitudes
(see Fig. 6). These moments have a simple expression in
terms of the dispersion relations of the energy bands;
in particular, considering the first and second moments
M1 and M2 (all the others have similar properties), we
proved that

M1/n = (s2 � s3)L(�) +O(1/n) (2)

M2/n
2 = L(�) +O(1/n2) (3)

where si = h�0|�̂i|�0i, with i 2 {1, 2, 3}, are the expec-
tation values of the Pauli operators b�i in the coin space,
calculated with respect to coin initial state |�0i. Inter-
estingly, we observe that M2 is independent of the initial
polarization. The quantity L(�) appearing in Eqs. 2,3
is strongly related to the group velocity V�, and has an
elegant expression given by

L(�) =

Z ⇡

�⇡

dk

2⇡
[V�(k)]

2 . (4)

Here the integral is taken over the first Brillouin zone in
momentum space. Interestingly, Eq. 4 has an analytical
solution, which we reported in the Supplementary
Information. Details about the derivation of Eqs. 2,3
are given in the Supplementary Information as well,
where we show that a similar behavior is present in the
electron dynamic described by the SSH; [indeed, the
QW protocol here introduced and the SSH model share
the same symmetries and the associated topological
characterization IO FORSE ELIMINEREI QUESTA
FRASE]. The quantity L(�) is a piecewise function, as
a consequence of discontinuity present in V�(k), and
present abrupt variations at �1 and �2; in a QW with
a finite number of steps, the statistical moments M1

and M2 have a continuous behavior, converging to L(�)
asymptotically as n ! 1. For M2, this convergence
is visible for values of n small enough to be achieved
in an experimental simulation, whereas for M1 such
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Experimental layout

6

FIG. 2. Layout of the setup. In the heralded single photon source (the optical components that are used to realize this
source are not shown in the figure, for details see Ref. [19]) laser pulses (100 fs) at 800 nm generated by a Titanium-Sapphire
source (Ti:Sa) with repetition rate 82 MHz shine a type I Beta-Barium Borate crystal (BBO1) for second harmonic generation
(SHG); frequency doubled pulses at 400 nm, with 110 mW average power and linear-horizontal polarization, pump a type
II BBO crystal (BBO2), cut for collinear and degenerate spontaneous parametric down conversion (SPDC). Signal and idler
photons, generated in horizontal and vertical linear polarizations, respectively, are spatially separated by means of a polarizing
beam splitter (PBS) and then coupled to single-mode optical fibers (SMFs); the idler photon is directly sent to an avalanche
photodiode (APD D1, not shown) while the signal one, after passing trough the QW system, is analyzed in polarization and
OAM and finally detected by APD D2, in coincidence with D1. Before the QW, the photon exits the fiber in the OAM state
m = 0, and then its polarization is prepared in the state |�0i = ↵|Li + �|Ri; the two complex coe�cients ↵ and � (with
|↵|2 + |�|2 = 1) are selected by using a half-wave plate (HWP) and a quarter-wave plate (QWP) (apart from an unimportant
global phase). After the initial state preparation, the photon goes through the 6-step QW, with the single step consisting of a
q-plate and a QWP oriented at 90�. For each q-plate, the value of the optical retardation � is controlled by the amplitude of
an alternating electric field, which is introduced by means of an external generator [22]. At the exit of the QW, a polarization
projection is realized using a second HWP-QWP set followed by a linear polarizer (LP). The OAM state is then analyzed by
di↵raction on a spatial light modulator (SLM), followed by coupling into a SMF. Before detection, interferential filters (IF)
centered at 800 nm and with a bandwidth of 3.6 nm are used for spectral cleaning. The latter was required since the photons
wavelength strongly influence the action of the devices implementing the QW (q-plate and QWP).

control �
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Is this result general?
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1D systems: no proof, but strong evidences

2D...work in progress!
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Conclusions

Novel platform for QW 
simulations

Dynamical moments detect a 
topological quantum transition
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