

FCC: Machines and experiments

Marco Zanetti, Nicola Bacchetta

Machines

Civil Engineering: 93 km racetrack

Geology Intersected by Shafts					Shaft De	epths		
	Shaft Depth (m) Geology (m)							
Shaft	Actual	Min	Mean	Max	Moraine	Molasse	Calcaire	
1	200	195	197	200	92	108	0	
2	196	143	181	211				
3	183	175	184	194		121		
4	174	146		178				
5	299		311					
6	336	325	339					
7	374	349	377	412	119			
8	337	318	341	366			237	
9	155	131	145	167				
10	315		320	336				
11	203	199	202	204	122			
12	239	229	238	243				
Total	3014	2801	3001	3211	741	2052	247	

Tunnel layout

FCC-hh in a nutshell

- The High Energy Physics frontier
- The only way (currently conceivable) to exceed the scale probed by LHC is to build a "LHC++"
 - Larger radius, higher field
- Practical approach: scale the LHC technology to higher energies
- Luminosity performances to scale as well from HL-LHC
- That's why CERN is currently considered the only lab where this can be achieved

FCC-hh parameters

	LHC (Design)	HL-LHC	HE-LHC	FCC-hh
Main parameters and geometrical aspects				
c.m. Energy [TeV]	1	l 4	33	100
Circumference C [km]	20	5.7	26.7	100 (83)
Dipole field [T]	8.	.33	20	16 (20)
Physics performance and beam parameters			•	
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1.0	5.0	5.0	5.0
Optimum run time [h]	15.2	10.2	5.8	12.1 (10.7)
Optimum average integrated lumi / day [fb ⁻¹]	0.47	2.8	1.4	2.2 (2.1)
Assumed turnaround time [h]				5
Overall operation cycle [h]				17.4 (16.3)
Peak no. of inelastic events / crossing at - 25 ns spacing - 5 ns spacing	27	135 (lev.)	147	171 34
Beam parameters				
Number of bunches <i>n</i> at - 25 ns - 5 ns	28	308	2808	10600 (8900) 53000 (44500)
Bunch population N[10 ¹¹] - 25 ns - 5 ns	1.15	2.2	1	1.0 0.2

FCC-hh challenges

MAGNETIC FIELD

- Unprecedented dipole field required => R&D, money
- Final focus (already challenging at LHC)

SYNCHROTRON RADIATION

- High heat load => shielding for SC magnets
- hard SR photons => issues with vacuum

BEAM ENERGY

- Machine protection
- Dump system

EXPERIMENTS

- High pileup=> high energy flow => high dose
- Magnet system for momentum resolution
- DAQ&Trigger

High Field Magnets

- World-wide effort aiming at producing prototypes capable of reaching 15 Tesla
- Materials:
 - Nb3Sn alloy
 - High temperature ceramic superconductors
- Short prototypes already built, tested up to ~13T

SR Photons

- Photon stops could take most of the heat load and be cooled at a higher temperature
- Photons travel for approx 12-21m at injection and around 14.5m at full energy (20T design)
 - For 13mm beam pipe radius 10mm radius for photon stops requires
 1.8m spacing
 - Would need very short magnets or have to integrate the stops into the dipoles
 - Maybe space between beam and magnet aperture can be reduced
- Reflectivity of photons (4keV critical energy) might be OK

Machine protection

- Do not forget Sept 19th 2008 (>1km of the LHC fully damaged)
- Crazy energies involved:
 - Magnetic energy scale as √s²
 - Beam energy: 16 GJ total (A380 @850 km/h

FCC-hh lumi performance

- Two stage approach (pp case):
 - phase 1 (baseline): L=5x10³⁴ cm⁻²s⁻¹(peak), average 250 fb⁻¹/year →
 same as HL-LHC
 - phase 2 (ultimate): $L=2.5 \times 10^{35}$ cm⁻²s⁻¹ (peak), average 1000 fb-1/year
- L=15ab⁻¹ within 15 years (~6x HL-LHC total luminosity)

FCC-ee in a nutshell

- Can't get where ILC could go in terms of vs, but unbeatable lumi performance
 - √s<350, all SM physics is there (but di-Higgs production) is there!</p>
- A LEP++ (a.k.a. TLEP), scale LEP technology to reach Higgs scale
 - SuperKEKB as a demonstrator
- General goal: ultimate precision on SM physics:
 - Up to √s=350 GeV, top-antitop production
 - Higgs factory at Z+H threshold Vs=250 GeV
 - GigaZ at Vs=GeV, repeat LEP1 program in <1 min
- Possibility for several interaction points
 multiply L, experimental redundancy
- Challenging but well established technology

FCC-ee challenges

BEAM LIFETIME

- Beam burn-off => 2 rings solution, top-up
- Beamstrahlung => high momentum acceptance

SYNCHROTRON RADIATION

- ~200 MW to recover the energy loss (money!)
- Very hard SR photons => issues with vacuum
- Large heat load => powerful cooling plant

INTEGRATION WITH THE EXPERIMENTS

- SR photons background
- Where does the accelerator beam pipe pass through?

Top-up cycle

energy of accelerator ring

Beamstrahlung

- Strong EM forces between the beams when they cross
- A fraction of the electrons loose enough energy to be kicked out of the orbit
- High momentum acceptance required (beyond what achieved in the past)
- Limited BS however grants other good features

Background di macchina

FCC-ee lumi performance

Experiments

My take

- Real challenge stands on the FCC-hh detectors, FCC-ee can well profit from ILC R&D
- It's plenty of time before any conceivable date for FCC-hh running
- This is the time when "crazy" ideas on technology solutions and detector R&D should be pursued
 - Plenty of room for detector development studies!
- Currently 3 main approaches are envisaged:
 - Maxi version of a current LHC experiment (e.g. giant CMS)
 - Same size as a LHC experiment, but with improved versions of the devices with visionary performances (resolution, timing, etc.)
 - Something completely different (not well defined yet..)

Driving principles

- Bending power. If tracking resolution is kept the same between 14 and 100 TeV, BL² needs to scale by factor 7
 - Bupto6T
- A lot of physics very boosted longitudinally
 tracking up to high pseudorapidity (disambiguate PU)
 - Longer solenoid/tracking systems
 - Add a dipole in the forward region
- HCAL from 10 to 12 λ
 - E.g. bore of big solenoid
- ECAL up to high η as well:
 - Longer detector, high flux resistant
- Everything to be compatible with chose L*
- Here more info can be found

Option 1: Solenoid-Yoke + Dipoles (CMS inspired)

Solenoid: 5-6 m diameter, 5-6 T, 23 m long

+ massive Iron yoke for flux return (shielding) and muon tagging.

Dipoles: 10 Tm with return yoke placed at 18 m.

Practically no coupling between dipoles and solenoid.

They can be designed independently at first.

Option 2: Twin Solenoid + Dipoles

Twin Solenoid: the original 6 T, 12 m x 23 m solenoid + now with a shielding coil {concept proposed for the 4th detector @ILC, also an option for the LHeC in the case of large solenoid; and this technique is in all modern MRI magnets!}.

Gain?

- + Muon tracking space: nice new space with 3 T for muon tracking in 4 layers.
- + Very light: 2 coils + structures, ≈ 5 kt, only ≈4% of the option with iron yoke!
- + Smaller: outer diameter is less than with iron .

Experiments at FCC-ee

- Much less demanding as the FCC-hh case
 - Possibly with a few exceptions (DAQ&Trigger @Z, TPC, extreme vertexing for c-tagging, etc.)
- A lot of R&D studies for the ILC detector: same design can be used for circular machine as well (0th order)
- Power pulsing not possible (too high collision rate):
 - Either more cooling (higher material budget)
 - Or less channels
- Most likely much less sophisticated can do as well
 - Current physics results based on CMS full simulation

Conclusions

If what you have done yesterday still looks big to you, you haven't done much today.

Mikhail Gorbachev

BACKUP

(very) Tentative (CERN-centric) timeline

80-km Tunnel Cost Estimate

Costs

- Only the minimum civil requirements (tunnel, shafts and caverns) are included
- 5.5% for external expert assistance (underground works only)
- Excluded from costing
 - Other services like cooling/ventilation/ electricity etc
 - service caverns
 - beam dumps
 - radiological protection
 - Surface structures
 - Access roads
 - In-house engineering etc etc
- Cost uncertainty = 50%
- Next stage should include costing based o

CE works	Costs [BCHF]
Underground	
Main tunnel (5.6m)	
Bypass tunnel & inclined tunnel access	
Dewatering tunnel	
Small caverns	
Detector caverns	
Shafts (9m)	
Shafts (18m)	
n technical draw in \$4	
TOTAL	~3.1?(unoffici

(→raw tunnel cost could be 4.5 BCHF)

Luminosity is the key

Synchrotron Radiation constrains $nNv = P_{SR} \frac{R}{E^4}$ Lumi and Energy

$$L = \frac{nN^2 v}{4\pi\sigma_x \sigma_y} = nNv \frac{N}{\varepsilon_x} \frac{1}{4\pi\sqrt{\beta_x \beta_y}} \sqrt{\frac{\varepsilon_x}{\varepsilon_y}}$$
Beam-beam limit

Beamstrahlung limit on lifetime

$$\frac{N}{\sigma_z \sigma_x}$$

Do not forget lifetime and time integration!

FHC and TLEP together?

120 kA (for >2.1 T); central copper acts

as stabilizer

only 12 MEuro/100 km!

Tunnel Cross section studies

6m tunnel: Escape Passageway

7.5m tunnel: Transversal Ventilation

4.5m tunnel: Rescue stub tunnels

2x 4.5m double tunnel solution

FCC-hh parameters

	LHC (Design)	HL-LHC	HE-LHC	FCC-hh
Main parameters and geometrical aspects				
c.m. Energy [TeV]	1	14	33	100
Circumference C [km]	20	5.7	26.7	100 (83)
Dipole field [T]	8.	.33	20	16 (20)
Arc filling factor	0.	.79	0.79	0.79
Straight sections		8	8	12
Average straight section length [m]	5	28	528	1400
Number of IPs				2 + 2
Injection energy [TeV]	0.	45	> 1.0	3.3
Physics performance and beam parameters	•			
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1.0	5.0	5.0	5.0
Optimum run time [h]	15.2	10.2	5.8	12.1 (10.7)
Optimum average integrated lumi / day [fb ⁻¹]	0.47	2.8	1.4	2.2 (2.1)
Assumed turnaround time [h]				5
Overall operation cycle [h]				17.4 (16.3)
Peak no. of inelastic events / crossing at - 25 ns spacing - 5 ns spacing	27	135 (lev.)	147	171 34
Total / inelastic cross section $\sigma_{\it proton}^{}$ [mbarn]	111	/ 85	129 / 93	153 / 108
Luminous region RMS length [cm]				5.7 (5.3)
Beam lifetime due to burn off [h]	45	15.4	5.7	19.1 (15.9)
Beam parameters				
Number of bunches <i>n</i> at - 25 ns - 5 ns	2808		2808	10600 (8900) 53000 (44500)
Bunch population N[10 ¹¹] - 25 ns - 5 ns	1.15	2.2	1	1.0 0.2
Nominal transverse normalized emittance [μ m] - 25 ns - 5 ns	3.75	2.5	1.38	2.2 0.44
Number of IPs contributing to ΔQ	3	2	2	2
Maximum total b-b tune shift ΔQ	0.01	0.015	0.01	0.01

				ı
Beam current [A]	0.584	1.12	0.478	0.5
RMS bunch length [cm]	7.	55	7.55	8 (7.55)
IP beta function [m]	0.55	0.15 (min)	0.35	1.1
RMS IP spot size [µm] - 25 ns - 5 ns	16.7	7.1 (min)	5.2	6.8 3
Full crossing angle [μrad] - 25 ns - 5 ns	285	590	185	74 n/a
Other beam and machine parameters				
Stored energy per beam [GJ]	0.392	0.694	0.701	8.4 (7.0)
SR power per ring [MW]	0.0036	0.0073	0.0962	2.4 (2.9)
Arc SR heat load [W/m/aperture]	0.17	0.33	4.35	28.4 (44.3)
Energy loss per turn [MeV]	0.0067		0.201	4.6 (5.86)
Critical photon energy [keV]	0.044		0.575	4.3 (5.5)
Longitudinal emittance damping time [h]	12	2.9	1.0	0.54 (0.32)
Horizontal emittance damping time [h]	2!	5.8	2.0	1.08 (0.64)
Initial longitudinal IBS ε rise time [h]* - 25 ns - 5 ns	57	23.3	40	1132 (396) 226 (303)
Initial horizontal IBS ε rise time [h]* - 25 ns - 5 ns	103	10.4	20	943 (157) 189 (29)
Dipole coil aperture [mm]	56		40	40
Beam half aperture [cm]	~2		1.3	1.3
Mechanical aperture clearance at any energy at any element				>12

FCC-ee parameters

	LEP1	LEP2	Z	w	Н	tt
Circumference [km]	26.7		100			
Bending radius [km]	3.1		11			
Beam energy [GeV]	45.4	104	45.5	80	120	175
Beam current [mA]	2.6	3.04	1450	152	30	6.6
Bunches / beam	12	4	16700	4490	1360	98
Bunch population [10 ¹¹]	1.8	4.2	1.8	0.7	0.46	1.4
Transverse emittance ε - Horizontal [nm] - Vertical [pm]	20 400	22 250	29.2 60	3.3 7	0.94 1.9	2 2
Momentum comp. [10 ⁻⁵]	18.6	14	18	2	0.5	0.5
Betatron function at IP β* - Horizontal [m] - Vertical [mm]	2 50	1.2 50	0.5 1	0.5 1	0.5 1	1 1
Beam size at IP σ* [μm] - Horizontal - Vertical	224 4.5	182 3.2	121 0.25	26 0.13	22 0.044	45 0.045
Energy spread [%] - Synchrotron radiation - Total (including BS)	0.07 0.07	0.16 0.16	0.04 0.06	0.07 0.09	0.10 0.14	0.14 0.19
Bunch length [mm] - Synchrotron radiation - Total	8.6 8.6	11.5 11.5	1.64 2.56	1.01 1.49	0.81 1.17	1.16 1.49
Energy loss / turn [GeV]	0.12(1)	3.34	0.03	0.33	1.67	7.55
SR power / beam [MW]	0.3(1)	11		5	0	•
Total RF voltage [GV]	0.24	3.5	2.5	4	5.5	11
RF frequency [MHz]	3	52	800			
Longitudinal damping time τ _E [turns]	371	31	1320	243	72	23
Energy acceptance RF [%]	1.7	0.8	2.7	7.2	11.2	7.1
Synchrotron tune Q₅	0.065	0.083	0.65	0.21	0.096	0.10
Polarization time τ _P [min]	252	4	11200	672	89	13
Hourglass factor H	1	1	0.64	0.77	0.83	0.78
Luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	0.002	0.012	28.0	12.0	6.0	1.8
Beam-beam parameter - Horizontal - Vertical	0.044 0.044	0.040 0.060	0.031 0.030	0.060 0.059	0.093 0.093	0.092 0.092
Luminosity lifetime [min] ⁽²⁾	1250	310	213	52	21	15

Synchrotron radiation

- 2x50 MW supplied to the beams need to be cooled away, heat load non negligible
- Previous machines (e.g. PEP-II and SPEAR) coped with much higher heat load per meter
- Need to manage higher max photon energy though

	PEPII	SPEAR3	LEP3	TLEP-Z	TLEP-H	TLEP-t
E (GeV)	9	3	120	45.5	120	175
I (A)	3	0.5	0.0072	1.18	0.0243	0.0054
rho (m)	165	7.86	2625	9000	9000	9000
Linear Power (W/cm)	101.8	92.3	30.5	8.8	8.8	8.8

N. Kurita, U. Wienands, SLAC

Synchrotron radiation

NEUTRON PRODUCTION BY LEP SYNCHROTRON RADIATION USING EGS

A. Fasso

W.R.Nelson and J.W.N.Tuyn

Power consumption

- Fixing energy, beam-beam limit and beamstrahlung conditions: => power is linearly proportional to luminosity
- For TLEP self imposed limit on power to beams ~200MW, assuming 50% wall to beam efficiency
- Complete accounting of power consumers brings the total to beyond 300 MW for TLEP at top energy
 - To be compared with current max CERN site consumption of <200MW
- Still margin thanks to possibility of several IPs
 - Number of IPs affecting BS lifetime

Experiments at FCC-ee

Vertexing:

- c-tagging (Higgs)
- Compatible with 2nd beam pipe?
- Tracking:
 - recoil analysis
 - − H->μμ
- Calorimetry
 - Particle flow based, do not need high granularity
- Very forward detectors for e+e-?
 - E.g. for yy collisions tagging
- No issue for triggering, even at the GigaZ rate

Physics performances: Higgs

Accelerator →	LHC	HL-LHC	ILC	Full ILC	CLIC	LEP3, 4 IP	TLEP, 4 IP
Physical Quantity	300 fb ⁻¹ /expt	3000 fb ⁻¹ /expt	250 GeV 250 fb ⁻¹	250+350+ 1000 GeV	350 GeV (500 fb ⁻¹) 500 GeV (500 fb ⁻¹) 1.4 TeV (2 ab ⁻¹)	240 GeV 2 ab ⁻¹ (*)	240 GeV 10 ab ⁻¹ 5 yrs (*)
			5 yrs	5yrs each	5 yrs each	5 yrs	350 GeV 1.4 ab ⁻¹ 3 yrs (*)
N _H	1.7×10^7	1.7×10^{8}	$6 \times 10^4 \text{ZH}$	10^{5} ZH $1.4 \times 10^{5} \text{ Hvv}$		$4 \times 10^5 \text{ZH}$	$2 \times 10^6 \mathrm{ZH}$
m _H (MeV)	100	50	35	35	~70	26	7
$\Delta\Gamma_{ m H}$ / $\Gamma_{ m H}$			10%	3%	6%	4%	1.3%
$\Delta\Gamma_{ m inv}$ / $\Gamma_{ m H}$	Indirect (30%?)	Indirect (10%?)	1.5%	1.0%		0.35%	0.15%
$\Delta g_{ m H\gamma\gamma}$ / $g_{ m H\gamma\gamma}$	6.5 - 5.1%	5.4 – 1.5%		5%	N/A	3.4%	1.4%
$\Delta g_{ m Hgg}$ / $g_{ m Hgg}$	11 - 5.7%	7.5 - 2.7%	4.5%	2.5%	N/A	2.2%	0.7%
$\Delta g_{ m Hww}$ / $g_{ m Hww}$	5.7 - 2.7%	4.5 - 1.0%	4.3%	1%	1%	1.5%	0.25%
$\Delta g_{ m HZZ}$ / $g_{ m HZZ}$	5.7 - 2.7%	4.5 - 1.0%	1.3%	1.5%	1%	0.65%	0.2%
$\Delta g_{ m HHH}$ / $g_{ m HHH}$		< 30% (2 expts)		~30%	~20%		
$\Delta g_{ m H\mu\mu}$ / $g_{ m H\mu\mu}$	< 30%	< 10%		-	15%	14%	7%
$\Delta g_{ ext{H} au au}$ / $g_{ ext{H} au au}$	8.5 - 5.1%	5.4 - 2.0%	3.5%	2.5%	3%	1.5%	0.4%
$\Delta g_{ m Hcc}$ / $g_{ m Hcc}$			3.7%	2%	4%	2.0%	0.65%
$\Delta m g_{Hbb}$ / $ m g_{Hbb}$	15 – 6.9%	11 —2.7%	1.4%	1%	2%	0.7%	0.22%
$\Delta g_{\mathrm{Ht}\mathrm{t}}$ / g_{Htt}	14 – 8.7%	8.0 – 3.9%		15%	3%		30%

Higgs Physics

	σ(14 TeV)	R(33)	R(40)	R(60)	R(80)	R(100)
ggH	50.4 pb	3.5	4.6	7.8	11.2	14.7
VBF	4.40 pb	3.8	5.2	9.3	13.6	18.6
WH	1.63 pb	2.9	3.6	5.7	7.7	9.7
ZH	0.90 pb	3.3	4.2	6.8	9.6	12.5
ttH	0.62 pb	7.3	11	24	41	61
НН	33.8 fb	6.1	8.8	18	29	42

- More than linear increase for the Higgs production processes
- Factor 40x for di-Higgs production, percent level quartic coupling should be at reach (modulo syst. errors, to be studied)

Physics performances: low vs

- Unprecedented precision on EW observables:
 - $-\sigma(m_W)^{\sim}0.2$ MeV, predict top mass at 100 MeV
- Probe the loop structure, ultimate closure test of SM
- Beam energy assessed by means of resonant depolarization
 - Dedicate one bunch during physics operation, no extrapolation needed

	LEP	ILC	LEP3	TLEP
√s ~ m _Z	MegaZ	GigaZ	~TeraZ	TeraZ
Lumi (cm ⁻² s ⁻¹) #Z / IP / year Polarization vs LEP1	Few 10 ³¹ 2X10 ⁷ no 1	Few 10 ³³ Few 10 ⁹ easy ~5-10	Few 10 ³⁵ Few 10 ¹¹ maybe ~50	10 ³⁶ 10 ¹² maybe ~100
√s ~ 2m _W				
Lumi (cm ⁻² s ⁻¹) Lumi / IP / year Error on m _W	Few 10 ³¹ 10 pb ⁻¹ 220 MeV	Few 10 ³³ 50 fb ⁻¹ 7 MeV	5x10 ³⁴ 500 fb ⁻¹ 0.7 MeV	2.5x10 ³⁵ 2.5 ab ⁻¹ 0.4 MeV
√s ~ 200-250 GeV				
Lumi (cm ⁻² s ⁻¹) Lumi / IP / 5 years <mark>Error on mw</mark>	10 ³² 500 pb ⁻¹ 33 MeV	5x10 ³³ 250 fb ⁻¹ 3 MeV	10 ³⁴ 500 fb ⁻¹ 1 MeV	5x10 ³⁴ 2.5 ab ⁻¹ 0.4 MeV

Comparison with ILC

Circular

Pros:

- Highest instantaneous lumi
- High duty cycle
- Several IPs
- Well established technology
- Reduced beamstrahlung
- Upgradable to ~100 TeV pp

Cons:

- High power consumption
- Limited in Vs (for e+e-)
- No polarization at high vs
- Cost & Timescale

Linear

Pros

- Mature project, large community and studies devoted to it
- Ugradable to O(1)TeV
- Polarization of the beams

Cons

- No "successful" predecessors, big leap in performances
- Not optimal till vs~350 GeV
- No reach to energy frontier, what if a desert below O(1)TeV?
- Only 1 experiment
- Cost, Timescale, Power

Beamstrahlung

- Electrons are lost if they emit a photon with $E>\eta E_0$ (η momentum acceptance)
- Defining:

$$u = \frac{\eta E_0}{E_C} \sim \frac{1}{\gamma} \eta \frac{\sigma_z \sigma_x}{N_b}$$

• The number of photons with $E>\eta E_0$ (i.e. impacting lifetime):

$$n \sim \frac{\eta}{\gamma} \frac{e^{-u}}{u^{3/2}}$$

- η can be traded off with $N_b/\sigma_x\sigma_z$
- High lumi and decent lifetime requires either high momentum acceptance or aspect ratio

Momentum acceptance

Change in tune

- Very preliminary IR designs aimed at high momentum acceptance
- 2.5-3% feasible?

SLAC/LBNL design

Beam dump system

- Huge energy (2x4.2 GJ, 8.5x LHC) to be extracted and dumped
- Dump block has to deal with ~200kW average power..
- Beam rigidity: 167 T.km => need a looong way to dilute the beam, ~3km!

Pileup and Minimum Bias

100TeV

- QCD not much harder than at the LHC!
 - Cross section ~100mb (vs 80 @√s=14 TeV)
 - Multiplicity 1.5x
 - Average transverse momentum 1.3x
- Pileup will not be more of an issue than at theLHC
- Integrated dose only ~2x HL-LHC

PDF luminosities

- Luminosities for small x, high M are of course order of magnitude larger than LHC!
- Top is also $^{\sim}$ massless at high $\sqrt{s} =>$ need to include it in the PDF ($^{\sim}1/2$ of the other quarks)

SM cross sections

