

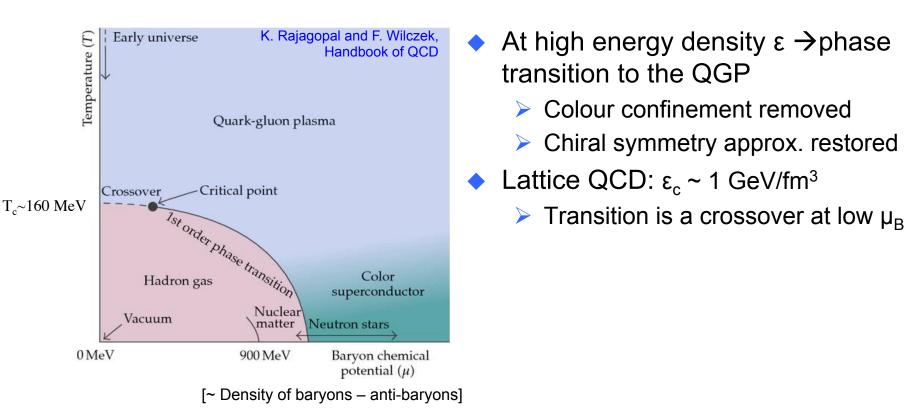
Heavy ions at the FCC

Andrea Dainese (INFN Padova)

Discussione FCC, Padova, 27.02.15

Andrea Dainese

Outline



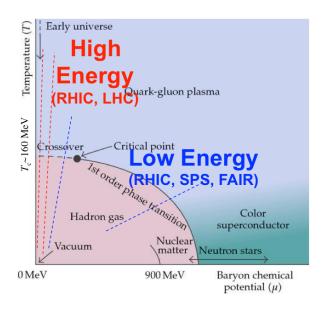
Introduction

- Future heavy ion runs at the LHC
- Organization of FCC HI studies
- FCC with ions: machine parameters
- Quark-Gluon Plasma at FCC
- Gluon Saturation at FCC

Exploring the phase diagram of strongly-interacting matter

High-energy heavy-ion collisions:

Junique opportunity to verify the basic predictions of QCD and characterize it as a many-body theory in the non-perturbative regime



The QGP as seen at RHIC/LHC:

- Energy density > 10 GeV/fm³
- Colour charge deconfined
- Expands hydro-dynamically like a very-low viscosity liquid
- Strong energy loss for hard partons

 Hadronizes as in thermal equilibrium

Future directions:

High Energy collisions (RHIC,LHC, FCC): Quantify properties of QGP fluid

Low Energy collisions (RHIC,SPS,FAIR):

- Onset of deconfinement
- Search for the critical point

Timeline of HI programme at the LHC \mathcal{C}^{MFN}

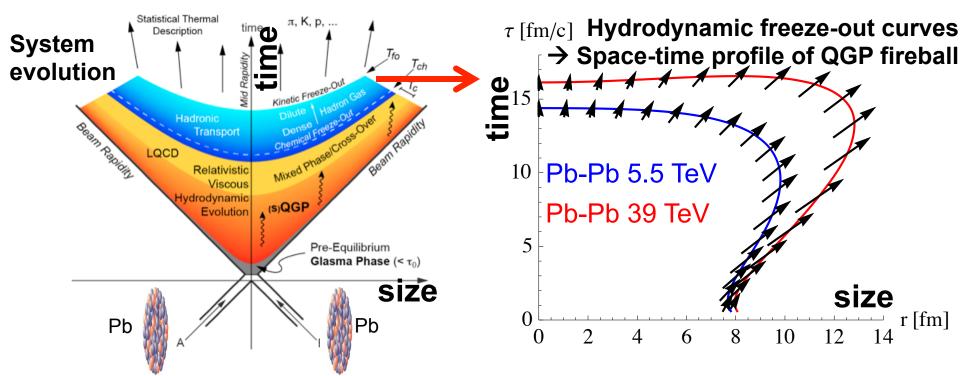
- ~0.3-1.5 nb⁻¹ PbPb LS2 ~2-4 nb⁻¹ PbPb LS3 ~10 nb⁻¹ PbPb
 - HI programme till 2028 with all 4 experiments (LHCb pA only)
 - After LS2 (from 2020):
 - Upgraded ALICE aims at collecting x100 larger minimum-bias sample than in Run 2
 - CMS and ATLAS x10 larger triggered sample than in Run 2
 - Focus on precision measurements of rare probes, study their coupling with QGP medium

Organization of FCC HI studies

- A discussion group on "lons at the FCC" started
 - Coordinated by A.D., S. Masciocchi (GSI), C. Salgado (Santiago, th), U. Wiedemann (CERN, th)
 - Sub-group of "FCC-hh Physics, Experiments, Detectors"
 - Participation from ALICE, ATLAS, CMS, theory, CERN-BE
 - Mailing list <u>fcc-ions@cern.ch</u> (250 people)
- 4 small workshops up now
 - <u>https://indico.cern.ch/event/331669/</u> and links therein
- First ideas: arXiv:1407.7649

Ions at FCC: machine parameters

Centre-of-mass energy per nucleon-nucleon collision:


 First (conservative) estimates of luminosity (in comparison with LHC): >8 larger L_{int} per month of running

	LHC Run 2 $[1]$	LHC after LS2 [1]	FHC [2]
Pb–Pb peak \mathcal{L} (cm ⁻² s ⁻¹)	10^{27}	5×10^{27}	$13 imes 10^{27}$
Pb–Pb $L_{\rm int}$ / month (nb ⁻¹)	0.8	1	>8
p–Pb peak \mathcal{L} (cm ⁻² s ⁻¹)	10^{29}	t.b.d.	$3.5 imes10^{30}$
p–Pb $L_{\rm int}~({\rm nb}^{-1})$	80	t.b.d.	>1800

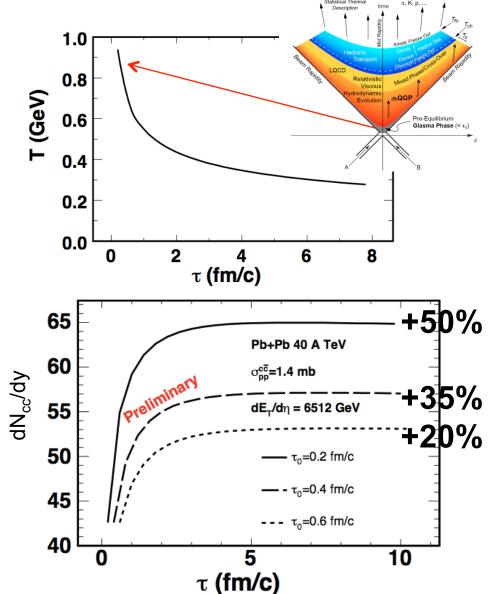
Could aim for programme of 100/nb (LHC x10)

7 times larger energy, 10 times larger luminosity

Properties of QGP at higher energy:

- Equilibration times reduced
- Initial temperature higher
- QGP volume increases strongly
- QGP lifetime increases

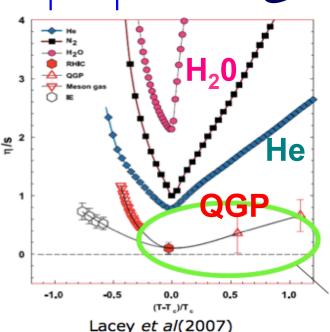
Extrapolation to 39 TeV: increase wrt LHC 5.5 TeV

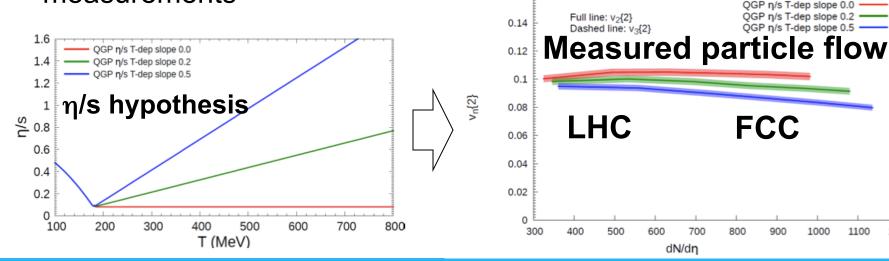

dN_{ch}/dη x 1.8 Volume x1.8 dE_τ/dη x2.2 $(dN_{ch}/d\eta)/(0.5\langle N_{part}\rangle)$ Phys. Lett. B 696 (2011) 328 (values scaled) 6000 PbPb(0-5 %) ALICE △ pp NSD ALICE (fm³) E895 2.7, 3.3, 3.8, 4.3 GeV ۸ PbPb(0-5 %) NA50 o pp NSD CMS OPI, 0-1% AuAu NA49 8.7, 12.5, 17.3 GeV Δ AuAu(0-5 %) BRAHMS 🕸 pp NSD CDF $\left(2\pi ight)^{3/2}R_{out}R_{side}R_{long}$ 5000)/2) (GeV) ∝ **s**^{0.15} E802, 0-5% AuAu CERES 17.3 GeV AuAu(0-5 %) PHENIX ◊ pp NSD UA5 * STAR 62.4, 200 GeV NA49, 0-7% PbPb AuAu(0-5 %) STAR * pp NSD UA1 PHOBOS 62.4, 200 GeV 4000 . 🗆 AuAu(0-6 %) PHOBOS × pp NSD STAR WA98, 0-5% PbPb ALICE 2760 GeV PHENIX, 0-5% AuAu AΑ (dE_T/dn)/({ N_{part} 3000 CMS. 0-5% PbPb pp(pp) RHIC parametrization ∝ **s**^{0.11} 2000 0.46 s^{0.2} √s_{NN} ≥ 8.7 GeV 1000F 0 500 1000 1500 2000 10^{2} 10³ 10³ 10 10² $\langle dN_{ch}/d\eta \rangle$ 1 $\sqrt{s_{_{ m NN}}}$ (GeV) $\sqrt{{ m s_{NN}}}$ (GeV)

Quantity	Pb–Pb $2.76 { m TeV}$	Pb–Pb 5.5 TeV	Pb-Pb 39 TeV
$dN_{\rm ch}/d\eta$ at $\eta = 0$	1600	2000	3600
Total $N_{\rm ch}$	17000	23000	50000
$dE_{\rm T}/d\eta$ at $\eta = 0$	$2 { m ~TeV}$	$2.6 \mathrm{TeV}$	$5.8 { m TeV}$
BE homogeneity volume	$5000 \ {\rm fm}^3$	$6200 \ {\rm fm}^3$	$11000 \ {\rm fm}^3$
BE decoupling time	10 fm/c	11 fm/c	13 fm/c

FCC: thermal charm in the QGP?

- The initial temperature of the QGP could be close to 1 GeV at FCC
- Expect abundant production of charm pairs in the QGP (via gg→cc): +20-50% wrt initial hard scattering
- Secondary charm yield very sensitive to the QGP initial temperature and to the temperature evolution

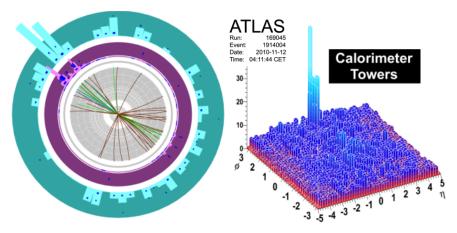



C.M. Ko, Y. Liu, private communication, based on B.-W. Zhang et al. PRC77 (2008)

0

FCC: measurement of QGP properties \mathcal{C}

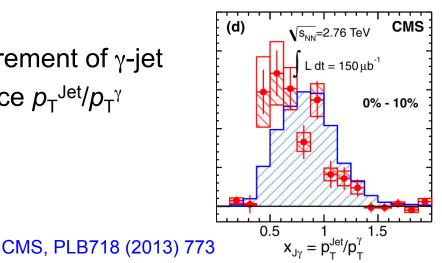
- The QGP observed at RHIC and LHC appears to be the fluid with lowest viscosity
- The ratio of shear viscosity to entropy density (η/s) is one of fundamental properties of the QGP
- At FCC energies, the temperature dependence of viscosity could become accessible for the first time via particle flow measurements

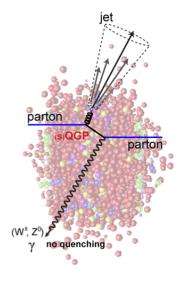


Discussione FCC, Padova, 27.02.15

1200

Jet quenching at LHC


Pb-Pb events with large di-jet imbalance



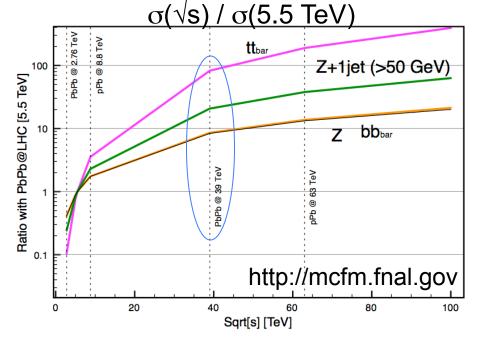
Direct observation of in-medium parton energy loss

ATLAS, PRL105 (2010) 252303 CMS, PLB712(2012) 176

- A powerful tool: γ/Z-jet correlations
 - $\succ E^{\gamma/Z} = E^{\text{jet}} !$
 - First measurement of γ-jet p_{T} imbalance $p_{T}^{\text{Jet}}/p_{T}^{\gamma}$

partor

N **F N**


part

FCC: a richer set of Hard Probes

 LHC heavy-ion programme shows that it is possible to reconstruct HEP-like observables in HI collisions

> Jets, b-jets, Z^0 , W, γ -jet correlations ...

◆ Large √s and *Q* of the FCC will make new probes abundantly available, for the study of the interaction mechanisms, of the medium density and its time evolution

- Larger increases for larger masses:
 - ➢ 80x for top
 - 20x for Z⁰ + 1 Jet(p_T>50 GeV)
 - > 8x for bottom or Z⁰

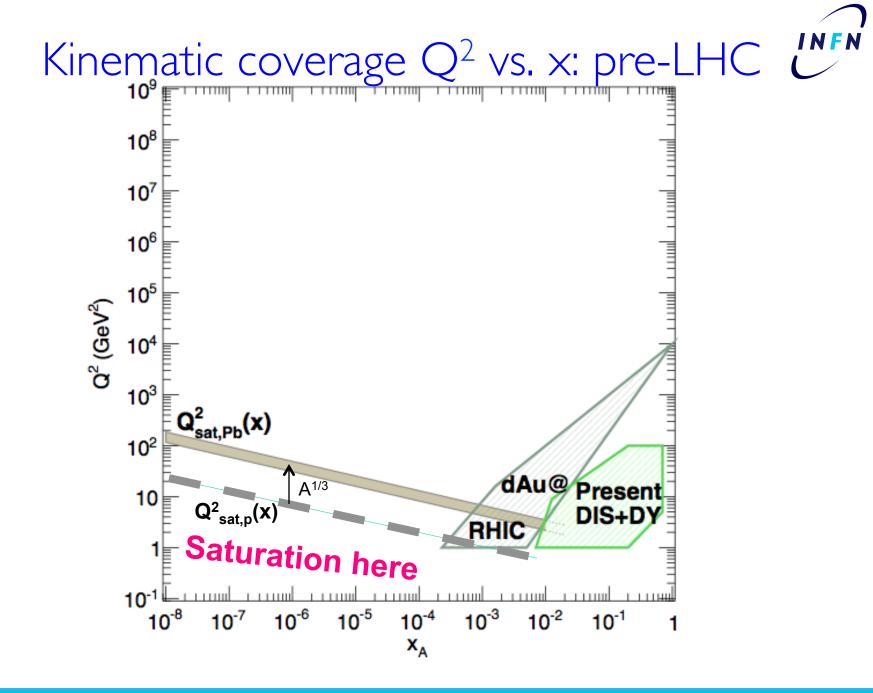
parto

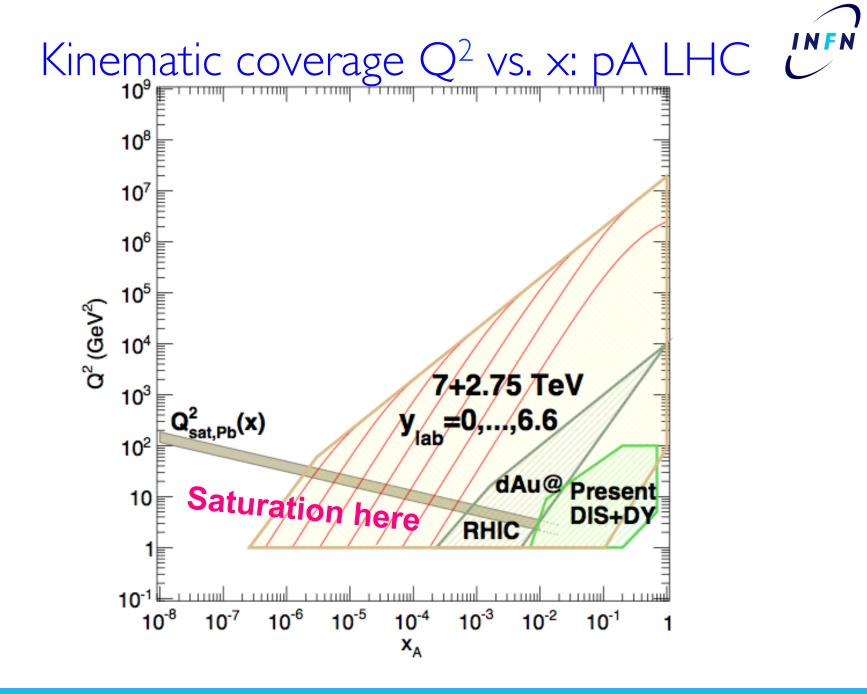
no quenching

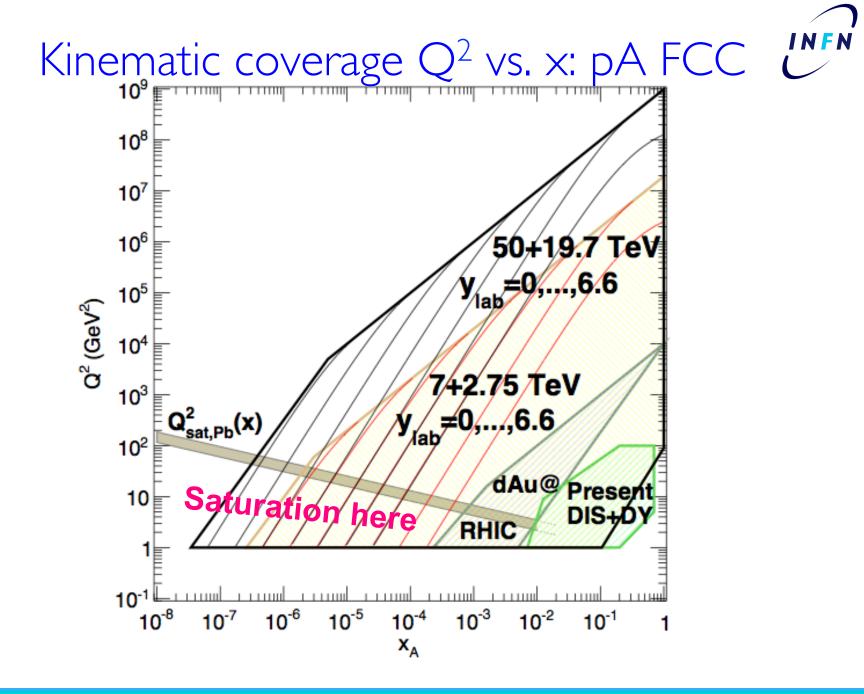
High-density QCD in the initial state: Saturation of low-x gluons

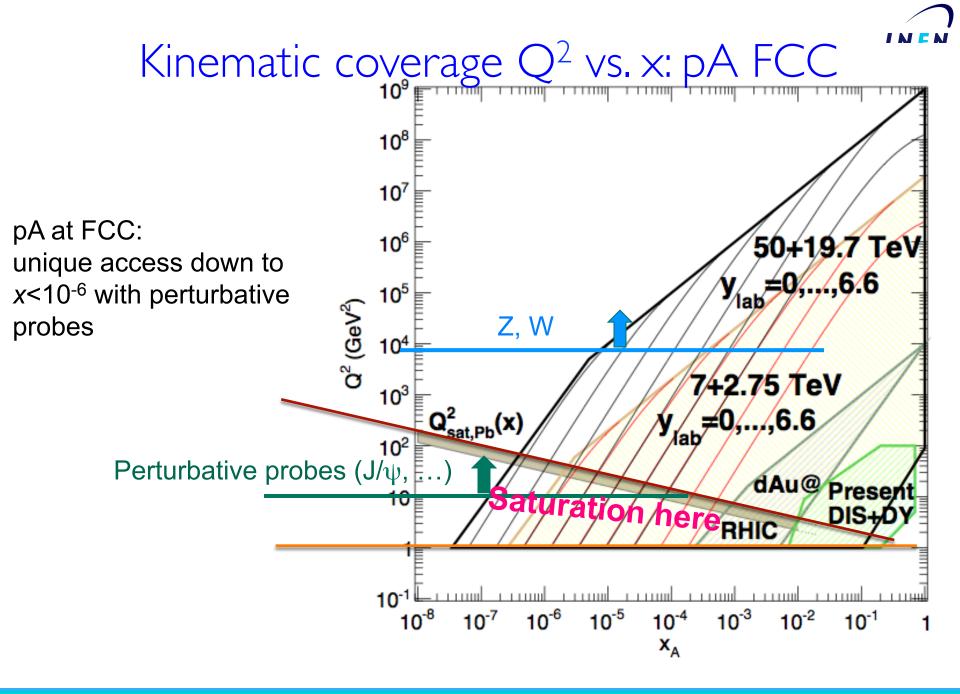
 ◆ Explore new unknown regime of QCD: when gluons are numerous enough (low-x) & extended enough (low-Q²) to overlap → Saturation, Non-linear PDF evolution

Enhanced in nuclei wrt protons: more gluons per unit area


Saturation
$$Q_S^2 \sim \frac{A \cdot g(x, Q_S^2)}{\pi A^{2/3}} \sim A^{1/3} g(x, Q_S^2) \sim A^{1/3} \frac{1}{x^{\lambda}} \sim A^{1/3} \left(\sqrt{s} \ e^y\right)_{(\lambda \sim 0.3)}^{\lambda}$$


TIE [fixed Q] DENSE REGION DILUTE REGION


Saturation affects process with $Q^2 < Q_S^2$ Explore saturation region:


 \rightarrow decrease x (larger \sqrt{s} , larger y)

 \rightarrow increase A

Considerations on experiment design \mathcal{C}

- Probably not necessary to have a dedicated HI experiment
- HI community could provide inputs on HI-specific requirements for general purpose detectors
- Examples:

> ...

- > Possibility to reduce magnetic field for low- p_{T} tracking
- > Hadron identification (measure spectra and flow of bulk multiplicity)
- > Forward coverage for low-x studies (ideally to $\eta \sim 6$)

Summary

 Discussions started on opportunities with heavy ions, within the FCC Study

QGP physics

- Larger initial temperature and volume entail potentially unique aspects, e.g. thermal production of charm
- > Larger \sqrt{s} and $L_{int} \rightarrow$ new hard observables, possibly sensitive to early stages and time evolution of the medium

Saturation physics in pA (but also eA and γA)

➢ Higher energy and large nuclei → unique access to saturation region (down to x<10⁻⁶) with perturbative probes

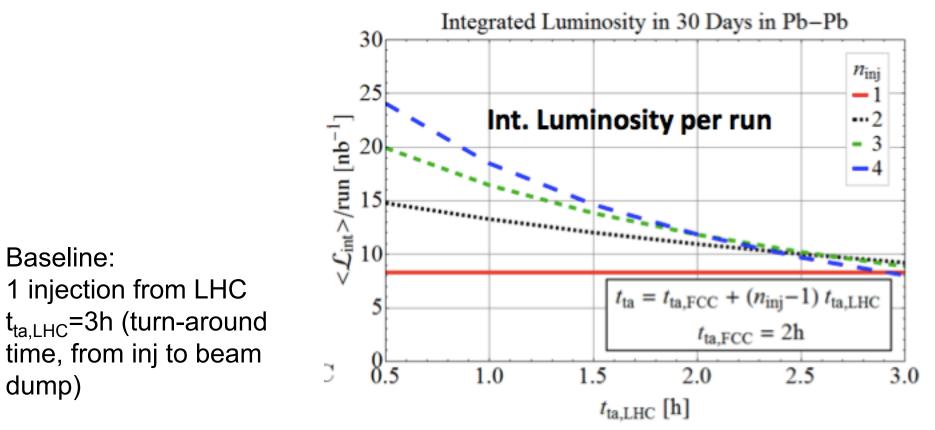
EXTRA SLIDES

Discussione FCC, Padova, 27.02.15

Andrea Dainese

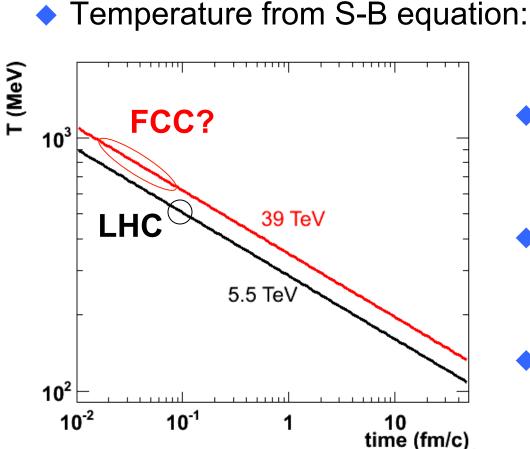
21

HI-HL-LHC Programme


- Jets: characterization of energy loss mechanism both as a testing ground for the multi-particle aspects of QCD and as a probe of the medium density
 - > Differential studies of jets, b-jets, di-jets, γ/Z -jet at very high p_T (focus of ATLAS and CMS)
 - Flavour-dependent in-medium fragmentation functions (focus of ALICE)
- Heavy flavour: characterization of mass dependence of energy loss, HQ inmedium thermalization and hadronization, as a probe of the medium transport properties
 - > Low- p_T production and elliptic flow of several HF hadron species (focus of ALICE)
 - B and b-jets (focus of ATLAS and CMS)
- Quarkonium: precision study of quarkonium dissociation pattern and regeneration, as probes of deconfinement and of the medium temperature
 - > Low- p_T charmonia and elliptic flow (focus of ALICE)
 - Multi-differential studies of Y states (focus of ATLAS and CMS)
- Low-mass di-leptons: thermal radiation γ (\rightarrow e⁺e⁻) to map temperature during system evolution; modification of ρ meson spectral function as a probe of the chiral symmetry restoration
 - > (Very) low- p_T and low-mass di-electrons and di-muons (ALICE)

(not exhaustive!

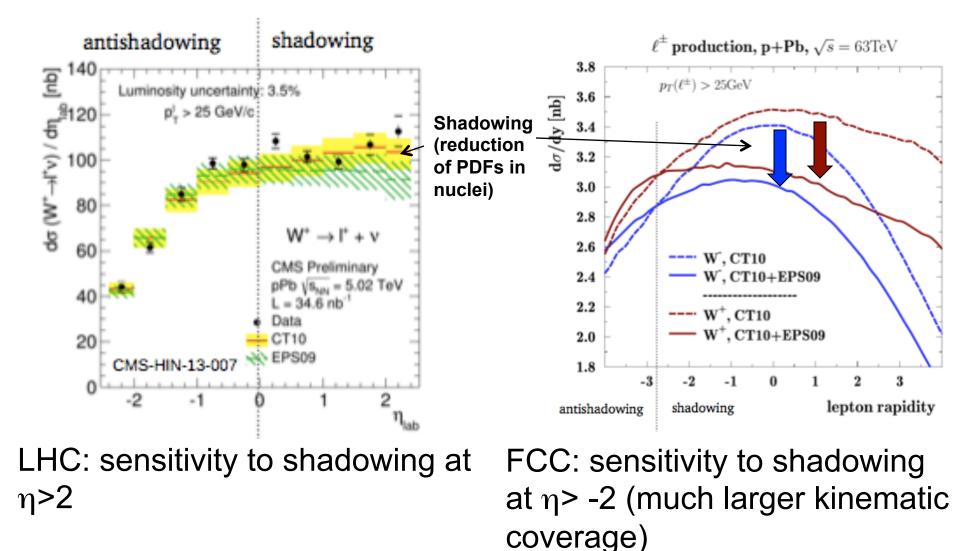
lons at FCC

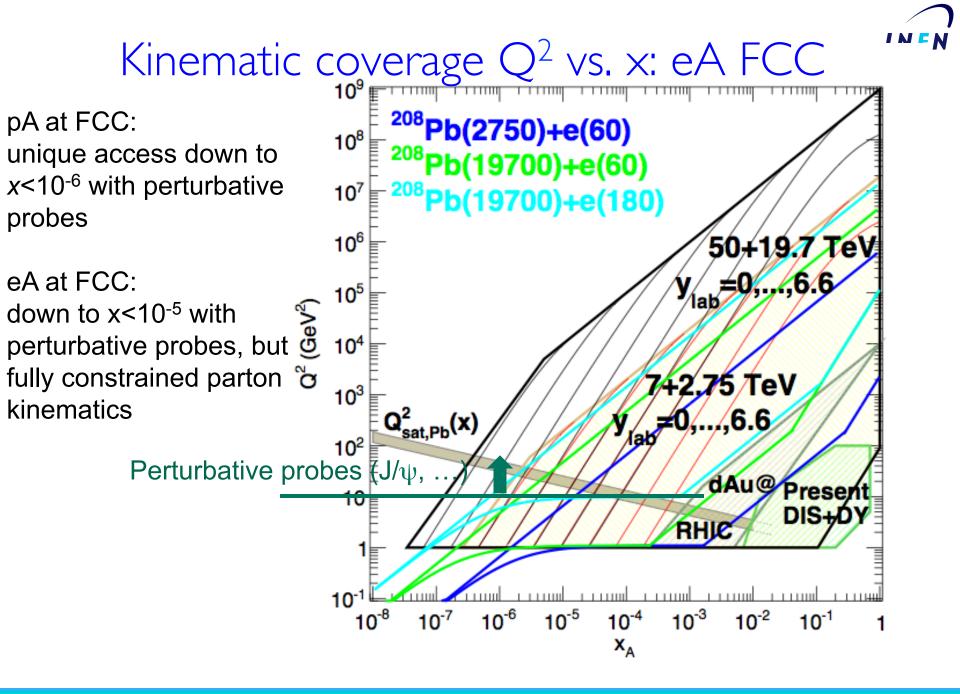


Baseline is 8/nb/run, but could be increased with more than 1 injection from LHC, if the LHC turn-around time can be shorted

QGP studies at the FCC: temperature

• Energy density with Bjorken formula: $\varepsilon(\tau) = \frac{E}{V(\tau)} = \frac{1}{c\tau \pi R_A^2} \frac{dE_T}{d\eta}$


 $T(\tau) = \sqrt[4]{\varepsilon(\tau) \frac{30}{\pi^2 n_{d.o.f.}}}$


- 20% larger for the same time
 - E.g. 360 MeV at 1 fm/c
- Initial time (QGP formation time)?

Usually ~0.1 fm/c for LHC

- Could be smaller at FCC
- Significantly larger initial temperature? Could reach close to 1 GeV?

Example: W and Z in p-Pb at LHC and FCC \mathcal{C}^{MFN}

