PHYSICS OPPORTUNITIES AT THE FCC

Riccardo Torre

Padova U. & INFN Padova

Padova - 27 Feb 2015

Theory overview (mostly FCC-hh but not only)

FCC-HH TWIKI

Jump

Log In LHCPhysics

TWiki > LHCPhysics Web > FutureHadroncollider (2015-02-05, AndreaDainese)

Edit Attach PDF

LHCPhysics
 All webs

Search

- LHCPhysics Web Create New Topic
- Index
- Q. Search
- Changes
- Notifications Statistics
- Preferences

LHCPhysics.Higgs

Public webs

+ Twiki for 100 TeV pp collider studies (Future Circular Collider FCC-hh)

- + Detector studies (Under construction):
- + Physics studies:

Contents:

+ Some useful related links:

Twiki for 100 TeV pp collider studies (Future Circular Collider FCC-hh)

100

This twiki is intended to provide a common area to collect and share information related to FCC-hh studies.

Detector studies (Under construction):

- DetectorGeneral
- InnerDetector (to be done)
- CalorimetrySystem (to be done)
- MuonsSystem (to be done)
- MagneticSystem (to be done)

Physics studies:

- Tools (to come soon)
- Standard Model (to come soon)
- HiggsEWSymmetry
- BSM
- Heavylons

Some useful related links:

- Agenda for the FCC-hh meetings: indico agenda or
- BenHooberman 10 Jan 2014

Sedit | Attach | Watch | Print version | History: r15 < r14 < r13 < r12 < r11 | Backlinks | Raw View | WYSIWYG | More topic actions

Topic revision: r15 - 2015-02-05 - AndreaDainese

Copyright 1999 - 2013 by the contributing authors. All material on this collaboration platform is the property of the contributing authors. Ideas, requests, problems regarding TWiki? Send feedback

Physics opportunities at the FCC

FCC-HH PHYSICS INDICO

ndi@	Europe/Zurich + English - Europe/Zurich + English -
ne Create event - Room booking Help -	
ne > Projects > FCC > Physics and Experiments > Hadron Collider Physics and Experiments > FCC-hh collider physics W0s	
>-hh collider physics WGs	🕈 Parent category 🛅 - 🗶 - 📫 -
February 2015	Q Managers
26 Feb FCC-hh BSM group informal meeting (Ref) 26 Feb FCC Higgs/EWSB WG meeting November 2014	L Contino, H. L Gianotti, F. L Gray, H. L Moortgat, F.
24 Nov Higgs/EWSB group, workplan discussion October 2014	
 30 Oct FCC-hh BSM group, workplan discussion 10 Oct Higgs and EWSB group, conveners' planning discussion 	
April 2014 Tr Apr FHC experiments informal meeting March 2014	
Eebruary 2014	
January 2014	
27 Jan FHC experiments informal meeting 10 Jan FHC experiments informal meeting	
November 2013	
26 Nov FHC experiments informal meeting 18 Nov FHC experiments informal meeting	
the events in the past (10)	

Powered by Indico

SM, HIGGS AND EWSB

- Precision Studies of the SM (FCC-ee)
- Precision Studies of Higgs Properties (e.g.)
 - * Higgs CS at 100 TeV
 - * Extrapolation of single Higgs analyses to 100 TeV
 - * Higgs studies with extreme kinematical configurations
 - * Off-shell Higgs measurements
- Exotic/Rare Higgs decays
- Double Higgs Production
- WW scattering at high energy
- Additional BSM Higgs bosons: discovery reach and precision physics program
- New handles on the study of the EWSB dynamics

BSM

- Dark Matter (e.g.)
 - * Mono-SM like searches for DM (SUSY, non SUSY)
 - * Minimal Dark Matter (directly and indirectly)
- SUSY (e.g.)
 - * Rare susy processes
 - * Test of very compressed spectra
 - * Split SUSY
- Non-SUSY (e.g.)
 - * Resonances (jets vs leptons)
 - * New physics in VBF
 - * Running EW couplings
 - * Top dipole moments
 - * Composite Higgs resonances (vectors, top partners)
 - * Twin Higgs (twin partners, heavy vectors etc.)

Some examples (from performed or ongoing studies)

OBLIQUE OBSERVABLES AT TLEP

For the oblique precision observables S and T (and possibly U) a factor of 10 improvements at TLEP

Baak, Cuth

Important to assess the precision possibilities of the FCC-hh

Less clean environment, but enhancement of the higher order observables (W, Y, V, X) with the energy (see EW couplings running in 3 slides)

This could lead to important constraints complementary to the S,T,U ones

Riccardo Torre

Physics opportunities at the FCC

HIGGS @ 100 TEV

Physics opportunities at the FCC

BOOSTED HIGGS @ 100 TEV

$$\mathcal{L}_{\text{eff}} = -k_t \frac{m_t}{v} h t \bar{t} + k_g \frac{\alpha_S}{12\pi v} h G^A_{\mu\nu} G^{A\,\mu\nu}$$

Inclusive production

 $\frac{\sigma(pp \to h)}{\sigma(pp \to h)_{\rm SM}} \simeq (k_t + k_g)^2$

Recoil against hard jet

$$\frac{\sigma(pp \to h)^{p_T^{\min}}}{\sigma(pp \to h)_{\rm SM}^{p_T^{\min}}} \simeq (k_t + k_g)^2 + \delta k_t k_g + \epsilon k_g^2$$

$$\mathcal{R}_{14} = \frac{\sigma(p_T > 650 \,\mathrm{GeV})}{\sigma(p_T > 150 \,\mathrm{GeV})}$$

$$\mathcal{R}_{100} = \frac{\sigma(p_T > 2000 \,\mathrm{GeV})}{\sigma(p_T > 500 \,\mathrm{GeV})}$$

Discrimination power increases strongly at 100 TeV $\sigma(p_T > 650 \text{ GeV}, 14 \text{ TeV}) \approx \sigma(p_T > 2000 \text{ GeV}, 100 \text{ TeV})$

Azatov, Salvioni

Riccardo Torre

Physics opportunities at the FCC

TOP CHARGE ASYMMETRY

$$A_{c}^{t} = \frac{N(\Delta_{\eta}^{t} > 0) - N(\Delta_{\eta}^{t} < 0)}{N(\Delta_{\eta}^{t} > 0) + N(\Delta_{\eta}^{t} < 0)} \qquad \Delta_{\eta}^{t} = |\eta_{t}| - |\eta_{\bar{t}}|$$

Instead of looking at ttbar events we consider also the emission of a W boson

- qqbar vs gg so that the asymmetry generated at NLO in QCD is larger
- the tops inherit the polarization of the quarks as induced by the W emission so that the decay products of the top show a large asymmetry already at LO in QCD
- CONS
- the rate is dramatically reduced, i.e. the FCC does much better than the LHC

		8 TeV	13 TeV	14 TeV	33 TeV	100 TeV
$t\bar{t}$	$\sigma(\mathrm{pb})$	$198^{+15\%}_{-14\%}$	$661^{+15\%}_{-13\%}$	$786^{+14\%}_{-13\%}$	$4630^{+12\%}_{-11\%}$	$30700^{+13\%}_{-13\%}$
	$A_c^t(\%)$	$0.72\substack{+0.14 \\ -0.09}$	$0.45\substack{+0.09 \\ -0.06}$	$0.43\substack{+0.08 \\ -0.05}$	$0.26\substack{+0.04 \\ -0.03}$	$0.12\substack{+0.03 \\ -0.02}$
$t\bar{t}W^{\pm}$	$\sigma({ m fb})$	$210^{+11\%}_{-11\%}$	$587^{+13\%}_{-12\%}$	$678^{+14\%}_{-12\%}$	$3220^{+17\%}_{-13\%}$	$19000^{+20\%}_{-17\%}$
	$A_c^t(\%)$	$2.37\substack{+0.56 \\ -0.38}$	$2.24\substack{+0.43 \\ -0.32}$	$2.23\substack{+0.43 \\ -0.33}$	$1.95\substack{+0.28\\-0.23}$	$1.85\substack{+0.21 \\ -0.17}$
	$A^b_c(\%)$	$8.50\substack{+0.15 \\ -0.10}$	$7.54\substack{+0.19 \\ -0.17}$	$7.50\substack{+0.24 \\ -0.22}$	$5.37\substack{+0.22\\-0.30}$	$3.36\substack{+0.15 \\ -0.19}$
	$A^e_c(\%)$	$-14.83\substack{+0.95\\+0.95}$	$-13.16\substack{+0.81\\+1.12}$	$-12.84\substack{+0.81\\+1.11}$	$-9.21\substack{+0.87\\+1.05}$	$-4.94\substack{+0.72\\+0.72}$

Maltoni, Mangano, Tsinikos, Zaro, 1406.3262 [hep-ph]

Physics opportunities at the FCC

Physics opportunities at the FCC

COMPOSITENESS @ 100 TEV

Physics opportunities at the FCC

COMPOSITENESS: DIRECT VS INDIRECT

High complementarity between FCC-hh and FCC-ee

Needed studies of precision at FCC-hh for a conclusive comparison between the two

Riccardo Torre

Thamm, Torre, Wulzer, 1502.0170 [hep-ph]

THANK YOU