Search for Light Higgs at BABAR

Swagato Banerjee

Les Renconstres de Physique de la Vallee d'Aoste La Thuile, Aosta Valley, Italy March 1-7, 2009

Light Higgs in Y decays?

- ▶ Higgs Mechanism: Electroweak symmetry breaking
- Naturalness problem: Higgs mass unstable under radiative corrections in Standard Model
- Possible solution: Minimal Supersymmetric Standard Model (2 Higgs doublets $\rightarrow h$, H, A, H^{\pm})
- > Hierarchy Problem: Fine tune the scale of Electroweak symmetry breaking
- Possible solution: Next-to-Minimal Supersymmetric Standard Model (introduce Higgs singlet)
- \triangleright Mixing of singlet with MSSM-like Higgs doublet can produce low mass CP-odd Higgs (A^0)
- If mixing is small, coupling of A^0 to Z is suppressed: this evades most LEP limits, including those from model independent Higgs search using recoil mass against $Z \rightarrow e^+e^-$ or $\mu^+\mu^-$
- ▶ If BR($H \rightarrow A^0 A^0$) > 0.7, m_{A0} < 2 m_b , LEP limits on Higgs $\rightarrow bb$, bbbb channels can be evaded
- lnteresting possibility of Higgs discovery in $\Upsilon \rightarrow \gamma A^0$ decays via the Wilczek mechanism

Can we solve the Dark Matter puzzle and illuminate the Higgs sector at the same time?

HyperCP excess events

Phys. Rev. Lett. 94, 021801 (2005)

 HyperCP experiment observed resonance structure in Σ→pμ⁺μ⁻ scattering, 3 events at M_{μμ}=214 MeV/c² observed. Light scalar decaying to μ⁺μ⁻?

How small can the rate be?

Axion $\rightarrow \mu^+ \mu^-$: Motivated by the galactic positron excess seen by PAMELA and ATIC/PPB-BETS

"Dark Matter through the Axion Portal" may be realized in the mass range [360, 800] MeV for the axion decaying predominantly into di-muons with BR($\Upsilon \rightarrow \gamma A^0$) ~ 10^{-5} – 10^{-6}

Y. Nomura and J. Thaler, arXiv: 0810.5397 [hep-ph]

How small is the rate known to be?

First upper limit from CLEO: BF($\Upsilon(1S) \rightarrow \gamma A^0$)×BF($A^0 \rightarrow \mu^+ \mu^-$)<(1-20)×10⁻⁶

using 21.5M $\Upsilon(1S)$ mesons directly produced in e^+e^- annihilation

Phys. Rev. Lett. 101, 151802 (2008)

How small a rate can BABAR measure?

Between Dec 2007 - Apr 2008, PEP II collected data below Υ(4S):

- ~ 30 fb⁻¹ @ Υ (3S) (122 M decays)
- ~ 15 fb⁻¹ @ Υ (2S) (100 M decays)

Dramatic increase in sensitivity to rare decays:

$$\Gamma_{\Upsilon(4S)}/\Gamma_{\Upsilon(nS)} \sim 10^3$$

Sensitivity for Higgs discovery in Y Decays:

$$\sigma(\mathcal{B}) = rac{\sqrt{N_{ ext{bkg}}}}{arepsilon N_{\Upsilon(3S)}}$$

Efficiency ~ 50-25 %; Estimate N_{bkg} within ± resolution ~ 3-10 MeV ~5 times more Y decays \Rightarrow improve CLEO limits by factor of ~2

Event selection

- Fully reconstruct final state from
 - two oppositely charged tracks
 - and a single energetic photon
- only one photon with
 - CM Energy > 0.5 GeV
- Kinematic Y(3S) fit with
 - Beam Energy Constraint
 - Beam Spot Constraint on di-muon vertex
 - Fit χ^2 probability > 10⁻⁶
- Extra Mass:
 - $-0.07 < M_{beam} M_{\Upsilon(3S)} < 2 \text{ GeV}$
- Di-muon system back-to-back with photon

The di-muon mass spectrum

- Signal extraction: ML fit in slices of invariant mass
 - Variable of choice is "reduced mass"
 - Smooth threshold behavior

$$m_R = \sqrt{m_{\mu\mu}^2 - 4m_{\mu}^2} = 2|p_{\mu}^{A^0}|$$

Signal and background shapes

- Signal PDF generated at 20 values between $0.212 < M(A^0) < 9.5 \text{ GeV}$
 - Sum of two Crystal Balls
 - With opposite-side tails
- Background: smooth functions from fit to $\Upsilon(4S)$ data
 - □ Threshold function at low mass, linear above 0.23 GeV

• ML Fit to ~ 2000 mass points scanned between $2M(\mu) < M(A^0) < 9.3$ GeV

Signal Significance

- PDF systematics
 - ≻±1σ PDF parameter variations
 - >Signal width calibrated from J/ψ data/MC
 - ➤ Peaking background mean, width, tail
- Fit bias $\sigma_{BB} \sim 0.02 \text{ x } 10^{-6}$
- Efficiency corrections ~ 2-10%
- Y(3S) counting ~ 1%

- Signal significance distribution (stat+sys) in $\Upsilon(3S)$ data shows no significant outliers
 - ➤ No excess signal events observed at HyperCP mass region ~214 MeV
 - ➤ Most significant upward fluctuations (~3σ) at 4.940 GeV and 0.426 GeV
 - ➤~80% probability to see one >3σ result for the number of points here

BF(Y(3S) \rightarrow YA⁰(μ μ)) Upper Limits @ 90% CL

arXiv: 0902.2176 [hep-ex]

Most significant fit region ~ 4.940 GeV

 $BF(4.940) = (1.9 \pm 0.7 \pm 0.1) \times 10^{-6}$

Significance = 3.0σ (stat+sys)

2nd most significant fit region ~ 0.426 GeV

BF(0.426) = $(3.1 \pm 1.1 \pm 0.3) \times 10^{-6}$ Significance = 2.9 σ (stat+sys)

HyperCP mass region ~ 0.214 GeV

BF(0.214) =
$$(0.12^{+0.43}_{-0.41} \pm 0.17) \times 10^{-6}$$

BF(0.214) < 0.8×10^{-6} (90% *C*L)

Search for Invisible Higgs Decay

• No significant signal seen anywhere, limits similar to di-muon results

arXiv: 0808.0017 [hep-ex]

Experimental Limits: $M(A^0) < 2M(\tau)$

Experimental Limits: $M(A^0) > 8.8 \text{ GeV}$

A⁰→invisible results do not extend to the highest mass range

Summary of Axion Search

Experimental Limits: 0.36 < M(A0) < 0.8 GeV (Axion Model Mass Range)

Conclusions

- No significant $\Upsilon(3S) \rightarrow \gamma A^0$, $A^0 \rightarrow \mu^+ \mu^-$ signal observed
 - \sim 2000 mass points 2m_u < M(A^0) < 9.3 GeV
 - Conference note at arXiv:0902.2176 [hep-ex]
- Upper limits (90% CL) range from (0.25-5.2) x 10⁻⁶
 - ➤ Generally lower upper limits than CLEO by a factor of ~2
- No significant signal at HyperCP mass (di-muon threshold)
 - \triangleright BF[Y(3S) → γ A^0 (214)] < 0.8 x 10⁻⁶ (90% CL)
- No evidence of $\eta_b \rightarrow \mu^+ \mu^-$ decays
 - > BF[$\eta_b \to \mu^+ \mu^-$] < 0.8% (90% CL)
- $\Upsilon(3S) \to \gamma A^0$, $A^0 \to \text{invisible UL } (0.7-31) \times 10^{-6} (90\% \text{ CL})$
 - > ICHEP 2008 conference note at arXiv:0808.0017 [hep-ex]
- Other approaches to increase sensitivity for A⁰ discovery:
 - $\triangleright \Upsilon(2S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+ \mu^-$
 - ◆~20% higher sensitivity than Y(3S)
 - $\triangleright \Upsilon(2S, 3S) \rightarrow \gamma A^0, A^0 \rightarrow \tau^+ \tau^-$
 - $ightharpoonup \Upsilon(2S, 3S) \rightarrow \gamma A^0$, $A^0 \rightarrow hadrons$
 - > Search for non-universality (enhancement of $\tau^+\tau^-$ over $\mu^+\mu^-$): higher efficiency without directly tagging the photon increases sensitivity

Extra Slides ...

Fit to Y(4S) Data

 Signal Significances from mass fits on 78.5 fb-1 Y(4S) data are Gaussian distributed with no significant outliers

Fit near the η_b mass region

- No significant signal observed
- BF[Y(35)-> $\gamma\eta_b$] × BF[η_b -> $\mu\mu$] = (0.2 ± 3.0 ± 0.9) × 10⁻⁶
- BF[η_b -> $\mu\mu$] = (0.0 ± 0.6 ± 0.2) × 10⁻²
 - BR[η_b -> $\mu\mu$] < 0.8% (90% *C*L)
 - Assuming Babar's measurement BR[Y(35)-> $\gamma\eta_b$] = (4.8 ± 0.5 ± 1.2) x 10⁻⁴

