Soft Physics at the LHC with TOTEM

Jan Kašpar
CERN PH-TOT and
Institute of Physics of the AS CR on behalf of the TOTEM Collaboration

La Thuile, March 3, 2009

Total cross section
ultimately $\approx 1 \%$ precision

Elastic scattering
wide t range

Hard and Soft Diffraction

Dominant Event Classes in pp Collisions

- rapidity filled in hadronisation
exponential suppression of rapidity gaps

$$
\operatorname{prob}(\Delta \eta) \sim \exp ^{-\lambda \Delta \eta}
$$

Diffractive events

- exchange of colour singlets with vacuum quantum numbers ("Pomerons")
- rapidity gaps

- (often) forward protons

Why...

Elastic scattering (diffraction in general)

- theoretical understanding not complete
- number of approaches: Regge, geometrical, eikonal, QCD,$\ldots \Rightarrow$ rather incompatible predictions
- intimately related to the structure of proton

Total cross section

- various models/approaches: $\sigma_{\text {tot }} \sim \ln s$, $\sigma_{\text {tot }} \sim \ln ^{2} s, \sigma_{\text {tot }} \sim s^{\alpha-1}$
- predictions for $\sqrt{s}=14 \mathrm{TeV}$: $90 \mathrm{mb}<\sigma_{\text {tot }}<130 \mathrm{mb} \Rightarrow 40 \%$ uncertainty
- available data not decisive (incompatible CDF / E810 measurements)
- implications to cosmic ray physics etc.

TOTEM = precise and decisive measurement

TOTEM Detectors

- physics requirements: forward proton detectors and large pseudorapidity coverage
- Roman Pots
- measurement of forward protons
- telescopes T1 and T2: tracking of charged particles produced in inelastic events
- vertex reconstruction
- measurement of inelastic rate
- all detectors symmetrically on both sides of IP5
- all detectors L1 trigger capable

Acceptance of TOTEM Detectors

Roman Pots

- stations at $-200,-147,+147$ and +220 m (measured from IP5)
- each station 2 units
- each unit 2 vertical and one horizontal RP
- each RP 10 strip silicon detectors
- movable insertions
- instable beam \rightarrow safe position
- measurement: as close to beam as possible $(10 \sigma+0.5 \mathrm{~mm})$
\rightarrow measurement of very forward protons

thin window $150 \mu \mathrm{~m}$

overlap

alignment

Silicon Detectors

- each RP: 5×2 (back-to-back mounted) strip silicon detectors
- strip pitch $66 \mu \mathrm{~m}$
- detection of low angles \Rightarrow "edge less": only $\approx 50 \mu \mathrm{~m}$ dead area
- L1 trigger capability

- installation ongoing, 220 m stations fully equipped by June
- for safety reasons (high background) 147 m stations only partially equipped (by June)

Telescope T1

- 1 station per side of IP5
- each station: 5 planes
- each plane: 6 trapezoidal CSC detectors
- L1 trigger capability

- Cathode Strip Chamber detector
- 3 coordinates: 2 cathode strips, 1 anode wire
- Resolution $\approx 1 \mathrm{~mm}$
- installation foreseen for May/June (eventually September)

Telescope T2

(after CMS HF calorimeter)

- one station on each side of IP5
- each station: two halves (left/right)
- each half: 5×2 (back-to-back mounted) GEM detectors
- L1 trigger capability
- triple Gas Electron Multiplier detectors
- double readout: strips (radial) and pads (coarse radial and azimuthal)
- resolution: radial 0.15 mm , azimuthal 0.8°
- installation ongoing, fully finished by May

Optics

proton transport equation
$x_{\text {det }}=L_{x} \vartheta_{x}^{*}+v_{x} x^{*}+D \xi$
$-y_{\text {det }}=L_{y} \vartheta_{y}^{*}+v_{y} y^{*}$
$\vartheta_{x, y}^{*}$ and x^{*}, y^{*} are angles and coordinates of a proton at $\mathrm{IP}, \xi \equiv \Delta p / p$ is proton momentum loss

$$
L_{x, y}, v_{x, y} \text { and } \mathrm{D} \text { are optical functions }
$$

define which t and ξ can be seen ($=$ acceptance)
example: with the same sample of diffractive protons

Scenarios

low β^{*}
$\beta^{*}=0.5 \div 2 \mathrm{~m}, \mathcal{L} \approx 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
early running: $p=5 \mathrm{TeV}, \beta^{*} \sim 3 \mathrm{~m}$
elastic acceptance
$2 \lesssim\left|t / \mathrm{GeV}^{2}\right| \lesssim 10$
resolution
$\sigma(\vartheta) \approx 15 \mu \mathrm{rad}$

$$
\sigma(\xi) \approx 1 \div 6 \cdot 10^{-3}
$$

$\frac{\beta^{*}=90 \mathrm{~m}}{\mathcal{L} \approx 10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}}$
elastic acceptance

$$
10^{-2}<\left|t_{y} / \mathrm{GeV}^{2}\right| \lesssim 10
$$

resolution
$\sigma(\vartheta) \approx 1.7 \mu \mathrm{rad}$
$\sigma(\xi) \approx 6 \div 15 \cdot 10^{-3}$
all ξ seen, universal optics
diffraction, high $|t|$ elastic scattering
diffraction, mid $|t|$ elastic scattering, total cross section
$\frac{\beta^{*}=1535 \mathrm{~m}}{\mathcal{L} \approx 10^{28} \div 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}}$
elastic acceptance
$3 \cdot 10^{-3}<\left|t / \mathrm{GeV}^{2}\right|<0.5$
resolution
$\sigma(\vartheta) \approx 0.3 \mu \mathrm{rad}$
$\sigma(\xi) \approx 2 \div 10 \cdot 10^{-3}$
all ξ seen
total cross section, low $|t|$ elastic scattering

Total Cross Section

- Luminosity Independent Method
- based on Optical theorem: $\sigma_{\text {tot }} \propto \Im A(t=0)$

$$
\sigma_{\text {tot }}=\frac{1}{1+\varrho^{2}} \frac{\mathrm{~d} N /\left.\mathrm{d} t\right|_{0}}{N_{\mathrm{el}}+N_{\text {inel }}}, \quad \mathcal{L}=\left(1+\varrho^{2}\right) \frac{\left(N_{\mathrm{el}}+N_{\text {inel }}\right)^{2}}{\mathrm{~d} N /\left.\mathrm{d} t\right|_{0}}
$$

		$\beta^{*}=90 \mathrm{~m}$	1535 m
$\mathrm{~d} N /\left.\mathrm{d} t\right\|_{0}$	Extrapolation of elastic rate to $t=0$	4%	0.2%
N_{el}	Total elastic rate (correlated with extrapolation)	2%	0.1%
$N_{\text {inel }}$	Total inelastic rate (error dominated by Single Diffractive trigger losses)	1%	0.8%
$\varrho \equiv \Re A(t) /\left.\Im A(t)\right\|_{t=0}$	Error contribution from $\left(1+\varrho^{2}\right)$ (using full COMPETE error band)	1.2%	

Table 1: Uncertainty estimates

Total Cross Section - details

- exponential extrapolation

- coulomb interference \Rightarrow CKL formula

- inelastic rate - dominant trigger loss

Early Measurements with RP

- the low β^{*} optics: $p=5 \mathrm{TeV}, \beta^{*}=3 \mathrm{~m}$
- acceptance: $0.02<\xi<0.18$
- resolution: $\sigma(\xi) \lesssim 6 \cdot 10^{-3}$

1) SD, using horizontal RPs
$-\mathrm{d} \sigma^{\mathrm{SD}} / \mathrm{d} M$ at high masses $1.4 \mathrm{TeV}<M<4.2 \mathrm{TeV}, \sigma(M) / M \approx 2 \div 4 \%$

2) DPE, using horizontal RPs
$-\mathrm{d} \sigma^{\mathrm{DPE}} / \mathrm{d} M$ at high masses $0.2 \mathrm{TeV}<M<1.8 \mathrm{TeV}, \sigma(M) / M \approx 2.1 \div 3.5 \%$

3) ES, using vertical RPs
$-\mathrm{d} \sigma^{\mathrm{ES}} / \mathrm{d} t, 2 \lesssim|t| \lesssim 10 \mathrm{GeV}^{2}, \sigma(t) \approx 0.2 / \sqrt{|t|}$

Early Measurements with T1 and T2

- charged multiplicity studies
- important implications for cosmic ray physcis
- measurement of rapidity gaps
non-diffractive

single diffractive

Conclusions

- status
- detectors partially installed, fully installed by ...
- TOTEM ready for LHC restart
- beam conditions
- TOTEM will run under all beam conditions
- TOTEM will need high β^{*} optics \rightarrow will require $\beta^{*}=90 \mathrm{~m}$ optics for early running

Early measurements

- low β^{*}
- study of SD and DPE at high masses
- elastic scattering at high $|t|$
- measurement of forward charged multiplicity
- $\beta^{*}=90 \mathrm{~m}$
-5% measurement of $\sigma_{\text {tot }}$
- inclusive studies of the main diffractive processes
- elastic scattering already in a wide range of t
- measurement of forward charged multiplicity

Later

- precision $\sigma_{\text {tot }}$ measurement $(1 \div 2 \%)$, will need the $\beta^{*}=1535 \mathrm{~m}$ optics at dedicated short TOTEM runs
- an extensive physics programme together with CMS

Thank you for your attention

Backup slides

Kinematics

- using small ϑ and high energy approximation

$$
\begin{aligned}
& \mathbf{p}_{1}=p_{\text {nom }}\left(1+\xi_{1}\right)\left(\begin{array}{c}
\vartheta_{1} \cos \varphi_{1} \\
\vartheta_{1} \sin \varphi_{1} \\
1
\end{array}\right) \\
& \mathbf{p}_{2}=-p_{\text {nom }}\left(1+\xi_{2}\right)\left(\begin{array}{c}
\vartheta_{2} \cos \varphi_{2} \\
\vartheta_{2} \sin \varphi_{2} \\
1
\end{array}\right)
\end{aligned}
$$

- momentum transfer (capital P denotes four-momentum)

$$
t_{1}=\left(P_{1}^{\prime}-P_{1}\right)^{2} \approx-p_{\text {nom }}^{2}\left(1+\xi_{1}\right)^{2} \vartheta_{1}^{2}
$$

- rapidity

$$
y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
$$

- pseudorapidity

$$
\eta=-\ln \tan \frac{\vartheta}{2}
$$

\longleftarrow for proton of $p=7 \mathrm{TeV}$

Optics details

- $\varepsilon=$ emittance (3.75 normal, 1 reduced for low β^{*} optics)
- $\gamma=E / m_{0}$ relativistic factor of proton
- proton trajectory

$$
x(s)=\sqrt{\varepsilon \beta(s)} \cos \phi(s)+D(s) \bar{\xi}
$$

- high $\beta^{*} \Rightarrow$ thick beam \Rightarrow need for parallel-to-point focusing \equiv negligible v-terms
- optical functions

$$
\begin{gathered}
v(s)=\sqrt{\frac{\beta(s)}{\beta^{*}}} \cos \phi(s) \\
L(s)=\sqrt{\beta(s) \beta^{*}} \sin \phi(s) \\
\phi(s)=\int_{0}^{s} \frac{\mathrm{~d} s^{\prime}}{\beta\left(s^{\prime}\right)} \\
\sigma(\text { vertex })=\sqrt{\frac{\varepsilon \beta^{*}}{\gamma}} \\
\sigma(\text { beam divergence })=\sqrt{\frac{\varepsilon}{\beta^{*} \gamma}}
\end{gathered}
$$

- details: see Ref. [1]

Scenarios

- $p=5 \mathrm{TeV}, \beta^{*} \sim 3 \mathrm{~m}, \mathcal{L}=$ low for early runs, $\approx 10^{33}$ later
- $\sigma($ vertex $) \approx 32 \mu \mathrm{~m}, \sigma$ (beam divergence) $\approx 16 \mu \mathrm{rad}$
- only t_{y} practically resolvable
- elastic acceptance: $2 \lesssim\left|t / \mathrm{GeV}^{2}\right| \lesssim 10$
- reco. precision: $\sigma(\vartheta) \approx 15 \mu \mathrm{rad}, \sigma(\xi) \approx 0.006 \div 0.01$
\Rightarrow diffraction, high $|t|$ elastic scattering
- $p=7 \mathrm{TeV}, \beta^{*}=90 \mathrm{~m}, \mathcal{L} \approx 10^{30}$
- $\sigma($ vertex $) \approx 212 \mu \mathrm{~m}, \sigma$ (beam divergence) $\approx 2.3 \mu \mathrm{rad}$
- vertical parallel-to-point focusing, all ξ seen
- $L_{x} \approx 0 \Rightarrow$ only t_{y} practically resolvable
- elastic acceptance: $10^{-2}<\left|t_{y} / \mathrm{GeV}^{2}\right| \lesssim 10$
- reco. precision: $\sigma(\vartheta) \approx 1.7 \mu \mathrm{rad}, \sigma(\xi) \approx 0.006$
\Rightarrow diffraction, mid $|t|$ el. scat., total cross section
- $p=7 \mathrm{TeV}, \beta^{*}=1535 \mathrm{~m}, \mathcal{L} \approx 10^{28} \div 10^{29}$
- $\sigma($ vertex $) \approx 450 \mu \mathrm{~m}, \sigma$ (beam divergence $) \approx 0.3 \mu \mathrm{rad}$
- parallel-to-point focusing, all ξ seen
- elastic acceptance: $3 \cdot 10^{-3}<\left|t / \mathrm{GeV}^{2}\right|<0.5$
- reco. precision: $\sigma(\vartheta) \approx 0.3 \mu \mathrm{rad}, \sigma(\xi) \approx 0.005$
\Rightarrow total cross section, low $|t|$ elastic scattering

Telescope T1

- 5 planes, each formed by 6 trapezoidal CSC detectors
-3° rotation and overlap between adjacent planes
- Resolution $\approx 0.8 \mathrm{~mm}$
- CSC detector
- 3 coordinates: 2 cathode strips, 1 anode wire
- Anode wires: diameter $30 \mu \mathrm{~m}, 3 \mathrm{~mm}$ pitch
- Cathode strips: 4.5 mm width, 5 mm pitch
- Trigger with anode wires
- Gas Mixture $\mathrm{Ar} / \mathrm{CO}_{2} / \mathrm{CF}_{4}$
- Gas gap: 10 mm
- Max size: $\approx 1 \mathrm{~m} x 0.68 \mathrm{~m}$

Telescope T2

- T2: 10 planes formed by 20 GEM semi-circular modules
- back-to-back assembly and overlap between modules
- double read-out: strips for radial position, pads for both rad and azimuthal
- Trigger from Pads, 1560/chamber,
- triple GEM detectors
- gas detector, radiation hard, high rate, good spatial, and timing resolution
- Electrodes: $50 \mu \mathrm{~m}$ kapton $+2 \times 5 \mu \mathrm{~m} \mathrm{Cu}$
- Density: $50-100$ holes $/ \mathrm{mm}^{2}$
- Electric field (channel) $\approx 100 \mathrm{KV} / \mathrm{cm} \Rightarrow$ electron cascade
- Gain: 10-100

Trigger Schemes

Elastic Trigger:

Inelastic Rate Measurement

Measurement of the inelastic rate

- Inelastic double arm trigger: robust against background, inefficient at small M
- Inelastic single arm trigger: suffers from beam-gas + halo background, best efficiency
- Inelastic triggers and proton (SD, DPE): cleanest trigger, proton inefficiency to be extrapolated
- Trigger on non-colliding bunches to determine beam-gas + halo rates.
- Vertex reconstruction with T1, T2 to suppress background
- Extrapolation of diffractive cross-section to large $1 / \mathrm{M}^{2}$ assuming $\mathrm{d} \sigma / \mathrm{dM}^{2} \sim 1 / \mathrm{M}^{2}$:
$-\mathrm{d} \sigma_{\mathrm{SD}} / \mathrm{dM}$ can be measured with high β optics, not with low β (only for very high M)

Pseudorapidity Distributions for SD

