Soft Physics at the LHC with TOTEM

Jan Kašpar CERN PH-TOT and

CERN PH-TOT and Institute of Physics of the AS CR on behalf of the **TOTEM Collaboration**

La Thuile, March 3, 2009

TOTEM Physics Programme

Total cross section

ultimately $\approx 1\%$ precision

Elastic scattering

wide t range

Hard and Soft Diffraction

Dominant Event Classes in pp Collisions

Non-diffractive events

- exchange of colour: Initial hadrons acquire colour and break up
- rapidity filled in hadronisation

exponential suppression of rapidity gaps

$$\operatorname{prob}(\Delta \eta) \stackrel{\downarrow}{\sim} \exp^{-\lambda \, \Delta \eta}$$

Diffractive events

- exchange of colour singlets with vacuum quantum numbers ("Pomerons")
- rapidity gaps

 $\operatorname{prob}(\Delta \eta) \sim \operatorname{const.}$

• (often) forward protons

Why...

Elastic scattering (diffraction in general)

- theoretical understanding not complete
- number of approaches: Regge, geometrical, eikonal,
 QCD, . . . ⇒ rather incompatible predictions
- intimately related to the structure of proton

Total cross section

- various models/approaches: $\sigma_{\rm tot} \sim \ln s$, $\sigma_{\rm tot} \sim \ln^2 s$, $\sigma_{\rm tot} \sim s^{\alpha-1}$
- predictions for $\sqrt{s}=14~{\rm TeV}$: $90~{\rm mb}<\sigma_{\rm tot}<130~{\rm mb}\Rightarrow 40\%$ uncertainty
- available data not decisive (incompatible CDF/E810 measurements)
- implications to cosmic ray physics etc.

TOTEM = precise and decisive measurement

TOTEM Detectors

- physics requirements: forward proton detectors and large pseudorapidity coverage
- Roman Pots
 - measurement of forward protons
- telescopes **T1** and **T2**: tracking of charged particles produced in inelastic events
 - vertex reconstruction
 - measurement of inelastic rate
- all detectors symmetrically on both sides of IP5
- all detectors L1 trigger capable

Acceptance of TOTEM Detectors

Roman Pots

- stations at -200, -147, +147 and +220 m (measured from IP5)
- each station 2 units
- each unit 2 vertical and one horizontal RP
- each RP 10 strip silicon detectors

- *movable* insertions
 - instable beam \rightarrow safe position
 - measurement: as close to beam as possible $(10\sigma + 0.5 \text{ mm})$
 - → measurement of very forward protons

thin window $150~\mu\mathrm{m}$

overlap ↓ alignment

Silicon Detectors

- each RP: 5×2 (back-to-back mounted) strip silicon detectors
- strip pitch $66 \ \mu \mathrm{m}$
- detection of low angles \Rightarrow "edge less": only $\approx 50~\mu\mathrm{m}$ dead area
- L1 trigger capability

- installation ongoing, 220 m stations fully equipped by June
- for safety reasons (high background) 147 m stations only partially equipped (by June)

Telescope T1

(in the center of the CMS end cup)

- 1 station per side of IP5
- each station: 5 planes
- each plane: 6 trapezoidal CSC detectors
- L1 trigger capability
- Cathode Strip Chamber detector
 - 3 coordinates: 2 cathode strips, 1 anode wire
 - Resolution $\approx 1 \text{ mm}$
- installation foreseen for May/June (eventually September)

Telescope T2

(after CMS HF calorimeter)

- one station on each side of IP5
- each station: two halves (left/right)
- each half: 5×2 (back-to-back mounted) GEM detectors
- L1 trigger capability
- triple Gas Electron Multiplier detectors
 - double readout: strips (radial) and pads (coarse radial and azimuthal)
 - resolution: radial 0.15 mm, azimuthal 0.8°

• installation ongoing, fully finished by May

Optics

 $\begin{aligned} & \text{proton transport equation} \\ & x_{\text{det}} = L_x \vartheta_x^* + v_x x^* + D\xi \\ & y_{\text{det}} = L_y \vartheta_y^* + v_y y^* \end{aligned}$

 $\overline{\vartheta_{x,y}^*}$ and x^*,y^* are angles and coordinates of a proton at IP, $\xi\equiv\Delta p/p$ is proton momentum loss

 $L_{x,y}, v_{x,y}$ and $\stackrel{}{\mathsf{D}}$ are optical functions \downarrow define which t and ξ can be seen (\equiv acceptance) \downarrow

example: with the same sample of diffractive protons

Scenarios

low β^*

$$\beta^* = 0.5 \div 2 \text{ m}$$
, $\mathcal{L} \approx 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ early running: $p = 5 \text{ TeV}$, $\beta^* \sim 3 \text{ m}$

elastic acceptance
$$2 \leq |t/\text{GeV}^2| \leq 10$$

resolution
$$\sigma(\vartheta) \approx 15 \,\mu\mathrm{rad}$$

$$\sigma(\xi) \approx 1 \div 6 \cdot 10^{-3}$$

$$\textit{diffraction, high} \ |t| \ \textit{elastic scattering}$$

$$\beta^* = 90 \,\mathrm{m}$$

$$\mathcal{L} \approx 10^{30} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

elastic acceptance
$$10^{-2} < |t_y/{\rm GeV^2}| \lesssim 10$$

resolution
$$\sigma(\vartheta) \approx 1.7 \ \mu \mathrm{rad}$$
 $\sigma(\xi) \approx 6 \div 15 \cdot 10^{-3}$

all ξ seen, universal optics

diffraction, mid
$$|t|$$
 elastic scattering,
total cross section

$\beta^* = 1535 \,\mathrm{m}^{-1}$

$$\mathcal{L} \approx 10^{28} \div 10^{29} \text{ cm}^{-2} \text{s}^{-1}$$

elastic acceptance
$$3\cdot 10^{-3} < |t/{\rm GeV^2}| < 0.5$$

resolution
$$\sigma(\vartheta) \approx 0.3 \; \mu \text{rad}$$

$$\sigma(\xi) \approx 2 \div 10 \cdot 10^{-3}$$

all
$$\xi$$
 seen

total cross section, low |t| elastic scattering

Total Cross Section

• Luminosity Independent Method – based on Optical theorem: $\sigma_{\rm tot} \propto \Im A(t=0)$

$$\sigma_{
m tot} = rac{1}{1+arrho^2}rac{{
m d}N/{
m d}t|_0}{N_{
m el}+N_{
m inel}}, \qquad \qquad \mathcal{L} = (1+arrho^2)rac{(N_{
m el}+N_{
m inel})^2}{{
m d}N/{
m d}t|_0}$$

ALCOHOL NEW YORK	公共	$\beta^* = 90 \text{ m}$	1535 m
$\mathrm{d}N/\mathrm{d}t _0$	Extrapolation of elastic rate to $t=0$	4%	0.2%
$N_{ m el}$	Total elastic rate (correlated with extrapolation)	2%	0.1%
$N_{ m inel}$	Total inelastic rate (error dominated by Single Diffractive trigger losses)	1%	0.8%
$\varrho \equiv \Re A(t)/\Im A(t) _{t=0}$	Error contribution from $(1+\varrho^2)$ (using full COMPETE error band)	1.2%	%
10000000000000000000000000000000000000	Total for $\sigma_{ m tot}$	5%	$1 \div 2\%$
	Total for ${\cal L}$	7%	2%

Table 1: Uncertainty estimates

Total Cross Section – details

• exponential extrapolation

• inelastic rate – dominant trigger loss

Early Measurements with RP

- the low β^* optics: p = 5 TeV, $\beta^* = 3 \text{ m}$
 - acceptance: $0.02 < \xi < 0.18$
 - resolution: $\sigma(\xi) \lesssim 6 \cdot 10^{-3}$
- 1) SD, using horizontal RPs
 - $-d\sigma^{\rm SD}/dM$ at high masses 1.4 TeV < M < 4.2 TeV, $\sigma(M)/M \approx 2 \div 4\%$

- 2) DPE, using horizontal RPs
 - $-\mathrm{d}\sigma^{\mathrm{DPE}}/\mathrm{d}M$ at high masses $0.2~\mathrm{TeV} < M < 1.8~\mathrm{TeV}$, $\sigma(M)/M \approx 2.1 \div 3.5\%$

- 3) ES, using vertical RPs
 - $-\operatorname{d}\sigma^{\mathrm{ES}}/\operatorname{d}t$, $2\lesssim |t|\lesssim 10~\mathrm{GeV}^2$, $\sigma(t)pprox 0.2/\sqrt{|t|}$

Early Measurements with T1 and T2

- charged multiplicity studiesimportant implications for cosmic ray physcis
- measurement of rapidity gaps

Conclusions

- status
 - detectors partially installed, fully installed by ...
 - TOTEM ready for LHC restart
- beam conditions
 - TOTEM will run under all beam conditions
 - TOTEM will need high β^* optics \rightarrow will require $\beta^* = 90$ m optics for early running

Early measurements

- low β*
 - study of SD and DPE at high masses
 - elastic scattering at high |t|
 - measurement of forward charged multiplicity
- $\beta^* = 90 \text{ m}$
 - -5% measurement of $\sigma_{\rm tot}$
 - inclusive studies of the main diffractive processes
 - elastic scattering already in a wide range of t
 - measurement of forward charged multiplicity

Later

- precision $\sigma_{\rm tot}$ measurement (1 ÷ 2%), will need the $\beta^*=1535\,{\rm m}$ optics at dedicated short TOTEM runs
- an extensive physics programme together with CMS

Kinematics

ullet using small artheta and high energy approximation

$$\mathbf{p}_1 = p_{\text{nom}}(1+\xi_1) \begin{pmatrix} \vartheta_1 \cos \varphi_1 \\ \vartheta_1 \sin \varphi_1 \\ 1 \end{pmatrix}$$

$$\mathbf{p}_2 = -p_{\text{nom}}(1+\xi_2) \begin{pmatrix} \vartheta_2 \cos \varphi_2 \\ \vartheta_2 \sin \varphi_2 \\ 1 \end{pmatrix}$$

• momentum transfer (capital *P* denotes four-momentum)

$$t_1 = (P_1' - P_1)^2 \approx -p_{\text{nom}}^2 (1 + \xi_1)^2 \vartheta_1^2$$

rapidity

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$

• pseudorapidity

$$\eta = -\ln \tan \frac{\vartheta}{2}$$

 \leftarrow for proton of p = 7 TeV

Optics details

- ε = emittance (3.75 normal, 1 reduced for low β^* optics)
- $\gamma = E/m_0$ relativistic factor of proton
- proton trajectory

$$x(s) = \sqrt{\varepsilon \beta(s)} \cos \phi(s) + D(s)\xi$$

- high $\beta^* \Rightarrow$ thick beam \Rightarrow need for parallel-to-point focusing \equiv negligible v-terms
- optical functions

$$v(s) = \sqrt{\frac{\beta(s)}{\beta^*}} \cos \phi(s)$$

$$L(s) = \sqrt{\beta(s)\beta^*} \sin \phi(s)$$

$$\phi(s) = \int_0^s \frac{\mathrm{d}s'}{\beta(s')}$$

$$\sigma(\text{vertex}) = \sqrt{\frac{\varepsilon\beta^*}{\gamma}}$$

$$\sigma(\text{beam divergence}) = \sqrt{\frac{\varepsilon}{\beta^*\gamma}}$$

• details: see Ref. [1]

Scenarios

- p = 5 TeV, $\beta^* \sim 3 \text{ m}$, $\mathcal{L} = low$ for early runs, $\approx 10^{33}$ later
- $\sigma(\text{vertex}) \approx 32 \, \mu\text{m}$, $\sigma(\text{beam divergence}) \approx 16 \, \mu\text{rad}$
- \bullet only t_y practically resolvable
- elastic acceptance: $2 \lesssim |t/\text{GeV}^2| \lesssim 10$
- reco. precision: $\sigma(\vartheta) \approx 15~\mu\mathrm{rad}$, $\sigma(\xi) \approx 0.006 \div 0.01$
- \Rightarrow diffraction, high |t| elastic scattering
- $p = 7 \text{ TeV}, \beta^* = 90 \text{ m}, \mathcal{L} \approx 10^{30}$
- $\sigma(\text{vertex}) \approx 212 \ \mu\text{m}$, $\sigma(\text{beam divergence}) \approx 2.3 \ \mu\text{rad}$
- vertical parallel-to-point focusing, all ξ seen
- $L_x \approx 0 \Rightarrow$ only t_y practically resolvable
- elastic acceptance: $10^{-2} < |t_y/{\rm GeV^2}| \lesssim 10$
- reco. precision: $\sigma(\vartheta) \approx 1.7 \; \mu \mathrm{rad}$, $\sigma(\xi) \approx 0.006$
- \Rightarrow diffraction, mid |t| el. scat., total cross section
- $p = 7 \text{ TeV}, \beta^* = 1535 \text{ m}, \mathcal{L} \approx 10^{28} \div 10^{29}$
- $\sigma(\text{vertex}) \approx 450 \ \mu\text{m}$, $\sigma(\text{beam divergence}) \approx 0.3 \ \mu\text{rad}$
- parallel-to-point focusing, all ξ seen
- elastic acceptance: $3 \cdot 10^{-3} < |t/\text{GeV}^2| < 0.5$
- reco. precision: $\sigma(\vartheta) \approx 0.3 \, \mu \mathrm{rad}$, $\sigma(\xi) \approx 0.005$
- \Rightarrow total cross section, low |t| elastic scattering

Telescope T1

- 5 planes, each formed by 6 trapezoidal CSC detectors
 - -3° rotation and overlap between adjacent planes
 - Resolution $\approx 0.8 \text{ mm}$
- CSC detector
- 3 coordinates: 2 cathode strips, 1 anode wire
- Anode wires: diameter $30 \, \mu \text{m}$, $3 \, \text{mm}$ pitch
- Cathode strips: 4.5 mm width, 5 mm pitch
- Trigger with anode wires
- Gas Mixture $Ar/CO_2/CF_4$
- Gas gap: 10 mm
- Max size: $\approx 1 \text{ m} \times 0.68 \text{ m}$

Telescope T2

- T2: 10 planes formed by 20 GEM semi-circular modules
 - back-to-back assembly and overlap between modules
 - double read-out: strips for radial position, pads for both rad and azimuthal
 - Trigger from Pads, 1560/chamber,
- triple GEM detectors
 - gas detector, radiation hard, high rate, good spatial, and timing resolution
 - Electrodes: $50 \mu m$ kapton + $2 \times 5 \mu m$ Cu
 - Density: $50 100 \text{ holes/mm}^2$
 - Electric field (channel) $\approx 100 \text{ KV/cm} \Rightarrow \text{electron cascade}$
- -Gain: 10 100

Trigger Schemes

Inelastic Rate Measurement

Measurement of the inelastic rate

- Inelastic double arm trigger: robust against background, inefficient at small M
- Inelastic single arm trigger: suffers from beam-gas + halo background, best efficiency
- Inelastic triggers and proton (SD, DPE): cleanest trigger, proton inefficiency to be extrapolated
- Trigger on non-colliding bunches to determine beam-gas + halo rates.
- Vertex reconstruction with T1, T2 to suppress background
- Extrapolation of diffractive cross-section to large $1/M^2$ assuming $d\sigma/dM^2 \sim 1/M^2$:
 - $d\sigma_{SD}/dM$ can be measured with high β optics, not with low β (only for very high M)

	σ [mb]	trigger loss [mb]	systematic error after extrapolations [mb]
Non-diffractive inelastic	58	0.06	0.06
Single diffractive	14	3	0.6
Double diffractive	7	0.3	0.1
Double Pomeron	1	0.2	0.02
Total	80	3.6	0.8

Pseudorapidity Distributions for SD

