La Thuile, 3 March ‘09

Models of Neutrino Masses and Mixings

G. Altarelli

Universita' di Roma Tre/CERN

v Oscillations Imply Different vMasses

flavour mass

$$
\left[\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right]=U\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

U : mixing matrix
$v_{\mathrm{e}}=\cos \theta v_{1}+\sin \theta v_{2} \quad$ ég 2 flav. $v_{\mu}=-\sin \theta v_{1}+\cos \theta v_{2}$
$v_{1,2}$: different mass, different x-dep:

Stationary source:

Stodolsky

$$
v_{a}(x)=e^{i P_{a} x} v_{a} \quad P_{a}^{2}=E^{2}-m_{a}^{2}
$$

$P\left(v_{e}<->v_{\mu}\right)=\left|<v_{\mu}(L)\right| v_{e}>\left.\right|^{2}=\sin ^{2}(2 \theta) \cdot \sin ^{2}\left(\Delta m^{2} L / 4 E\right)$
At a distance $L_{,} v_{\mu}$ from μ^{-}decay can produce e^{-}via charged weak interact's

Solid evidence for solar and atmosph. v oscillations

$\Delta \mathrm{m}^{2}$ values fixed:
$\Delta \mathrm{m}^{2}{ }_{\mathrm{atm}} \sim 2.510^{-3} \mathrm{eV}^{2}$,
$\Delta \mathrm{m}^{2}{ }_{\text {sol }} \sim 810^{-5} \mathrm{eV}^{2}$

Miniboone has not confirmed LSND

mixing angles:
θ_{12} (solar) large
θ_{23} (atm) large, \sim maximal
θ_{13} (CHOOZ) small

v oscillations measure $\Delta \mathrm{m}^{2}$. What is m^{2} ?

$$
\Delta \mathrm{m}_{\mathrm{atm}}^{2} \sim 2.510^{-3} \mathrm{eV}^{2} ; \quad \Delta \mathrm{m}_{\text {sun }} \sim 810^{-5} \mathrm{eV}^{2}
$$

- Direct limits

$$
\begin{array}{ll}
m_{c e}=\left|\Sigma U_{e i}^{2} m_{l}\right| & m_{" v u "}<170 \mathrm{KeV} \\
m_{" v \tau "}<18.2 \mathrm{MeV}
\end{array}
$$

- $0 \vee \beta \beta \quad \mathrm{~m}_{\mathrm{ee}}<0.3-0.7-$? eV (nucl. matrix elmnts) Evidence of signal? Klapdor-Kleingrothaus
- Cosmology $\quad \Omega_{v} \mathrm{~h}^{2} \sim \sum_{i} \mathrm{~m}_{\mathrm{i}} / 94 \mathrm{eV} \quad\left(\mathrm{h}^{2} \sim 1 / 2\right)$
$\sum_{i} \mathrm{~m}_{\mathrm{i}}<0.17-0.68-2.1 \mathrm{eV}$ (dep. on data\&priors)
Any v mass $<0.06-0.23-0.7 \mathrm{eV}$
$0 v \beta \beta$ experiments

$<\mathrm{m}_{v}>^{2}=\frac{1}{\mathrm{G}(\mathrm{Q}, \mathrm{Z}) \mid \mathrm{M}_{\text {nuel }^{2} \tau}}$
phase space matrix elmnt large uncrtnts

Experiment	Isotope	$\tau_{1 / 2}{ }^{0 v}>$	range $<\mathrm{m}_{\mathrm{v}}>$	
Heidelberg Moscow 2001	${ }^{76} \mathrm{Ge}$	1.910^{25}	$0.3-2.5$	claimed evidence
IGEX 2002	${ }^{76} \mathrm{Ge}$	1.5710^{25}	$0.3-2.5$	only by a part
Cuoricino 2005	${ }^{130} \mathrm{Te}$	210^{24}	$0.3-0.7$	of the collaboration
NEMO 2005	${ }^{100} \mathrm{Mo}$	4.610^{23}	$0.6-1.0$	

$$
\mathrm{m}_{\mathrm{ee}}=\left\langle\mathrm{m}_{v}\right\rangle=\left|\sum \mathrm{U}_{\mathrm{ej}}^{2} \mathrm{~m}_{\mathrm{j}} \mathrm{e}^{\mathrm{i} \alpha \mathrm{j}}\right|
$$

Detecting $0 v \beta \beta$ would prove L non conservation

Future: a factor ~ 10 improvement in next decade

$0 \nu \beta \beta$ Decay Measurements

Survey of some past and present experiments

isotope	experiment	latest result	$\begin{gathered} Q_{\beta \beta} \\ {[\mathrm{keV}]} \end{gathered}$	nat.	i.a. enrich.	exposure $[\mathrm{kg} \times \mathrm{y}]$	technique	material	$\begin{gathered} \tau_{1 / 2}^{0 \nu} \\ {\left[10^{23} \mathrm{y}\right]} \end{gathered}$	$\begin{aligned} & \left\langle m_{\nu}\right\rangle \\ & {[\mathrm{eV}]} \end{aligned}$
${ }^{48} \mathrm{Ca}$	Elegant VI	2004[11]	4271	0.19	-	4.2	scintillator	CaF_{2}	0.14	$7.2 \div 44.70$
${ }^{76} \mathrm{Ge}$	Heidelberg/Moscow	2004[17]	2039	7.8	87	71.7	ionization	Ge	120.0	0.44
${ }^{82} \mathrm{Se}$	NEMO-3	2007[22]	2995	9.2	97	1.8	tracking	Se	1.2	$1.60 \div 4.50$
${ }^{100} \mathrm{Mo}$	NEMO-3	2007[22]	3034	9.6	$95 \div 99$	13.1	tracking	Mo	5.8	$0.60 \div 2.40$
${ }^{116} \mathrm{Cd}$	Solotvina	2003[12]	2805	7.5	83	0.5	scintillator	CdWO_{4}	1.7	1.70
${ }^{130} \mathrm{Te}$	Cuoricino	2007[20]	2529	33.8	-	11.8	bolometer	TeO_{2}	30.0	$0.16 \div 0.84$
${ }^{136} \mathrm{Xe}$	DAMA	2002[23]	2476	8.9	69	4.5	scintillator	Xe	12.0	$1.10 \div 2.90$
${ }^{150} \mathrm{Nd}$	Irvine TPC	1997[14]	3367	5.6	91	0.01	tracking	$\mathrm{Nd}_{2} \mathrm{O}_{3}$	0.012	3.00
${ }^{100} \mathrm{Gd}$	Solotvina	2001[13]	1791	21.8	-	1.0	scintillator	$\mathrm{Gd}_{2} \mathrm{SiO}_{5}$	0.013	26.00

$$
\begin{aligned}
0.16 & <m_{\beta \beta} / \mathrm{eV}<0.52 \\
0 & \leq m_{\beta \beta} / \mathrm{eV}<0.23 \\
0 & \text { (HM claim), } \\
0 m_{\beta \beta} / \mathrm{eV}<0.85 & \\
& \text { (Cuoricino, "favorable" NME) } \\
& \text { Arnaboldi et al }
\end{aligned}
$$

The Heidelberg-Moscow claim not disproved by Cuoricino depending on nuclear matrix elements

v oscillations measure $\Delta \mathrm{m}^{2}$. What is m^{2} ?

$$
\Delta \mathrm{m}^{2}{ }_{\mathrm{atm}} \sim 2.510^{-3} \mathrm{eV}^{2} ; \quad \Delta \mathrm{m}_{\text {sun }} \sim 810^{-5} \mathrm{eV}^{2}
$$

- Direct limits

$$
\begin{array}{ll}
m_{e c}=\left|\Sigma U_{e i}^{2} m_{i}\right| & m_{" v \mu "}<170 \mathrm{KeV} \\
m_{v v \tau}<18.2 \mathrm{MeV}
\end{array}
$$

- $0 \vee \beta \beta \quad \mathrm{~m}_{\mathrm{ee}}<0.3-0.7-$? eV (nucl. matrix elmnts) Evidence of signal? Klapdor-Kleingrothaus
- Cosmology $\quad \Omega_{v} \mathrm{~h}^{2} \sim \sum_{i} \mathrm{~m}_{\mathrm{i}} / 94 \mathrm{eV} \quad\left(\mathrm{h}^{2} \sim 1 / 2\right)$
$\sum_{i} \mathrm{~m}_{\mathrm{i}}<0.17-0.68-2.1 \mathrm{eV}$ (dep. on data\&priors)
\rightarrow Any v mass $<0.06-0.23-0.7 \mathrm{eV}$
WMAP, SDSS, 2dFGRS, Ly- α

Bounds from cosmology

By itself CMB is only mildly sensitive to $\Sigma=\sum_{i} \mathrm{~m}_{\mathrm{i}}$
Only in combination with LSS the limit becomes stronger. And even stronger by adding the Lyman alpha forest data (but some tension among the data).

> Fogli et al ‘08

Case	Cosmological data set	$\Sigma($ at $2 \sigma)$
1	CMB	$<1.19 \mathrm{eV}$
2	CMB + LSS	$<0.71 \mathrm{eV}$
3	CMB + HST + SN-Ia	$<0.75 \mathrm{eV}$
4	CMB + HST + SN-Ia + BAO	$<0.60 \mathrm{eV}$
5	CMB + HST + SN-Ia + BAO + Ly α	$<0.19 \mathrm{eV}$

CMB Cosmic Microwave Background: WMAP+ ACBAR+...... LSS Large Scale Structure (2dFGRS, SDSS)
HST +SN-la Hubble Space Tel. [h=0.72(7)]+ SuperNovae
\oplus BAO Baryonic Acoustic Oscillation (SDSS)

Neutrino masses are really special!
 ``` mt/(\Deltam

\mp@subsup{}{\textrm{atm}}{}\mp@subsup{)}{}{1/2}~1\mp@subsup{0}{}{12```
}

Massless \(v\) 's?
- no \(V_{R}\)
- L conserved

Small v masses?
- \(V_{R}\) very heavy
- L not conserved

A very natural and appealing explanation:
v's are nearly massless because they are Majorana particles and get masses through L non conserving interactions suppressed by a large scale \(\mathrm{M} \sim \mathrm{M}_{\text {Gut }}\)
\[
\begin{array}{ll}
m_{v} \sim \frac{m^{2}}{M} & m: \leq m_{t} \sim v \sim 200 \mathrm{GeV} \\
M: \text { scale of } L \text { non cons. }
\end{array}
\]

Note:
\[
\begin{aligned}
& \mathrm{m}_{\mathrm{v}} \sim\left(\Delta \mathrm{~m}^{2} \mathrm{~atm}\right)^{1 / 2} \sim 0.05 \mathrm{eV} \\
& \mathrm{~m} \sim \mathrm{v} \sim 200 \mathrm{GeV} \\
& \mathrm{M} \sim 10^{15} \mathrm{GeV}
\end{aligned}
\]

Neutrino masses are a probe of physics at \(M_{G U T}\) !

\section*{Baryogenesis by decay of heavy Majorana v's}

\section*{BG via Leptogenesis near the GUT scale}
\(\mathrm{T} \sim 10^{12 \pm 3} \mathrm{GeV}\) (after inflation) Buchmuller,Yanagida,
Only survives if \(\Delta(B-L)\) is not zero

Plumacher, Ellis, Lola,
Giudice et al, Fujii et al (otherwise is washed out at \(\mathrm{T}_{\mathrm{ew}}\) by instantons)
Main candidate: decay of lightest \(V_{R}\left(M \sim 10^{12} \mathrm{GeV}\right)\)
\(L\) non conserv. in \(V_{R}\) out-of-equilibrium decay:
\(B-L\) excess survives at \(T_{\text {ew }}\) and gives the obs. \(B\) asymmetry.
Quantitative studies confirm that the range of \(m_{i}\) from voscill's is compatible with BG via (thermal) LG

In particular the bound
was derived for hierarchy
\[
\mathrm{m}_{\mathrm{i}}<10^{-1} \mathrm{eV}
\]

Can be relaxed for degenerate neutrinos \(\mathrm{Se}_{\Theta}\) fully compatible with oscill'n data!!

Buchmuller, Di Bari, Plumacher; Giudice et al; Pilaftsis et al; Hambye et al

\section*{3-v Models}
\(\left[\begin{array}{c}v_{e} \\ v_{\mu} \\ v_{\tau}\end{array}\right]=U+\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)\)
flavour

\(\mathbf{U}=\mathbf{U}_{\text {P-MNS }}\)
Pontecorvo
Maki, Nakagawa, Sakata

In basis where \(\mathrm{e}^{-}, \mu^{-}, \tau^{-}\)are diagonal: \(\delta\) : CP violation
\(U=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23}\end{array}\right]\left[\begin{array}{lll}c_{13} & 0 & s_{13} e^{-i 8} \\ 0 & 1 & 0 \\ -\mathrm{s}_{13} \mathrm{e}^{i 8} & 0 & c_{13}\end{array}\right]\left[\begin{array}{ccc}\mathrm{c}_{12} & \mathrm{~s}_{12} & 0 \\ -\mathrm{s}_{12} & \mathrm{c}_{12} & 0 \\ 0 & 0 & 1\end{array}\right]\)
\(s=\) solar: large
\(\sim \quad\left\{\begin{array}{cc}\mathrm{c}_{13} \mathrm{C}_{12} & \mathrm{c}_{13} \mathrm{~s}_{12} \\ \ldots & \ldots \\ \ldots & \ldots\end{array}\right.\)

(some signs are conventional)
In general: \(\mathrm{U}=\mathrm{U}^{+} \mathrm{e}_{\mathrm{v}}\)

Note: \(\quad \bullet \mathrm{m}_{\mathrm{v}}\) is symmetric -phases included in \(\mathrm{m}_{\mathrm{i}}\)

Relation between masses and frequencies:
\[
\begin{aligned}
& \mathrm{P}\left(v_{\mathrm{e}}<->v_{\mu}\right)=\mathrm{P}\left(v_{\mathrm{e}}<->v_{\tau}\right)=1 / 2 \sin ^{2} 2 \theta_{12} \cdot \sin ^{2} \Delta_{\text {sun }} \\
& \mathrm{P}\left(v_{\mu}<->v_{\tau}\right)=\sin ^{2} \Delta_{\mathrm{atm}}-1 / 4 \sin ^{2} 2 \theta_{12} \cdot \sin ^{2} \Delta_{\text {sun }}
\end{aligned}
\]
\[
\Delta_{s u n}=\frac{m_{2}^{2}-m_{1}^{2}}{4 E} L \quad ; \quad \Delta_{a t m}=\frac{m_{3}^{2}-m_{1,2}^{2}}{4 E} L
\]

In our def.: \(\Delta_{\text {sun }}>0, \Delta_{\text {atm }}>\) or \(<0\)
\[
\begin{aligned}
& m_{v} \sim U^{*}\left[\begin{array}{ccc}
e^{i \alpha_{1}} m_{1} & 0 & 0 \\
0 & e^{i \alpha_{2}} m_{2} & 0 \\
0 & 0 & m_{3}
\end{array}\right] \mathrm{U}^{+} \\
& \text {In general } 9 \text { parameters: } \\
& 3 \text { masses, } 3 \text { angles, } \\
& 3 \text { phases } \\
& L^{\top} m_{v} L \quad \text { For } s_{13} \sim 0: \\
& {\left[\begin{array}{ccc}
\stackrel{0}{2} & 0 v \beta \beta & \\
m_{1} c^{2}+m_{2} s^{2} & \left(m_{1}-m_{2}\right) c s / \sqrt{2} & \left(m_{1} 1-m_{2}\right) c s / \sqrt{2} \\
\cdots & \left(m_{1} s^{2}+m_{2} c^{2}+m_{3}\right) / 2 & \left(m_{1} s^{2}+m_{2} c^{2}-m_{3}\right) / 2 \\
\cdots & \ldots & \left(m_{1} s^{2}+m_{2} c^{2}+m_{3}\right) / 2
\end{array}\right]}
\end{aligned}
\]

Defining:
\[
\begin{gathered}
\Delta m_{\text {atm }}^{2}=m_{3}^{2}-m_{2}^{2}>\text { or }<0 \\
\Delta m_{\text {sol }}^{2}=m_{2}^{2}-m_{1}^{2}>0
\end{gathered}
\]
one has:
\[
\begin{aligned}
& m_{3}^{2}=\overline{m^{2}}+\frac{2}{3} \Delta m{ }_{a t m}^{2}+\frac{1}{3} \Delta m_{\text {sol }}^{2} \\
& m_{2}^{2}=\overline{m^{2}}-\frac{1}{3} \Delta m_{a t m}^{2}+\frac{1}{3} \Delta n_{\text {sol }}^{2} \\
& m_{1}^{2}=\overline{m^{2}}-\frac{1}{3} \Delta m_{a t m}^{2}-\frac{2}{3} \Delta m_{\text {sol }}^{2}
\end{aligned}
\]
and
\[
\begin{array}{cc}
\overline{m^{2}} \gg\left|\Delta m_{a t m}^{2}\right|>\Delta m_{\text {sol }}^{2} \quad \text { degenerate } \\
\Delta m_{\text {atm }}^{2}<0 & \text { inverse hierarchy } \\
\Delta n_{a t m}^{2}>0 & \text { normal hierarchy }
\end{array}
\]

\section*{Neutrino oscillation parameters}
- 2 distinct frequencies
- 2 large angles, 1 small
\begin{tabular}{|l|c|c|c|}
\hline parameter & best fit & \(2 \sigma\) & \(3 \sigma\) \\
\hline\(\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]\) & \(7.65_{-0.20}^{+0.23}\) & \(7.25-8.11\) & \(7.05-8.34\) \\
\(\left|\Delta m_{31}^{2}\right|\left[10^{-3} \mathrm{eV}^{2}\right]\) & \(2.40_{-0.11}^{+0.12}\) & \(2.18-2.64\) & \(2.07-2.75\) \\
\(\sin ^{2} \theta_{12}\) & \(0.304_{-0.016}^{+0.022}\) & \(0.27-0.35\) & \(0.25-0.37\) \\
\(\sin ^{2} \theta_{23}\) & \(0.50_{-0.06}^{+0.07}\) & \(0.39-0.63\) & \(0.36-0.67\) \\
\(\sin ^{2} \theta_{13}\) & \(0.01_{-0.011}^{+0.016}\) & \(\leq 0.040\) & \(\leq 0.056\) \\
\hline
\end{tabular}

Schwetz et al ‘08

Table 1: Global \(3 \nu\) oscillation analysis (2008): best-fit values and allowed \(n_{\sigma}\) ranges, from Ref. \({ }^{4}\).
\begin{tabular}{cccccc}
\hline \hline Parameter & \(\delta m^{2} / 10^{-5} \mathrm{eV}^{2}\) & \(\sin ^{2} \theta_{12}\) & \(\sin ^{2} \theta_{13}\) & \(\sin ^{2} \theta_{23}\) & \(\Delta m^{2} / 10^{-3} \mathrm{eV}^{2}\) \\
\hline Best fit & 7.67 & 0.312 & 0.016 & 0.466 & 2.39 \\
\(1 \sigma\) range & \(7.48-7.83\) & \(0.294-0.331\) & \(0.006-0.026\) & \(0.408-0.539\) & \(2.31-2.50\) \\
\(2 \sigma\) range & \(7.31-8.01\) & \(0.278-0.352\) & \(<0.036\) & \(0.366-0.602\) & \(2.19-2.66\) \\
\(3 \sigma\) range & \(7.14-8.19\) & \(0.263-0.375\) & \(<0.046\) & \(0.331-0.644\) & \(2.06-2.81\) \\
\hline \hline
\end{tabular}

Fogli et al '08

\section*{\(\theta_{13}\) bounds}

Fogli et al '08 \(\sin ^{2} \theta_{13}=0.016 \pm 0.010\)

The 95\% upper bound on \(\sin \theta_{13}\) is close to \(\lambda_{C}=\sin \theta_{C}\)

Measuring \(\theta_{13}\) is crucial for future \(v\)-oscill's experiments (eg CP violation)

Sensitivity to \(\sin ^{2} 2 \theta_{13}\) at \(90 \%\) CL

\(0 v \beta \beta\) would prove that \(L\) is not conserved and v's are Majorana Also can tell degenerate, inverted or normal hierarchy
\[
\left|\mathrm{m}_{\mathrm{ee}}\right|=\mathrm{c}_{13}{ }^{2}\left[\mathrm{~m}_{1} \mathrm{c}_{12}{ }^{2}+\mathrm{e}^{\mathrm{i} \alpha} \mathrm{~m}_{2} \mathrm{~s}_{12}{ }^{2}\right]+\mathrm{m}_{3} \mathrm{e}^{\mathrm{e} \beta} \mathrm{~s}_{13}{ }^{2}
\]

Degenerate: \(\sim|m|\left|\mathrm{c}_{12}{ }^{2}+\mathrm{e}^{\mathrm{id} \mathrm{s}_{12}}{ }^{2}\right| \sim|\mathrm{m}|(0.3-1)\)
\[
\left|\mathrm{m}_{\mathrm{ee}}\right| \sim|\mathrm{m}|(0.3-1) \leq 0.23-1 \mathrm{eV}
\]
\(\mathrm{IH}: \sim\left(\Delta \mathrm{m}^{2}{ }_{\text {atm }}\right)^{1 / 2}\left|\mathrm{c}_{12}{ }^{2}+\mathrm{e}^{\mathrm{i} \mathrm{s}_{12}}{ }^{2}\right|\)
\[
\left|\mathrm{m}_{\mathrm{ee}}\right| \sim(1.6-5) 10^{-2} \mathrm{eV}
\]
\(\mathrm{NH}: ~ \sim\left(\Delta \mathrm{~m}^{2}{ }_{\mathrm{sol}}\right)^{1 / 2} \mathrm{~s}_{12}{ }^{2}+\left(\Delta \mathrm{m}^{2}{ }_{\mathrm{atm}}\right)^{1 / 2} \mathrm{e}^{\mathrm{i} \beta \mathrm{s}_{13}{ }^{2} .}\)
\[
\left|\mathrm{m}_{\mathrm{ee}}\right| \sim \text { (few) } 10^{-3} \mathrm{eV}
\]

Full dependence on \(\min m_{\nu}\)

Present exp. limit: \(\mathrm{m}_{\mathrm{e}}<0.3-0.5 \mathrm{eV}\)
(and a hint of signal????? Klapdor Kleingrothaus)

\section*{General remarks}
- After KamLAND, SNO and WMAP.... not too much hierarchy is found in \(v\) masses:
\[
\mathrm{r} \sim \Delta \mathrm{~m}_{\mathrm{sol}}^{2} / \Delta \mathrm{m}_{\mathrm{atm}}^{2} \sim 1 / 30
\]

Only a few years ago could be as small as \(10^{-8}\) !
Precisely at \(3 \sigma\) : \(0.025<r<0.039\)
Schwetz et al ‘08
\[
\begin{aligned}
& \mathrm{m}_{\text {heaviest }}<0.2-0.7 \mathrm{eV} \\
& \mathrm{~m}_{\text {next }}>\sim 8 \quad 10^{-3} \mathrm{eV}
\end{aligned}
\]

For a hierarchical spectrum:
\[
\frac{m_{2}}{m_{2}} \approx \sqrt{r} \approx 0.2
\]

Comparable to \(\lambda_{\mathrm{C}}=\sin \theta_{\mathrm{C}}: \quad \lambda_{C} \approx 0.22\) or \(\sqrt{\frac{m_{\mu}}{m_{\tau}}} \approx 0.24\)
Suggests the same "hierarchy" parameters for \(\mathrm{q}, \mathrm{I}, \mathrm{v}\) (small powers of \(\lambda_{C}\))
e.g. \(\theta_{13}\) not too small!
- Still large space for non maximal 23 mixing
\[
2-\sigma \text { interval } 0.37<\sin ^{2} \theta_{23}<0.60 \quad \text { Fogli et al ‘08 }
\]

Maximal \(\theta_{23}\) theoretically hard
- \(\theta_{13}\) not necessarily too small probably accessible to exp.
Very small \(\theta_{13}\) theoretically hard

For some time people considered limiting models with \(\theta_{13}=0\) and \(\theta_{23}\) maximal and \(\theta_{12}\) generic

The most general mass matrix for \(\theta_{13}=0\) and \(\theta_{23}\) maximal is given by
(after ch. lepton diagonalization!!!):
\[
m_{v}=\left[\begin{array}{lll}
x & y & y \\
y & z & w \\
y & w & z
\end{array}\right]
\]

Neglecting Majorana phases it depends on 4 real parameters (3 mass eigenvalues and 1 mixing angle: \(\theta_{12}\))

Inspired models based on \(\mu-\tau\) symmetry Grimus, Lavoura..., Ma,.... Mohapatra, Nasri, Hai-Bo Yu

Actually, at present, since KamLAND, the most accurately known angle is \(\theta_{12}\)
\[
\text { At } \sim 1 \sigma: \quad \sin ^{2} \theta_{12}=0.294-0.331
\]
G.L.Fogli et al'08

By adding \(\sin ^{2} \theta_{12} \sim 1 / 3\) to \(\theta_{13} \sim 0, \theta_{23} \sim \pi / 4\) :
\[
U=\left[\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right]
\]

Harrison, Perkins, Scott '02

Some additional ingredient other than \(\mu-\tau\) symmetry needed!
\[
U=\left[\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right]
\]

\section*{Comparison with experiment:}

At \(1 \sigma\) : G.L.Fogli et al'08
\[
\begin{aligned}
& \sin ^{2} \theta_{12}=1 / 3: 0.29-0.33 \\
& \sin ^{2} \theta_{23}=1 / 2: 0.41-0.54 \\
& \sin ^{2} \theta_{13}=0: \quad<\sim 0.02
\end{aligned}
\]

The HPS mixing is clearly a very good approx. to the data!

\section*{Also called:}
\[
\begin{aligned}
& v_{3}=\frac{1}{\sqrt{2}}\left(-v_{\mu}+v_{\tau}\right) \\
& v_{2}=\frac{1}{\sqrt{3}}\left(v_{e}+v_{\mu}+v_{\tau}\right)
\end{aligned}
\]

\section*{A lot of model building has been devoted to TB mixing}

By adding \(\sin ^{2} \theta_{12} \sim 1 / 3\) to \(\theta_{13} \sim 0, \theta_{23} \sim \pi / 4\) :
\[
\begin{gathered}
m_{v}=\left[\begin{array}{ccc}
x & y & y \\
y & z & w \\
y & w & z
\end{array}\right] \\
\downarrow \\
\sin ^{2} 2 \theta_{12}=\frac{\text { Tribimaximal Mixing }}{(x-w-z)^{2}+8 y^{2}}
\end{gathered} \begin{aligned}
& \left.\quad \begin{array}{ccc}
x & y & y \\
y & x+v & y-v \\
y & y-v & x+v
\end{array}\right) \\
& \begin{array}{l}
\mathrm{m}_{1}=\mathrm{x}-\mathrm{y} \\
\mathrm{~m}_{2}=\mathrm{x}+2 \mathrm{y} \\
\mathrm{~m}_{3}=\mathrm{x}-\mathrm{y}+2 \mathrm{v}
\end{array}
\end{aligned}
\]

The 3 remaining parameters are the mass eigenvalues

\section*{Tribimaximal Mixing}

A simple mixing matrix compatible with all present data
\[
\begin{aligned}
& \qquad=\left[\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} \\
\frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right] \quad m_{v}=\frac{m_{3}}{2}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]+\frac{m_{2}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]+\frac{m_{1}}{6}\left[\begin{array}{ccc}
4 & -2 & -2 \\
-2 & 1 & 1 \\
-2 & 1 & 1
\end{array}\right] \\
& \text { Eigenvectors: } \quad m_{3} \rightarrow \frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] \quad m_{2} \rightarrow \frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad m_{1} \rightarrow \frac{1}{\sqrt{6}}\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
\end{aligned}
\]

Note: mixing angles independent of mass eigenvalues
Compare with quark mixings \(\lambda_{C} \sim\left(m_{d} / m_{s}\right)^{1 / 2}\)
- For the HPS mixing matrix all mixing angles are fixed to particularly symmetric values

Sparked interest in constructing models that can naturally produce this highly ordered structure

Models based on the A4 discrete symmetry (even permutations of 1234) offer a minimal solution

Ма...;
GA, Feruglio, hep-ph/0504165, hep-ph/0512103
GA, Feruglio, Lin hep-ph/0610165
GA, Feruglio, Hagedorn, 0802.0090 [hep-ph]
Y. Lin, 0804.2867 [hep-ph]; Csaki et al' 0806.0356.......

Larger finite groups: \(\mathrm{T}^{\prime}, \Delta(27)\), S4 Feruglio et al; Chen, Mahanthappa; Frampton, Kephart; Lam; Bazzocchi et al \(\qquad\)
Alternative models based on \(\mathrm{SU}(3)_{\mathrm{F}}\) or \(\mathrm{SO}(3)_{\mathrm{F}}\) or their finite subgroups
King

\section*{A4}

A4 is the discrete group of even perm's of 4 objects. (the inv. group of a tetrahedron). It has \(4!/ 2=12\) elements.

A4 transformations can be written in terms of S and T as:
\[
1, \mathrm{~T}, \mathrm{~S}, \mathrm{ST}, \mathrm{TS}, \mathrm{~T}^{2}, \mathrm{TST}, \mathrm{STS}, \mathrm{ST}^{2}, \mathrm{~T}^{2} \mathrm{~S}, \mathrm{~T}^{2} \mathrm{ST}, \mathrm{TST}^{2}
\]
with: \(S^{2}=T^{3}=(S T)^{3}=1\left[(T S)^{3}=1\right.\) also follows]
An element is abd which means 1234 --> bcd
\(\mathrm{C}_{1}: \quad 1=1234\)
\(\mathrm{C}_{2}: \quad \mathrm{T}=2314 \quad \mathrm{ST}=4132 \quad \mathrm{TS}=3241 \quad \mathrm{STS}=1423\)
\(\mathrm{C}_{3}: \quad \mathrm{T}^{2}=3124 \quad \mathrm{ST}^{2}=4213 \quad \mathrm{~T}^{2} \mathrm{~S}=2431 \quad \mathrm{TST}=1342\)
\(\mathrm{C}_{4}: \quad \mathrm{S}=4321 \quad \mathrm{~T}^{2} \mathrm{ST}=3412 \quad \mathrm{TST}^{2}=2143\)
\(\mathrm{x}, \mathrm{x}^{\prime}\) in same class if
\(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}\) are equivalence classes \(\left[\mathrm{x}^{\prime} \sim \mathrm{gxg}^{-1}\right]\) element

A4 has 4 inequivalent irreducible representations: a triplet and 3 different singlets
\[
3,1,1^{\prime}, 1^{\prime \prime}
\]

\section*{(promising for 3 generations!)}

Note:
as many representations as equivalence classes
\[
\sum d_{i}^{2}=12 \quad 9+1+1+1=12
\]

Note: many models tried S3
S3 has no triplets but only \(2,1,1^{\prime}\)
A4 is better in the lepton sector

Mohapatra, Nasri, Yu
Koide
Kubo et al
Kaneko et al
Caravaglios et al
Morisi
Picariello......

Three singlet inequivalent represent'ns:
\[
\begin{aligned}
& \text { Recall: } \\
& \mathrm{S}^{2}=\mathrm{T}^{3}=(\mathrm{ST})^{3}=1
\end{aligned} \quad\left\{\begin{array}{l}
1: S=1, T=1 \\
1: S=1, T=\omega \\
1 ": S=1, T=\omega^{2}
\end{array}\right.
\]
\[
\begin{gathered}
\omega=\exp i \frac{2 \pi}{3}=-\frac{1}{2}+i \frac{\sqrt{3}}{2} \\
\omega^{3}=1 \\
1+\omega+\omega^{2}=0 \\
\omega^{2}=\omega^{*}
\end{gathered}
\]

The only irreducible 3-dim represent'n is obtained by:
\[
S=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \quad T=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
\]
(S-diag basis)

An equivalent form:
\(\begin{aligned} S^{\prime} & =\frac{1}{3}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right] \\ \omega & \underset{\text { (T-diag basis) }}{V S V^{\dagger} \quad T^{\prime}=}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2}\end{array}\right]=V T V^{\dagger}\end{aligned}\)
\[
V V^{\dagger}=V^{\dagger} V=1
\]
\(V=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2}\end{array}\right]\)

A4 has only 4 irreducible inequivalent represt'ns: \(1,1^{\prime}, 1^{\prime \prime}, 3\)

Table of Multiplication:
\(1^{\prime} \times 1^{\prime}=1^{\prime \prime} ; 1^{\prime \prime} \mathrm{x} 1^{\prime \prime}=1^{\prime} ; 1^{\prime} \mathrm{x} 1^{\prime \prime}=1\)
\(3 \times 3=1+1^{\prime}+1^{\prime \prime}+3+3\)

A4 is well fit for 3 families!
Ch. leptons \(l \sim 3\)
\[
e^{c}, \mu^{c}, \tau^{c} \sim 1,1^{\prime \prime}, 1^{\prime}
\]

For \(3_{1}=\left(a_{1}, a_{2}, a_{3}\right), 3_{2}=\left(b_{1}, b_{2}, b_{3}\right)\) we have in \(3_{1} \times 3_{2}\) :
\[
\begin{array}{cl}
1=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} & 3 \sim\left(a_{2} b_{3}, a_{3} b_{1}, a_{1} b_{2}\right) \\
1^{\prime}=a_{1} b_{1}+\omega^{2} a_{2} b_{2}+\omega a_{3} b_{3} & 3 \sim\left(a_{3} b_{2}, a_{1} b_{3}, a_{2} b_{1}\right) \\
1^{\prime \prime}=a_{1} b_{1}+\omega a_{2} b_{2}+\omega^{2} a_{3} b_{3} &
\end{array}
\]
e.g. \(1^{\prime \prime}=a_{1} b_{1}+\omega a_{2} b_{2}+\omega^{2} a_{3} b_{3}-->a_{2} b_{2}+\omega a_{3} b_{3}+\omega^{2} a_{1} b_{1}=\)
\[
=\omega^{2}\left[a_{1} b_{1}+\omega a_{2} b_{2}+\omega^{2} a_{3} b_{3}\right]
\]
\(\oplus \quad\) (under \(S, 1^{\prime \prime}\) is invariant)

\section*{Under A4 the most common classification is:}
lepton doublets \(l \sim 3\)
\(\mathrm{e}^{\mathrm{c}}, \mu^{\mathrm{c}}, \tau^{\mathrm{c}} \sim 1,1^{\prime \prime}, 1^{\prime}\) respectively
A4 breaking gauge singlet flavons \(\phi_{S}, \phi_{T}, \xi,\left(\xi^{\prime}\right) \sim 3,3,1,(1)\)
For SUSY version: driving fields \(\phi_{S}^{\prime}, \phi_{T}^{\prime}, \xi_{0} \sim 3,3,1\)
with the alignment:
\[
\begin{array}{lll}
\|\| & \begin{array}{ll}
\left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right) & \text { In a serious model } \\
\left\langle\varphi_{S}\right\rangle=\left(v_{S}, v_{S}, v_{S}\right) & \text { the alignment is a } \\
\langle\xi\rangle=u,\langle\tilde{\xi}\rangle=0 & \text { consequence of } \\
\langle\xi\rangle & \text { the symmetries }
\end{array} .
\end{array}
\]

In all versions there are additional symmetries: e.g. a broken \(\mathrm{U}(1)_{\mathrm{F}}\) symmetry and/or discrete symmetries \(\mathrm{Z}_{\mathrm{n}}\) to ensure hierarchy of charged lepton masses and to restrict allowed couplings

\section*{Structure of the model (a 4-dim SUSY version)}

GA, Feruglio, hep-ph/0512103
\(w_{l}=y_{e} e^{c}\left(\varphi_{T} l\right)+y_{\mu} \mu^{c}\left(\varphi_{T} l\right)^{\prime}+y_{\tau} \tau^{c}\left(\varphi_{T} l\right)^{\prime \prime}+\left(x_{a} \xi+\tilde{x}_{a} \tilde{\xi}\right)(l l)+x_{b}\left(\varphi_{S} l l\right)+h . c .+\ldots\) shorthand: Higgs and cut-off scale \(\Lambda\) omitted, e.g.:
\[
y_{e} e^{c}(\varphi l) \sim y_{e} e^{c}(\varphi l) h_{d} / \Lambda, \quad x_{a} \xi(l l) \sim x_{a} \xi\left(l h_{u} l h_{u}\right) / \Lambda^{2}
\]

In T-diag basis:

\section*{with this alignment:}
\[
\begin{aligned}
& \left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right) \\
& \left\langle\varphi_{S}\right\rangle=\left(v_{S}, v_{S}, v_{S}\right) \\
& \langle\xi\rangle=u \quad,\langle\tilde{\xi}\rangle=0
\end{aligned}
\]
recall:
\[
m=\left(\begin{array}{ccc}
x & y & y \\
y & x+v & y-v \\
y & y-v & x+v
\end{array}\right)
\]

Ch. leptons are diagonal
\[
m_{l}=v_{T} \frac{v_{d}}{\Lambda}\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right)
\]
\(v^{\prime}\) s are tri-bimaximal
\[
m_{\nu}=\frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{ccc}
a+2 b / 3 & -b / 3 & -b / 3 \\
-b / 3 & 2 b / 3 & a-b / 3 \\
-b / 3 & a-b / 3 & 2 b / 3
\end{array}\right)
\]

\section*{So, at LO TB mixing is exact}

The only fine-tuning needed is to account for \(r \sim 1 / 30\)
[In most A4 models \(r \sim 1\) would be expected as I, \(v^{c} \sim 3\)]
When NLO corrections are included from operators of higher dimension in the superpotential each mixing angle receives corrections of the same order \(\delta \theta_{\mathrm{ij}} \sim \mathrm{o}(\mathrm{VEV} / \Lambda)\)

As the maximum allowed corrections to \(\theta_{12}\) (and also to \(\theta_{23}\)) are \(o\left(\lambda_{c}{ }^{2}\right)\), we need VEV/ \(\Lambda \sim o\left(\lambda_{c}{ }^{2}\right)\) and we expect:
\(\theta_{13} \sim o\left(\lambda_{c}{ }^{2}\right)\) measurable in next run of exp's
(T2K starts at the end of '09)
\(\oplus\) Many versions of A4 models exist by now

\section*{Why A4 works?}

TB mixing corresponds to \(m\) in the basis where charged leptons are diagonal
\[
m=\left(\begin{array}{ccc}
x & y & y \\
y & x+v & y-v \\
y & y-v & x+v
\end{array}\right)
\]
\(m\) is the most general matrix invariant under \(\mathrm{SmS}=\mathrm{m}\) and \(\mathrm{A}_{23} \mathrm{~mA}_{23}=\mathrm{m}\) with:
\[
S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \quad A_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \begin{aligned}
& 2-3 \\
& \text { symmetry }
\end{aligned}
\]

Invariance under \(S\) can be made automatic in A4 while invariance under \(A_{23}\) happens if \(1^{\prime}\) and 1 " flavons are absent.
\(\phi_{S}\) breaks A4 down to \(G_{S}\) (\(\mathrm{G}_{\mathrm{T}}, \mathrm{G}_{\mathrm{s}}\) : subgroups generated by \(\mathrm{T}, \mathrm{S}\))

Charged lepton masses are a generic diagonal matrix, invariant under T (or \(\eta\) T with \(\eta\) a phase):
\[
T^{\dagger} m_{l} T=m_{l}
\]
\[
\begin{gathered}
m_{l}=v_{T} \frac{v_{d}}{\Lambda}\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right) \\
T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
\end{gathered}
\]
\[
\begin{aligned}
& \left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right) \\
& \left\langle\varphi_{S}\right\rangle=\left(v_{S}, v_{S}, v_{S}\right) \\
& \langle\xi\rangle=u,\langle\tilde{\xi}\rangle=0
\end{aligned}
\]

The aligment occurs because is based on A4 group theory:
\(\phi_{T}\) breaks A4 down to \(G_{T}\)

Note that for TB mixing in A4 it is important that no flavons transforming as \(1^{\prime}\) and \(1^{\prime \prime}\) exist

Recently Lam claimed that for "a natural" TB model the smallest group is S4 (instead A4 is a subgroup of S4)

This is because he calls "natural" a model only if all possible flavons are introduced

We do not accept this criterium:
In physics we call natural a model if the lagrangian is the most general given the symmetry and the representations of the fields
(for example the SM is natural even if only Higgs doublets are present)

\section*{Recent directions of research:}
- Different (larger) finite groups \(\begin{aligned} & \mathrm{Ma;} \\ & \text { Kobayashi et al; }\end{aligned}\) Luhn, Nasri, Ramond [\(\Delta\left(3 n^{2}\right)\)];
- Trying to improve the quark mixings

Carr, Frampton Feruglio et al
Frampton, Kephart......
- Construct GUT models with approximate tribimaximal mixing
it is indeed possible, also for A4!
GA, Feruglio, Hagedorn 0802.0090
```

Ma, Sawanaka, Tanimoto; Ma;
Morisi, Picarello, Torrente Lujan; Bazzocchi et al;
de Madeiros Verzielas, King, Ross [ }\Delta(27)\mathrm{ ];
King, Malinsky [SU(4)}\mp@subsup{C}{C}{xSU(2)
Chen, MahanthappaBazzocchi et al [\Delta(27)]; ....

```

Or agreement with TB mixing could be accidental
If \(\theta_{13}\) is found near its present bound (e.g o \(\lambda_{C}\))) this would hint that TB is accidental and bimaximal mixing (BM) could be a better first approximation

There is an intriguing empirical relation:
\[
\theta_{12}+\theta_{C}=(47.0 \pm 1.7)^{\circ} \sim \pi / 4
\]

Suggests bimaximal mixing in 1st approximation, corrected by charged lepton diagonalization.

Recall that
\[
\lambda_{C} \approx 0.22 \text { or } \sqrt{\frac{m_{\mu}}{m_{\tau}}} \approx 0.24 \quad \lambda_{\mathrm{C}}=\sin \theta_{\mathrm{C}}
\]

While \(\theta_{12}+o\left(\theta_{\mathrm{C}}\right) \sim \pi / 4\) is easy to realize, exactly \(\theta_{12}+\theta_{C} \sim \pi / 4\) is more difficult: no compelling model Minakata, Smirnov'04

Suggests that deviations from BiMaximal mixing arise from charged lepton diagonalisation (BM: \(\theta_{12}=\theta_{23}=\pi / 4 \quad \theta_{12}=0\))

For the corrections from the charged lepton sector, typically \(\left|\sin \theta_{13}\right| \sim\left(1-\tan ^{2} \theta_{12}\right) / 4 \cos \delta \sim 0.15\)

GA, Feruglio, Masina Frampton et al King Antusch et al........
\(\bar{U}_{12}=-\frac{e^{-i\left(\alpha_{1}+\alpha_{2}\right)}}{\sqrt{2}}+\frac{s_{12}^{e} e^{-i \alpha_{2}}+s_{13}^{e} e^{i \delta_{e}}}{2}\)
\(\bar{U}_{13}=\frac{s_{12}^{e} e^{-i \alpha_{2}}-s_{13}^{e} e^{i \delta_{e}}}{\sqrt{2}}\)
\(\bar{U}_{23}=-e^{-i \alpha_{2}} \frac{1+s_{23}^{e} e^{i \alpha_{2}}}{\sqrt{2}}\)

Corr.'s from s \({ }^{\mathrm{e}}{ }_{12}, \mathrm{~s}^{\mathrm{e}}{ }_{13}\) to \(U_{12}\) and \(U_{13}\) are of first order (2nd order to \(U_{23}\))

Here we construct a model where BM mixing holds in 1st approximation and is then corrected by terms \(o\left(\lambda_{C}\right)\)

\title{
Revisiting Bimaximal Neutrino Mixing in a Model with \(S_{4}\) Discrete Symmetry
}

\author{
Guido Altarelli \({ }^{1}\) \\ Dipartimento di Fisica 'E. Amaldi', Università di Roma Tre \\ INFN, Sezione di Roma Tre, I-00146 Rome, Italy \\ and \\ CERN, Department of Physics, Theory Division \\ CH-1211 Geneva 23, Switzerland \\ Ferruccio Feruglio \({ }^{2}\) and Luca Merlo \({ }^{3}\) \\ Dipartimento di Fisica 'G. Galilei', Università di Padova \\ INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua, Italy
}
soon to appear on the web

\section*{BM mixing}
\[
\begin{aligned}
\theta_{12}=\theta_{23}=\pi / 4, & \theta_{13}=0 \\
U_{B M} & =\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)
\end{aligned}
\]

By adding \(\sin ^{2} \theta_{12} \sim 1 / 2\) to \(\theta_{13} \sim 0, \theta_{23} \sim \pi / 4\) :
\[
\begin{gathered}
m_{v}=\left[\begin{array}{ccc}
x & y & y \\
y & z & w \\
y & w & z
\end{array}\right] \xrightarrow[m_{\nu B M}]{ }=\left(\begin{array}{ccc}
x & y & y \\
y & z & x-z \\
y & x-z & z
\end{array}\right) \\
\sin ^{2} 2 \theta_{12}=\frac{8 y^{2}}{(x-w-z)^{2}+8 y^{2}}
\end{gathered} \begin{aligned}
& m_{1}=x+\sqrt{2} y \\
& m_{2}=x-\sqrt{2} y
\end{aligned}
\]

BM corresponds to \(\tan ^{2} \theta_{12}=1\) while exp.: \(\tan ^{2} \theta_{12}=0.45 \pm 0.04\)

The 3 remaining parameters are the mass eigenvalues so a large correction is needed

\section*{Bimaximal Mixing}

In the basis of diagonal ch. leptons:
\[
\mathrm{m}_{v}=\operatorname{Udiag}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right) \mathrm{U}^{\top}
\]
\[
m_{\nu B M}=\left[\frac{m_{3}}{2} M_{3}+\frac{m_{2}}{4} M_{2}+\frac{m_{1}}{4} M_{1}\right]
\]
\[
U_{B M}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)
\]
\[
M_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right), M_{2}=\left(\begin{array}{ccc}
2 & -\sqrt{2} & -\sqrt{2} \\
-\sqrt{2} & 1 & 1 \\
-\sqrt{2} & 1 & 1
\end{array}\right), M_{1}=\left(\begin{array}{ccc}
2 & \sqrt{2} & \sqrt{2} \\
\sqrt{2} & 1 & 1 \\
\sqrt{2} & 1 & 1
\end{array}\right)
\]

Eigenvectors: \(\quad(\sqrt{2}, 1,1) / 2,(-\sqrt{2}, 1,1) / 2,(0,1,-1) / \sqrt{2}\).

S4: Group of permutations of 4 objects (24 transformations) Irreducible representations: 1, 1', 2, 3, 3'
\[
\begin{gathered}
\mathrm{T}^{4}=\mathrm{S}^{2}=(\mathrm{ST})^{3}=(\mathrm{TS})^{3}=1 \\
\mathbf{1} \begin{array}{c}
T=1
\end{array} \quad S=1 \\
\mathbf{2} \quad T=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad S=\frac{1}{2}\left(\begin{array}{cc}
-1 & \sqrt{3} \\
\sqrt{3} & 1
\end{array}\right) \\
\mathbf{3} \quad T=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -i & 0 \\
0 & 0 & i
\end{array}\right) \quad S=\left(\begin{array}{ccc}
0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right)
\end{gathered}
\]
\(1<->1^{\prime}\) and \(3<->3^{\prime}\) by changing \(S, T<->-S,-T\)

BM mixing corresponds to \(\mathrm{m}=\mathrm{m}_{\text {vBM }}\) in the basis where charged leptons are diagonal
\[
\triangle m_{\nu B M}=\left(\begin{array}{ccc}
x & y & y \\
y & z & x-z \\
y & x-z & z
\end{array}\right)
\]
m is the most general matrix invariant under \(\mathrm{SmS}=\mathrm{m}\) and \(\mathrm{A}_{23} \mathrm{~mA}_{23}=\mathrm{m}\) with:
\[
S=\left(\begin{array}{ccc}
0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2}
\end{array}\right)
\]
\[
A_{23}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \begin{aligned}
& \text { 2-3 } \\
& \text { symmetry }
\end{aligned}
\]

Invariance under \(S\) can be made automatic in S4 while invariance under \(A_{23}\) happens if the flavon content is suitable
\begin{tabular}{|c||c|c|c|c|c|c||c||c|c|c|c||c|c|c|c|}
\hline & \(l\) & \(e^{c}\) & \(\mu^{c}\) & \(\tau^{c}\) & \(\nu^{c}\) & \(h_{u, d}\) & \(\theta\) & \(\varphi_{l}\) & \(\chi_{l}\) & \(\psi_{l}^{0}\) & \(\chi_{l}^{0}\) & \(\xi_{\nu}\) & \(\varphi_{\nu}\) & \(\xi_{\nu}^{0}\) & \(\varphi_{\nu}^{0}\) \\
\hline\(S_{4}\) & 3 & 1 & \(1^{\prime}\) & 1 & 3 & 1 & 1 & 3 & \(3^{\prime}\) & 2 & \(3^{\prime}\) & 1 & 3 & 1 & 3 \\
\(Z_{4}\) & 1 & -1 & -i & -i & 1 & 1 & 1 & i & i & -1 & -1 & 1 & 1 & 1 & 1 \\
\(U(1)_{F N}\) & 0 & 2 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(U(1)_{R}\) & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 2 & 2 \\
\hline
\end{tabular}
\[
\begin{aligned}
w_{l}= & \frac{y_{e}^{(1)}}{\Lambda^{2}} \frac{\theta^{2}}{\Lambda^{2}} e^{c}\left(l \varphi_{l} \varphi_{l}\right)+\frac{y_{e}^{(2)}}{\Lambda^{2}} \frac{\theta^{2}}{\Lambda^{2}} e^{c}\left(l \chi_{l} \chi_{l}\right)+\frac{y_{e}^{(3)}}{\Lambda^{2}} \frac{\theta^{2}}{\Lambda^{2}} e^{c}\left(l \varphi_{l} \chi_{l}\right)+ \\
& +\frac{y_{\mu}}{\Lambda} \frac{\theta}{\Lambda} \mu^{c}\left(l \chi_{l}\right)^{\prime}+\frac{y_{\tau}}{\Lambda} \tau^{c}\left(l \varphi_{l}\right)+\ldots
\end{aligned}
\]
\[
w_{\nu}=\quad y\left(\nu^{c} l\right)+M \Lambda\left(\nu^{c} \nu^{c}\right)+a\left(\nu^{c} \nu^{c} \xi_{\nu}\right)+b\left(\nu^{c} \nu^{c} \varphi_{\nu}\right)+\ldots \quad \text { see-SaW }
\]
\[
\frac{\left\langle\xi_{\nu}\right\rangle}{\Lambda}=E \quad \frac{\left\langle\varphi_{\nu}\right\rangle}{\Lambda}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) C \quad \frac{\left\langle\varphi_{l}\right\rangle}{\Lambda}=\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right) A \quad \frac{\left\langle\chi_{l}\right\rangle}{\Lambda}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) B
\]

In this model BM mixing is exact at LO

For the special flavon content chosen, only \(\theta_{12}\) and \(\theta_{13}\) are corrected from the charged lepton sector by terms of \(o\left(\lambda_{C}\right)\) (large correction!) while \(\theta_{23}\) gets smaller corrections (great!) [for a generic flavon content also \(\delta \theta_{23} \sim \mathrm{o}\left(\lambda_{c}\right)\)]

An experimental indication for this model would be that \(\theta_{13}\) is found near its present bound at T2K

\section*{Conclusion}

The observed pattern of neutrino masses can be accommodated

Quark and lepton mixings can be described together and GUT schemes are also possible

But no compelling illumination about the dynamics of flavour has emerged so far.```

