New Results from MiniBooNE:
A search for $\bar{\nu}_e$ appearance at $\Delta m^2 \sim 1 \text{ eV}^2$

Georgia Karagiorgi, MIT
Results and Perspectives in Particle Physics
Les 23rd Rencontres de Physique de la Vallée d’Aoste
LaThuile, Aosta Valley, Italy
March 1-7, 2008
Another Δm^2?

LSND experiment:

- Detected anti-ν_e from stopped pion source: $\pi^+ \rightarrow \mu^+ \rightarrow \bar{\nu}_\mu$
- Observed excess: $87.9 \pm 22.4 \pm 6.0$ anti-ν_e events (3.8σ)

 [arXiv:hep-ex/0104049]

Possible interpretation:

2-neutrino mixing with:

$$P(\nu_\mu \rightarrow \nu_e) = \sin^2 (2\theta) \sin^2 \left(\frac{1.27 L \Delta m^2}{E} \right) = 0.245 \pm 0.067 \pm 0.045 \%$$

Best fit: $\sin^2(2\theta) = 0.003$, $\Delta m^2 = 1.2 \text{ eV}^2$
Only 2 independent Δm^2:

3-neutrino mixing scheme established by atmospheric and solar experiments cannot accommodate for the LSND oscillation interpretation
The MiniBooNE Experiment:

Designed to test: \[P(\nu_\mu \rightarrow \nu_e) = \sin^2 (2\theta) \sin^2 \left(\frac{1.27 L}{E} \Delta m^2 \right) \approx 0.25 \% \]

800 ton mineral oil Cherenkov detector
12 m in diameter (450 ton fiducial volume)
lined with 1280 inner PMT’s, and 240 outer veto PMT’s

Requirement: Place detector to preserve LSND \(L/E \rightarrow \)
- MiniBooNE: 500 m / 800 MeV
- LSND: 30 m / 50 MeV

The MiniBooNE Experiment:

Event signatures:
Looking for ν_e signal in ν_μ dominated beam…

Signal
ν_e charged-current quasi-elastic events
$$\nu_e + n \to e^- + p$$

Dominant type of interaction
ν_μ charged-current quasi-elastic events
$$\nu_\mu + n \to \mu^- + p$$
The analysis...

A **blind** analysis chain was implemented...

Track-based analysis (TBA)
[but also boosted-decision-tree (BDT) analysis]

<table>
<thead>
<tr>
<th>Beam Flux Prediction</th>
<th>Cross Section Model</th>
<th>Optical Model</th>
<th>Event Reconstruction</th>
<th>Particle Identification</th>
<th>Simultaneous Fit to ν_μ and ν_e events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start with a Geant 4 flux prediction for the ν spectrum from π and K produced at the target</td>
<td>Predict ν interactions using the Nuance event generator</td>
<td>Pass final state particles to Geant 3 to model particle and light propagation in the tank</td>
<td>Use track-based event reconstruction</td>
<td>Use hit topology and timing to identify electron-like or muon-like Cherenkov rings and corresponding charged current neutrino interactions</td>
<td>Fit reconstructed energy spectrum for oscillations</td>
</tr>
</tbody>
</table>
A glimpse of hope...

MiniBooNE has searched for $\nu_\mu \rightarrow \nu_e$ oscillations at $\Delta m^2 \sim 1$ eV2

Observed no excess consistent with the LSND two-neutrino oscillation...

...and therefore ruled out LSND $\nu_\mu \rightarrow \nu_e$ oscillation interpretation:

Assumptions:
2-ν oscillation, with standard L/E dependence
→ no CP or CPT violation
But another mystery…

But observed unexpected excess of events at low energy…

Interpretations include:

- CP violation with 2 sterile ν
- Extra dimensions
- New particles
 [Nelson, Wilkerson, hep-ex/0609059]
- CPT/Lorentz violation
 [Kostelecky, Taylor, PRD 74, 105009 (2006)]
- New interactions
 [Harvey, Hill, Hill, hep-ph/0708.1281]
- VSBL ν_e disappearance
 [Giunti, Laveder, PRD 77, 093002 (2008)]

\[\bar{\nu}_\mu \rightarrow \bar{\nu}_e \text{ signal} \]

predictions for MiniBooNE

\[L_{\nu}^{\text{QE}} (\text{GeV}) \]

low energy excess region

128.8 ± 43.4 excess events (3.0σ)
Addressing the MiniBooNE and LSND anomalies

Through antineutrino running @ MiniBooNE: $\bar{\nu}_e$ appearance search

First antineutrino results (this talk), for 3.4×10^{20} protons on target (POT)!
(new results coming soon, for 5.0×10^{20} POT)

How do we get $\bar{\nu}_e$?

by switching horn polarity, we focus negatively charged mesons, yielding an anti-ν_μ beam

Antineutrino dataset is used to address both CP/CPT violating $\nu_\mu \rightarrow \nu_e$ oscillations, and MiniBooNE low energy excess interpretations
Looking for $\bar{\nu}_e$ signal...

Background composition for $\bar{\nu}_e$ appearance search (3.4e20 POT):

<table>
<thead>
<tr>
<th>N_{events}</th>
<th>200-475 MeV</th>
<th>475-1250 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>intrinsic ν_e</td>
<td>17.7</td>
<td>43.2</td>
</tr>
<tr>
<td>from π^\pm/μ^\pm</td>
<td>8.4</td>
<td>17.1</td>
</tr>
<tr>
<td>from K^\pm, K^0</td>
<td>8.2</td>
<td>24.9</td>
</tr>
<tr>
<td>other ν_e</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>mis-id ν_μ</td>
<td>42.5</td>
<td>14.6</td>
</tr>
<tr>
<td>CCQE</td>
<td>2.9</td>
<td>1.2</td>
</tr>
<tr>
<td>NC π^0</td>
<td>24.6</td>
<td>7.2</td>
</tr>
<tr>
<td>Δ radiative</td>
<td>6.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Dirt</td>
<td>4.7</td>
<td>1.9</td>
</tr>
<tr>
<td>other ν_μ</td>
<td>3.8</td>
<td>2.2</td>
</tr>
<tr>
<td>Total bkgd</td>
<td>60.3</td>
<td>57.8</td>
</tr>
<tr>
<td>LSND best fit</td>
<td>4.3</td>
<td>12.6</td>
</tr>
</tbody>
</table>

(only anti-ν_μ assumed to oscillate)

[Graph showing event distribution with LSND best fit $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ ($\Delta m^2, \sin^2 2\theta$)=(1.2,0.003)]

[Note: statistical-only errors shown]
Looking for $\bar{\nu}_e$ signal…

Dominant background (at low energy)
$\bar{\nu}_\mu$ neutral-current interactions with photon(s) in the final state

For example, NC π^0:
$$\bar{\nu}_\mu + n/p \rightarrow n/p + \pi^0 + \bar{\nu}_\mu$$
$$\pi^0 \rightarrow \gamma\gamma$$

γ (shower)

…“γ” looks like “e” in a Cherenkov detector

[Diagram showing gamma shower]

$[\text{note: statistical-only errors shown}]$

E_{ν}^{QE} (GeV)

LSND best-fit $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$
$(\Delta m^2, \sin^2 2\theta) = (1.2, 0.003)$
MiniBooNE $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ sensitivity (3.4e20 POT)

![Graph showing Δm^2 vs. $\sin^2(2\theta)$ for MiniBooNE results.]

KARMEN: $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ search
Compatibility with LSND at 64% CL

Do $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$?

$\bar{\nu}_e$ data vs. background distribution (3.4e20 POT):

$\chi^2_{\text{null}} (\text{dof}) = 24.5 (19)$
χ^2-probability = 17.7%

$\chi^2_{\text{best-fit}} (\text{dof}) = 18.2 (17)$
χ^2-probability = 37.8%

MiniBooNE best-fit:
$(\Delta m^2, \sin^2 2\theta) = (4.4 \text{ eV}^2, 0.004)$

No significant excess observed at both low and high energy!
Do $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$?

With 3.4×10^{20} POT, MiniBooNE places a limit to $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillations:
What about the low energy excess?

<table>
<thead>
<tr>
<th>$E_{ν}^{QE}$ range (MeV)</th>
<th>$\bar{ν}$ mode</th>
<th>$ν$ mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(same binning as in neutrino mode)</td>
<td>(3.4e20 POT)</td>
<td>(6.5e20 POT)</td>
</tr>
<tr>
<td>200-475</td>
<td>Data</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>$MC \pm sys+stat$ (constr.)</td>
<td>61.5 ± 11.7</td>
</tr>
<tr>
<td></td>
<td>$Excess (σ)$</td>
<td>-0.5 ± 11.7 (-0.04)</td>
</tr>
<tr>
<td>475-1250</td>
<td>Data</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>$MC \pm sys+stat$ (constr.)</td>
<td>57.8 ± 10.0</td>
</tr>
<tr>
<td></td>
<td>$Excess (σ)$</td>
<td>3.2 ± 10.0 (0.3)</td>
</tr>
</tbody>
</table>

How consistent are excesses in neutrino and antineutrino mode under different underlying hypotheses as the source of the low energy excess in neutrino mode?

Possibilities:

Background & New Physics
What about the low energy excess?

Suggested hypotheses:

Include processes contributing either a single-electron or a single-gamma

“New” physics? E.g.

Anomaly-mediated photon production?

![Diagram](attachment:image.png)

[Harvey, Hill, and Hill, hep-ph0708.1281]

Standard Model, but odd...

Assumed to contribute equally for neutrinos and antineutrinos
What about the low energy excess?

Suggested hypotheses:

Include processes contributing either a single-electron or a single-gamma

Or background? E.g.

• Misestimated π^0?

To account for ν mode excess, π^0 background would have to be misestimated by a factor of 2...

 unlikely, since the π^0 rate is measured to 5%.

π^0: most dominant background at low energy

ν_e data vs. prediction (ν mode) $E_{\nu e}$ (GeV)
What about the low energy excess?

In testing these hypotheses, the excess is assumed to scale from neutrinos to antineutrinos as follows:

- The same $\nu, \bar{\nu}$ NC cross section (e.g. HHH axial anomaly [hep-ph/0708.1281])
- The same cross section ratio as NC π^0 background (cross section is different for $\nu, \bar{\nu}$)
- With POT (e.g. K0L-induced events)
- With Background
- CC cross section ratio
- Low-E Kaons
- Neutrinos only (no antineutrinos) (neutrino induced interaction)

Flux and protons on target (POT) in neutrino and antineutrino mode were taken into account in the scaling.
What about the low energy excess?

Maximum χ^2 probability from fits to ν and $\bar{\nu}$ excesses in 200-475 MeV range

<table>
<thead>
<tr>
<th></th>
<th>Stat Only</th>
<th>Correlated Syst</th>
<th>Uncorrelated Syst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same $\nu,\bar{\nu}$ NC</td>
<td>0.1%</td>
<td>0.1%</td>
<td>6.7%</td>
</tr>
<tr>
<td>NC π^0 scaled</td>
<td>3.6%</td>
<td>6.4%</td>
<td>21.5%</td>
</tr>
<tr>
<td>POT scaled</td>
<td>0.0%</td>
<td>0.0%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Bkgd scaled</td>
<td>2.7%</td>
<td>4.7%</td>
<td>19.2%</td>
</tr>
<tr>
<td>CC scaled</td>
<td>2.9%</td>
<td>5.2%</td>
<td>19.9%</td>
</tr>
<tr>
<td>Low-E Kaons</td>
<td>0.1%</td>
<td>0.1%</td>
<td>5.9%</td>
</tr>
<tr>
<td>ν scaled</td>
<td>38.4%</td>
<td>51.4%</td>
<td>58.0%</td>
</tr>
</tbody>
</table>

(“lower limit”) ("upper limit")

- Same ν and $\bar{\nu}$ NC cross-section (HHH axial anomaly), POT scaled, Low-E Kaon scaled: disfavored as an explanation of the MiniBooNE low energy excess!

- The most preferred model is that where the low-energy excess comes from neutrinos in the beam (no contribution from anti-neutrinos).
Current status & prospects:

We have performed a blind analysis to $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillations: $\bar{\nu}_e$ data in agreement with MonteCarlo background prediction as a function of E_ν^{QE}.

So far, no strong evidence for oscillations in antineutrino mode (although currently limited by statistics).

Interestingly, no evidence of significant excess at low energy in antineutrino mode. This has already placed constraints to various suggested low energy excess interpretations.

In process of collecting more data for a total of 5.0e20 POT. This will improve sensitivity to oscillations, and allow further investigation of the ν low energy excess. Have submitted a request for 10.0e20 POT.
Combined ν_e and $\bar{\nu}_e$ analysis for low energy events with systematic correlations properly included, for testing various low energy excess interpretations.

Combined ν_e and $\bar{\nu}_e$ appearance analysis (with CP violation) for stronger constraints on oscillations.

Combined MiniBooNE-NuMI ν_e appearance analysis.

NuMI ν_e distribution [uses different beam]

Thank you!

The MiniBooNE Collaboration

Y. Liu, D. Perevalov, I. Stancu
University of Alabama
S. Koutsoliotas

Bucknell University
E. Hawker, R. A. Johnson, J. L. Raaf
University of Cincinnati
T. L. Hart, R. H. Nelson, M. Tzanov, M. Wilking,
E. D. Zimmerman
University of Colorado
A. A. Aguilar-Arevalo, L. Bugel, L. Coney,
Z. Djurcic, K. B. M. Mahn, J. Monroe, D. Schmitz
M. H. Shaevitz, M. Sorel
Columbia University

D. Smith
Emory Riddle Aeronautical University
L. Bartoszek, C. Bhat, S. J. Brice

Brown University
B. C. Brown, D. A. Finley, R. Ford, F. G. Garcia,
C. Green, P. Kasper, T. Kobilarciik, I. Kourbanis,
A. Malensek, W. Marsh, P. Martin, F. Mills,
C. D. Moore, E. Prebys, A. D. Russell, P. Spentzouris,
R. J. Stefanski, T. Williams
Fermi National Accelerator Laboratory

Indiana University
D. Cox, T. Katori, H. Meyer, C. C. Polly, R. Tayloe

B. Ray, B. Osmanov, J. Grange, J. Mousseau
University of Florida
G. T. Garvey, A. Green, C. Green, W. C. Louis, G. McGregor,
G. B. Mills, V. Sandberg, R. Schirato, Z. Pavlovic
Los Alamos National Laboratory

R. Imlay, J. A. Nowak, W. Metcalf, S. Ouedraogo, M. Sung, M. O. Wascko

Louisiana State University
J. M. Conrad, G. Karagiorgi, V. Nguyen

Massachusetts Institute of Technology
J. Cao, Y. Liu, B. P. Roe, H. J. Yang
University of Michigan

A. O. Bazarko, E. M. Laird, P. D. Meyers, R. B. Patterson,
F. C. Shoemaker, H. A. Tanaka
Princeton University

P. Nienaber
Saint Mary's University of Minnesota

J. M. Link
Virginia Polytechnic Institute

Yale University
The LSND experiment

LSND looked for $\bar{\nu}_e$ appearing in a $\bar{\nu}_\mu$ beam

Signature:
- Cerenkov light from e+ (CC)
- Scintillation light from nuclear recoil
- Delayed n-capture (2.2 MeV)
MiniBooNE antineutrino running

MiniBooNE antineutrino flux prediction:

Event rates:
(xsec-weighted, after selection cuts)

~14,000 $\bar{\nu}_\mu$ CCQE events
(~70% pure)

~ 140 $\bar{\nu}_e$ CCQE events
(~40% pure)

First antineutrino results correspond to dataset collected for 3.4e20 POT

03/03/2009

[arXiv:0806.1449 [hep-ex], accepted by Phys. Rev. D]

LaThuile 2009 – G. Karagiorgi, MIT
MiniBooNE flux prediction

neutrino mode: \(\nu_\mu \rightarrow \nu_e \) oscillation search [Phys. Rev. Lett. 98, 231801 (2007)]

antineutrino mode: \(\bar{\nu}_\mu \rightarrow \bar{\nu}_e \) oscillation search

WS further amplified to \(~30\%\) in \(\bar{\nu} \) mode due to cross-section

\(~6\% \bar{\nu} \)

\(~18\% \nu \)
MiniBooNE event rate prediction

<table>
<thead>
<tr>
<th>ν channel</th>
<th>events</th>
<th>\overline{ν} channel</th>
<th>events</th>
</tr>
</thead>
<tbody>
<tr>
<td>all channels</td>
<td>895k</td>
<td>all channels</td>
<td>83k</td>
</tr>
<tr>
<td>CC quasielastic</td>
<td>375k</td>
<td>CC quasielastic</td>
<td>37k</td>
</tr>
<tr>
<td>NC elastic</td>
<td>165k</td>
<td>NC elastic</td>
<td>16k</td>
</tr>
<tr>
<td>CC π⁺</td>
<td>200k</td>
<td>CC π⁻</td>
<td>14k</td>
</tr>
<tr>
<td>CC π⁰</td>
<td>33k</td>
<td>CC π⁰</td>
<td>2.6k</td>
</tr>
<tr>
<td>NC π⁺</td>
<td>53k</td>
<td>NC π⁰</td>
<td>7.6k</td>
</tr>
<tr>
<td>NC π⁻</td>
<td>30k</td>
<td>NC π⁻</td>
<td>2.8k</td>
</tr>
<tr>
<td>CC/NC DIS, multi-π</td>
<td>39k</td>
<td>CC/NC DIS, multi-π</td>
<td>2.9k</td>
</tr>
</tbody>
</table>

6.6x10^{20} POT
ν mode

3.4x10^{20} POT
\overline{ν} mode

Although delivered POT only reduced by a factor of ~2, overall rate down by almost an order of magnitude!
Neutrino cross sections

Channel of interest at MiniBooNE: CCQE
MiniBooNE systematics:

Background systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>E_{ν}^{QE} range (MeV)</th>
<th>uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200–475</td>
<td>475–1100</td>
</tr>
<tr>
<td>Flux from π^+/μ^+ decay</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Flux from π^-/μ^- decay</td>
<td>3.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Flux from K^+ decay</td>
<td>2.3</td>
<td>4.9</td>
</tr>
<tr>
<td>Flux from K^- decay</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Flux from K^0 decay</td>
<td>1.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Target and beam models</td>
<td>1.9</td>
<td>3.0</td>
</tr>
<tr>
<td>ν cross section</td>
<td>6.4</td>
<td>12.9</td>
</tr>
<tr>
<td>NC π^0 yield</td>
<td>1.7</td>
<td>1.6</td>
</tr>
<tr>
<td>Hadronic interactions</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>External interactions (dirt)</td>
<td>2.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Optical model</td>
<td>9.8</td>
<td>2.8</td>
</tr>
<tr>
<td>Electronics & DAQ model</td>
<td>9.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Total (unconstrained)</td>
<td>16.3</td>
<td>16.2</td>
</tr>
</tbody>
</table>

ANTINEUTRINO APPEARANCE SEARCH IS STATISTICS LIMITED
Antineutrino results

Background systematic uncertainties

<table>
<thead>
<tr>
<th>(E_{\nu}^{QE} \ fit)</th>
<th>(\chi^2_{\text{null}}(\text{dof}))</th>
<th>(\chi^2_{\text{null}}(\text{dof})(^\ast))</th>
<th>(\chi^2_{\text{best-fit}}(\text{dof})(^\ast))</th>
<th>(\chi^2_{\text{LSND best-fit}}(\text{dof})(^\ast))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(> 200 \text{ MeV})</td>
<td>24.51(19) 17.7%</td>
<td>20.18(17) 26.5%</td>
<td>18.18(17) 37.8%</td>
<td>20.14(19) 38.6%</td>
</tr>
<tr>
<td>(> 475 \text{ MeV})</td>
<td>22.19(16) 13.7%</td>
<td>17.88(14) 21.2%</td>
<td>15.91(14) 31.9%</td>
<td>17.63(16) 34.6%</td>
</tr>
</tbody>
</table>

(\text{\textit{Covariance matrix approximated to be the same everywhere by its value at best fit point}})
Antineutrino results

<table>
<thead>
<tr>
<th>E_{ν}^{QE} range (MeV)</th>
<th>$\bar{\nu}$ mode (3.4e20 POT)</th>
<th>ν mode (6.5e20 POT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(same binning as in neutrino mode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-475</td>
<td>Data</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>$MC \pm$ sys+stat (constr.)</td>
<td>61.5 ± 11.7</td>
</tr>
<tr>
<td></td>
<td>Excess (σ)</td>
<td>-0.5 ± 11.7 (-0.04)</td>
</tr>
</tbody>
</table>

The underlying signal for each hypothesis, S, was allowed to vary (thus accounting for the possibility that the observed signal in neutrino mode was a fluctuation up, and the observed signal in antineutrino mode was a fluctuation down), and an absolute χ^2 minimum was found.

- Three extreme fit scenarios were considered:
 - Statistical-only uncertainties
 - Statistical + fully-correlated systematics
 - Statistical + fully-uncorrelated systematics
Low E interpretations

New light gauge boson

- 3 sterile neutrinos + gauged B-L interaction
- gives rise to MSW-type potential \rightarrow strong energy dependence in SBL, small mixing oscillations

Predicts higher anti-ν than ν oscillation probability
Low E interpretations

CP violation

3+2 sterile neutrino model oscillation probability:

\[P(\nu_\mu \rightarrow \nu_e) = 4|U_{\mu 4}|^2|U_{e 4}|^2 \sin^2 x_{41} + 4|U_{\mu 5}|^2|U_{e 5}|^2 \sin^2 x_{51} + \\
+ 8 |U_{\mu 5}| |U_{e 5}| |U_{\mu 4}| |U_{e 4}| \sin x_{41} \sin x_{51} \cos(x_{54} \pm \phi_{45}) \]

\[\text{appearance best fit} \]

Dirac CPV phase

\[\text{global best fit} \]

Maltoni, Schwetz, hep-ph/0705.0107