Studying QCD with ALICE

Federico Antinori INFN Padova & CERN

Contents

- Introduction
 - QCD and ultrarelativistic nucleus-nucleus collisions
 - signals from the SPS and RHIC
- Views from the ALICE experiment
 - set-up
 - commissioning
- Expected physics capabilities: an example
 - heavy flavour quenching
- Conclusion

Two puzzles in QCD

- quark confinement
 - one half of fundamental fermions are not observable...
- generation of hadron masses
 - $3 \times m(u,d) \sim 12 \text{ MeV} \leftrightarrow m(\text{proton}) = 938 \text{ MeV}$
 - → generally thought to be related
- With ultrarelativistic nucleus-nucleus collisions we hope to be able to access experimentally the phenomenology of confinement ←→ deconfinement

Lattice QCD

 In lattice QCD, non-perturbative problems are treated by discretization on a space-time lattice. As a result, ultraviolet (large momentum scale) divergencies can be avoided

- zero baryon density, 3 flavours
- ϵ changes rapidly around T_c
- $T_c = 170 \text{ MeV}$: $\rightarrow \varepsilon_c = 0.6 \text{ GeV/fm}^3$
- at $T\sim 1.2$ T_c ϵ settles at about 80% of the Stefan-Boltzmann value for an ideal gas of q, \overline{q} g (ϵ_{SB})

QCD phase diagram

Nucleus-nucleus collisions

- How do we test this in the lab?
- How can we compress/heat matter to such cosmic energy densities?
- By colliding two heavy nuclei at ultrarelativistic energies we hope to be able to recreate, for a short time span (about 10⁻²³s, or a few fm/c) the appropriate conditions for deconfinement

SPS: the "historic" signals

- J/ψ suppression NA50, NA60
- Hyperon enhancements
 WA97, NA49, NA57

excess dileptonsNA38, NA45, NA50, NA60

RHIC: "Perfect Liquid"?

 Transfer of spatial asymmetry to momentum space provides a measure of the strength of collective phenomena

$$\frac{dN}{p_T dp_T dy d\varphi} = \frac{1}{2\pi} \frac{dN}{p_T dp_T dy} \left(1 + 2v_1 \cos(\varphi) + v_2 \cos(2\varphi) + \dots \right)$$

 at low p_T: azimuthal asymmetry as large as expected at hydro limit _

RHIC: High p_T suppression

$$R_{AA} = \frac{\text{Yield}_{AA}}{\text{Yield}_{pp}} \cdot \frac{1}{\langle Nbin \rangle_{AA}}$$

- High p_T particle production expected to scale with number of binary NN collisions if no medium effects
- Clearly does not work for more central collisions
- Interpretation: energy loss

RHIC: Azimuthal Correlations

- STAR:
 - "trigger" particle: 4 < p_T < 6 GeV/c
 - associated particles: p_T > 2 GeV/c
- away-side jet still present in dAu
- but disappears in central AuAu
- away-side jet "quenched"?

Adams et al., Phys. Rev. Let. 91 (2003)

So, where do we stand?

- SPS (1994 2003)
 - first evidence: "historic" QGP signatures
 - strangeness enhancement
 - J/ψ suppression
- RHIC (2000 now)
 - system close to ~ ideal hydrodynamic behaviour
 - evidence of interaction of fast partons with medium → quenching

The next step

- LHC
 - study the properties of the medium with "calibrated", calculable hard probes
 - → heavy flavours, jets, ...

ITS and TPC

Silicon Pixel Detector (SPD)

Zero Degree Calorimeters (ZDC)

6 calorimeters: 8 m (EM) and 116 m (ZP, ZN) from IP

trigger on spectators measurement of v1 grey, black tracks in pA

Alignment of the ALICE ITS

- 2200 volumes → 13k degrees of freedom
 - Millepede, "hierarchical" alignment
- ~ 50 k cosmic events (SPD trigger ~ 0.1 Hz)

Hit distribution in the 6 layers of the ITS

- Distance between upper and lower track segments
 - $\sigma = 56 \, \mu \text{m}$
 - (40 μm in simulation with no misalignment)

- Distance between hit and track in the overlap region
 - $\sigma = 22 \mu m$
 - (15 μm μm in simulation with no misalignment)

ALICE TPC

FA - La Thuile - 3 March 2009

11 September 2008: RF capture (first data for Physics!)

- 11 September 2008, ~ 22:35 first capture
 - beam 2 kept in orbit for over 10 minutes!
- series of injections with tens of mins RF capture during night
 - in ALICE: 673 events in total
- → first data for Physics (beam 2 background)

run 58338 event 27

Expected Physics Capabilities an example: heavy flavours

LHC is a Heavy Flavour Machine!

- $c\bar{c}$ and $b\bar{b}$ rates
 - ALICE PPR (NTLO + shadowing)

system	NN x-sect (mb)	shadowing	total multiplicity
pp 14 TeV	11.2 / 0.5	1 / 1	0.16 / 0.007
Pb-Pb 5.5 TeV (5% cent)	6.6 / 0.2	0.65 / 0.85	115 / 4.6

Parton Eloss by gluon radiation

transport coefficient of the medium

→ R.Baier et al., Nucl. Phys. **B483** (1997) 291 ("BDMPS")

Energy loss for heavy flavours is expected to be reduced:

- i) Casimir factor
 - light hadrons originate predominantly from gluon jets, heavy flavoured hadrons originate from heavy quark jets
 - C_R is 4/3 for quarks, 3 for gluons
- ii) dead-cone effect
 - gluon radiation expected to be suppressed for θ < M_Q/E_Q [Dokshitzer & Karzeev, Phys. Lett. **B519** (2001) 199] [Armesto et al., Phys. Rev. D69 (2004) 114003]

Impact parameter measurement

- → full reconstruction of D decays
- → b/c separation
- → control heavy flavour purity of non-photonic sample
- expected resolution (ITS)

$D^0 \rightarrow K^-\pi^+$

- expected ALICE performance
 - 5/B ≈ 10 %
 - $S/\sqrt{(S+B)} \approx 40$ (1 month Pb-Pb running)

→ similar performance in pp

(wider primary vertex spread)

p_T - differential

$$B \rightarrow e^{\pm} + X$$

- Expected ALICE performance (1 month Pb-Pb)
 - e[±] identification from TRD and dE/dx in TPC
 - impact parameter from ITS

Expected performance on D, B R_{AA}

colour charge dependence

$$R_{D/h}(p_t) = R_{AA}^D(p_t) / R_{AA}^h(p_t)$$

mass dependence

$$R_{B/D}(p_t) = R_{AA}^{\text{e from B}}(p_t) / R_{AA}^{\text{e from D}}(p_t)$$

1 year at nominal luminosity (10⁷ central Pb-Pb events, 10⁹ pp events)

study of medium properties with "calibrated" probes

Expected pp performance vs stats

• e.g.: $D^0 \rightarrow K^-\pi^+$

- for $\mathcal{L} > 10^{28} \text{ cm}^{-2}\text{s}^{-1}$ (1 bc per orbit @ 10 TeV)
- \rightarrow $O(10^7)$ events/day

Conclusions

- Ultrarelativistic nucleus-nucleus collisions allow us to recreate in the laboratory a high-density QCD medium
- At the LHC we shall finally be able to study its properties with "hard", calibrated probes
- The ALICE experiment is well equipped and ready for this adventure