High-Energy Astrophysics with AGILE

La Thuile 2009

The AGILE Payload

time a gamma-ray
imager (30 MeV- 30 GeV)
with a hard X-ray
imager (18-60 keV) with
large FOVs (1-2.5 sr) and
optimal angular
resolution

AGILE

AGILE challenge...

only ~100 kg of Payload

only ~100 W of PL absorbed power

only 350 kg of satellite...

Small Mission budget and resources

AGILE in orbit...

~9150 orbits, January 30, 2009.

Healthy Scientific Instrument

AGILE Cycle-2 on going

 Nominal scientific performance of all subsystems

The AGILE gamma-ray exposure (E > 100 MeV) more than 1 yr. exposure: July 2007 – 15 Sept. 2008

Gamma-ray sky after one year as seen by AGILE

AGILE Observations vs Model (-90 < 1 < 90)

AGILE First Catalog of high-significance gamma-ray sources (ASDC)

Pittori et al., 2009

Main science topics

Active Galactic Nuclei

- Pulsars
- SNRs and origin of cosmic rays
- VARIABLE Galactic sources
- Microquasars, Gal. compact objects

 Gamma-Ray Bursts (and Terrestrial Flashes)

Gamma-ray bright blazars detected by AGILE in 9 months

AGILE blazar main detections

- Flat spectrum radio quasars
 - 3C 454.3, 3C 273, 3C 279, PKS 1510-089
 - External Compton
- •LBLs PKS 0537-441
- •IBLs
 - S5 0716+714 near maximum power for spinning supermassive black hole, consistent with two-component SSC
 - W Comae
- •HBLs Mrk 421
 - Simultaneous hard-X, MeV, GeV, TeV

AGILE blazar main detections

- Strong variability
 - from single day to several weeks
- Crucial multifrequency observations
 - Spitzer, Swift, INTEGRAL, RXTE, Suzaku, MAGIC, VERITAS, WEBT, REM

Known pulsars

In about 9 months of scientific life, AGILE reached EGRET exposure level in the Vela region.

(Pellizzoni et al. 2009, Ap.J. 691, 161)

PSR	Pulsed Counts ^a	χ_r^3 (d.o.f)	Exposure ^b (10 ⁹ cm ² s)	Pulsed Flux ^c 10^{-8} ph cm ⁻² s ⁻¹		
Vela.	9,170±580	225.51 (9)	1.24	930±60		
Geminga	$1,900\pm480$	10.44 (9)	0.85	280±70		
Crab	$2,000\pm530$	10.71 (9)	0.92	270±70		
J1709-4429	$2,370\pm720$	9.11 (9)	1.56	190±60		

^{*}Pulsed counts (G+L event class) with E>100 MeV, 5 deg max from PSR position, 60 deg max from FOV center, 10 bins.

Calculated with the expression $C_P f/E$, where C_p =pulsed counts, E=exposure, f=factor accounting for source counts at angular distance > 5 deg from source position according to the point spread function (f \sim 1.3).

^bGood observing time after dead-time and occultation corrections.

High resolution timing - Crab

High resolution timing - Vela

Vela pulsar

Vela glitch

Vela glitch=54,312.5+/-3 MJD

Small Vela glitch in August 2007: burst emission possibly detected by AGILE

High resolution timing - Geminga

New gamma-ray pulsar!

PSR J2021-3651

Halpern et al., 2008

100-300 MeV

300-1500 MeV

100 - 1500 MeV

AGILE's new gamma-ray pulsars

PSR Name	G.Lon.	G.Lat. deg	P ms	т ^а ут	D⁴ kpe	$\log \dot{E}$ erg s ⁻¹	$\chi^2_{red}(N_{st})^{\rm b}$	σ_{time}^{c}	$\sigma_{\rm space}^{ m d}$	$F_{\gamma}^{\ \mathbf{d}}$	$\log L_{\gamma}{}^{\rm e}$ ${\rm erg} s^{-1}$	L_{γ}/\dot{E}
J2229+6114	106.65	2.95	51.6	1.0×10^{4}	12.0	37.35	6.0(36)	5.0	7.5	26±4	35.36	0.01
J1513-5908	320.32	-1.16	150.7	1.6×10^3	5.8	37.25	4.2(3)	4.0	6.4	$34\pm6^{\mathrm{f}}$	35.04	0.006
J1016-5857	284.08	-1.88	107.4	2.1×10^4	9.3	36.41	6.0(69)	4.8	12.3	$62\pm6^{\mathrm{f}}$	35.71	0.2
J1824-2452	7.80	-5.58	3.0	3.0×10^7	4.9	36.35	4.2(1)	4.2	3.6	18 ± 5	34.62	0.02
J1357-6429	309.92	-2.51	166.1	7.3×10^{3}	4.1	36.49	5.2(7)	4.7	1.8	<14	<34.35	< 0.007
J2043+2740	70.61	-9.15	96.1	1.2×10^6	1.1	34.75	4.1(1)	4.2	0.6	<6	< 32.84	< 0.01
J1524-5625	323.00	0.35	78.2	3.2×10^{4}	3.8	36.51	4.6(4)	4.3	1.0	<16	<34.34	< 0.007

New pulsars

PSR J1824-2452A - new ms

 $E_{ROT} = 2.2 \times 10^{36}$ erg/s

P = 3 ms

d = 4.9 kpc

A new variable millisecond gamma-ray pulsar in a globular cluster

AFTER the pulsars...

SNRs

Anticenter – Molecular Clouds Complex

Intensity map - ph/cm² sec sr

Anticenter – IC 443

Anticenter – IC 443

AGILE facts: direct evidence for proton acceleration in IC 443

- 100 MeV source and TeV source are non coincident!
- Absence of IC emission above 10-100 GeV at the gamma-ray peak:
 - − electron/proton ratio ~10⁻² (see also Gaisser et al. 1998)
- absence of prominent TeV emission along the SN shock front (and of non-thermal X-ray emission):
 - electron contribution subdominant
- The Northeastern SNR shock environment provides the target for proton-proton interaction and pion production/decay
 - Hadronic model at the NE shock is the only viable

Variable galactic sources as seen by AGILE

Cygnus region

Cygnus Region

2007 -2008

Cygnus Region

AGLJ2022+3622

- ATEL #1308 Chen et al.
 - AGILE gamma-ray detection of a strongly variable source in the Cygnus region
- Observed November 9-25, 2007
- 1-day flare on November 23-24, 2007
- Significance and flux
 - \circ 3 days: (1.2 ± 0.3) × 10⁻⁶ cm⁻² s⁻¹ at 4.9 σ
 - 1 day: (2.6 ± 1.0) × 10⁻⁶ cm⁻² s⁻¹ at 3.8 □
- Position (I,b)=(74.4,-0.5)°, error ~ 0.8°

AGLJ2022+3622 -- Light Curve

Cygnus Region

AGLJ2020+4019

- Persistent Emission
- $(1.19 \pm 0.08) \times 10^{-6}$ cm⁻² s⁻¹ at 25.9
- •Position: (I,b) = (78.35, 2.08)°, error ~ 0.11°
- •1-day flare on April 27-28, 2008
 - $(2.9 \pm 0.8) \times 10$ -6 cm-2 s-1 at 3.7 σ
 - Position: $(l,b) = (78.1, 2.0)^\circ$, error $\sim 0.8^\circ$
- •1-day flare on June 20-21, 2008
 - $(2.5 \pm 0.7) \times 10^{-6}$ cm⁻² s⁻¹ at 4.9 σ
 - Position $(l,b) = (78.6, 1.6)^\circ$, error $\sim 0.7^\circ$
- •3EGJ2020+4017

AGLJ2020+4019 -- April 27-28, 2008 Light Curve

Very difficult to react in such a short time

A different kind of variability

3EG 1835+5918

The Next Geminga

even more difficult than the original one

In y rays 5 times fainter than Geminga

In X-rays 10 times fainter than Geminga

In the optical 20 times fainter than Geminga No radio detection, no X-ray pulsation

Agile View of Next Geminga

Light curve of AGL J1835+5927 (temporal bin of 5 days)

Light curve of AGL J1835+5927 (bin size 3 days)

Old (variable?) friends

Cygnus X-3

15 - 18 April 2008

Giant radio flare of Cygnus X-3 detected by RATAN-600 radio telescope

Radio flux increasing of a factor ~103, from ~10 mJy to ~10 Jy

5.A. Trushkin et al., ATel #1483

10 Jy is typical flux for plasmoids e Cyg X-3 - SuperAGILE - 14-30 April 2008

The same period SuperAGILE revealed an X-ray flare S4570.0 54585.0 54585.0

LSI +61°303

GRID Galactic anticenter observation

Future prospects for AGILE...

Erratic variability of accreting micro-QSOs

- Need simultaneous and well-sampled X-ray and gamma-ray coverage!
- Gamma-ray emission rare, if any.

Summary of the AGILE results for GRBs

15 GRBs localized by SuperAGILE since July 2007 => ~1 GRB/month;

The uncertainty on the localization is 3 arcmin and the minimum detected fluence is $\sim 5 \cdot 10^{-7}$ erg cm⁻²;

11 follow-ups by Swift/XRT and the X-ray afterglow was always found;

About 1 GRB/week detected by MCAL and 1 - 2 GRBs/month detected by SuperAGILE (outside FoV) and provided to IPN for triangulation;

One firm detection in gamma rays (GRB 080514B, Giuliani et al., 2008, A&A) and two less significant detections (GRB 080721 and GRB 081001);

Localized AGILE GRBs

In the period July '07 – August '08: 64 GRBs detected (~1 GRB / week)

- 10 localized by SWIFT
- 8 localized by IPN (many more expected)
- 1 localized by SuperAGILE (other 4 SuperAGILE localizations without MCAL detection)

GRB 080609

long bright multipeaked out of GRID FOV

AGILE first gamma-ray detection of a GRB: GRB 080514B (Giuliani et al., A&A 2008)

GRB 080514B has been localized jointly by SuperAGILE and IPN.

Follow-up by Swift provided the afterglow in X-rays.

Many telescopes participated in the observation of the optical afterglow yielding the redshift

GRB 080514B Giuliani et al. 2008)

MCAL candidate TGF

trigger on 64ms timescale

Candidate TGF geographical distribution

Conclusions

 Very exciting time for gamma-ray and VHE astrophysics

 AGILE and Fermi LAT will provide a wealth of data on a variety of sources

Multifrequency approach is crucial

	AGILE	FERMI/LAT
A _{eff} (100 MeV) (cm ²)	~400	~ 2000-2500
A _{eff} (10 GeV) (cm ²)	500	~ 8000-10000
FOV (sr)	2.5	2.5
sky coverage	1/5	whole sky
Energy resolution (~ 400 MeV)	50 %	10 %
PSF (68 % cont. radius) 100 MeV 1 GeV	3° - 4° < 1°	3° - 4° < 1°

	AGILE (GRID)	
FOV (sr)	2.5	2.5
sky coverage	1/5	whole sky
Average source livetime fraction per day	~ 0.4	~ 0.16
Attitude	fixed	variable

History of space astrophysics above 20 keV or so...

