XXIII Rencontres de Physique de La Vallée d'Aoste

Infrared singularities in QCD amplitudes

Einan Gardi (Edinburgh)

Based on a recent paper with Lorenzo Magnea: Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, [arXiv:0901.1091] to appear in JHEP.

Why study infrared singularities?

Cross sections are finite only upon summing real and virtual contributions

Dim. reg.: $\frac{1}{\epsilon}[\underbrace{\left(Q^{2} / m_{j}^{2}\right)^{\epsilon}}_{\text {real }} \underbrace{-1}_{\text {virtual }}]$

$$
\Longrightarrow \quad \ln \left(Q^{2} / m_{\mathrm{jet}}^{2}\right)
$$

- cross sections calculations:
- For general kinematics (and cuts!) phase-space integration must be done numerically. \Longrightarrow need to know the singularities before we start the calculation.
- It is possible: the singular terms are universal.
- At one loop we have general algorithms, allowing to determine and subtract the singularities for general kinematics. Example: dipole subtraction [Catani Seymour (1996)].
- Such are needed in multi-loop calculations.

Why study infrared singularities? (II) resummation

Cross sections are finite only upon summing real and virtual contributions

Dim. reg.: $\frac{1}{\epsilon}[\underbrace{\left(Q^{2} / m_{j}^{2}\right)^{\epsilon}}_{\text {real }} \underbrace{-1}_{\text {virtual }}]$

$$
\Longrightarrow \quad \ln \left(Q^{2} / m_{\mathrm{jet}}^{2}\right)
$$

- cross sections calculations.
- Resummation: The logarithms are often large, and they spoil the convergence of the expansion in α_{s}.
But, knowing the singularity structure, they can be resummed to all orders: they exponentiate:
- parton showers
- dedicated precision calculations

Factorization in a two-jet process

- Sudakov resummation in inclusive cross sections is well understood
- Soft and Jet sub-processes are incoherent \Longrightarrow factorization
- Each sub-process is associated with
- a single scale
- a unique anomalous dimension - a function of the running coupling only

- the overlap: the cusp anomalous dimension γ_{K}

$$
\operatorname{Sud}\left(m^{2}, N\right)=\exp \{C_{R} \int_{0}^{1} \frac{d r}{r}[\underbrace{(1-r)^{N-1}}_{\text {real }} \underbrace{-1}_{\text {virtual }}] R\left(m^{2}, r\right)\},
$$

$C_{R} \frac{R\left(m^{2}, r\right)}{r}=-\frac{1}{r}\left[\int_{r^{2} m^{2}}^{r m^{2}} \frac{d k^{2}}{k^{2}} \gamma_{K}\left(\alpha_{s}\left(k^{2}\right)\right)+2 \mathcal{B}\left(\alpha_{s}\left(r m^{2}\right)\right)-2 \mathcal{D}\left(\alpha_{s}\left(r^{2} m^{2}\right)\right)\right]$

Resummation: Example 1 - Higgs production at the LHC

The main Higgs production channel: $g g \longrightarrow H+X$ gluon density \Longrightarrow Higgs production occurs near partonic threshold:

- the total energy of gluons in the final state:

$$
E_{X}=\left(\hat{s}-m_{H}^{2}\right) / 2 m_{H} \rightarrow 0
$$

- multiple soft gluon emission \Longrightarrow resummation

Higgs P_{T} distribution [Bozzi et al. '05]

$\overrightarrow{\mathrm{P}_{1}}$

Resummation: Example 2 - precision flavour physics

Inclusive decay spectra in the B factories: $\bar{B} \rightarrow X_{s} \gamma, \bar{B} \rightarrow X_{u} l \nu, \ldots$

- Gambino's talk tomorrow.

Resummation: Korchemsky Sterman; Bauer Fleming Pirjol Stewart (SCET); Lange Neubert Paz; Andersen Gardi, Aglietti et al., ...
$\bar{B} \rightarrow X_{s} \gamma$ spectrum [Andersen \& Gardi '06]

- $\bar{B} \rightarrow X_{s} \gamma$ branching fraction - bounds on new physics
- precise determination of $\left|V_{u b}\right|$!

Resummation: Example 3 - jet cross sections

Jets in $e^{+} e^{-} \rightarrow$ hadrons - extensively studied at LEP
[Catani Trentadue Turnock Webber (92); Korchsmsky Sterman (95);
Dokshitzer Webber (95), Dokshitzer Marchesini Webber (96), ...] thrust distribution [Gardi \& Rathsman '02]

- Determination of the strong coupling
- Quantitative understanding hadronization corrections

Factorization of a multi-leg amplitude

Fixed-angle scattering amplitude in a massless gauge theory $\left(p_{i}^{2}=0\right)$

Mueller (81)
Sen (83)
Botts Sterman (89)
Kidonakis Oderda Sterman (98)
Catani (98)
Tejeda-Yeomans Sterman (02)
Kosower (03)
Aybat Dixon Sterman (06)
Becher Neubert (09)
Gardi Magnea (09)

Eikonal approximation

Eikonal Feynman rules gluon emission in the limit $k \rightarrow 0$:

$$
\bar{u}(p)\left(-\mathrm{i} g_{s} T^{(a)} \gamma^{\mu}\right) \frac{i(\not p+\not p+m)}{(p+k)^{2}-m^{2}+\mathrm{i} \varepsilon}
$$

- Valid when all momentum components of k are small (not valid when k is collinear to p but hard)
- Only the direction and the colour charge of the emitter are important. Rescaling invariance: $\beta \propto p$

$$
g_{s} T^{(a)} \frac{p^{\mu}}{p \cdot k+i \varepsilon}=g_{s} T^{(a)} \frac{\beta^{\mu}}{\beta \cdot k+i \varepsilon}
$$

- Equivalent to radiation off a Wilson line along the quark trajectory:

$$
P \exp \left\{\mathrm{i} g_{s} \int_{0}^{\infty} d \lambda \beta \cdot A(\lambda \beta)\right\}
$$

Colour flow

Decompose the amplitude in a colour basis (independent colour tensors with the index structure of the external partons):
Example:

In general:

$$
\mathcal{M}_{\left\{\alpha_{i}\right\}}\left(p_{i} / \mu, \epsilon\right)=\sum_{L=1}^{n_{\text {rep }}} \mathcal{M}_{L}\left(p_{i} / \mu, \epsilon\right)\left(c_{L}\right)_{\left\{\alpha_{i}\right\}}
$$

$n_{\text {rep }}$ is the number of elements in the basis (number of irreducible representations that can be constructed with the given external particles).

Factorization of a multi-leg amplitude

- All singularities are in $\mathcal{S}, J_{i} / \mathcal{J}_{i}$.
- colour:
\mathcal{S} is a matrix acting on H
- kinematics:
\mathcal{S} depends on all velocities; J_{i} / \mathcal{J}_{i} depends on a single p_{i}

$$
\begin{aligned}
\mathcal{M}_{N}\left(p_{i} / \mu, \epsilon\right)=\sum_{L} & \mathcal{S}_{N L}\left(\beta_{i} \cdot \beta_{j}, \epsilon\right) H_{L}\left(\frac{2 p_{i} \cdot p_{j}}{\mu^{2}}, \frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}\right) \\
& \times \prod_{i=1}^{n} J_{i}\left(\frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}, \epsilon\right) / \mathcal{J}_{i}\left(\frac{2\left(\beta_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2}}, \epsilon\right)
\end{aligned}
$$

To avoid double counting of the soft-collinear region: \mathcal{J}_{i} removes from J_{i} its eikonal part, which is already taken into account in \mathcal{S}.

The jet function: definition

- Introduce auxiliary vectors $n_{i}\left(n_{i}^{2} \neq 0\right)$ to separate collinear regions. Intuitive picture: jet i contains gluons (k) such that: $k \cdot p_{i}<n_{i} \cdot p_{i}$
- Define a gauge-invariant jet using a Wilson line along a ray n_{i}.

partonic jet:

$$
\bar{u}(p) J\left(\frac{(2 p \cdot n)^{2}}{n^{2} \mu^{2}}, \epsilon\right)=\langle p| \bar{\psi}(0) \Phi_{n}(0,-\infty)|0\rangle
$$

where

$$
\Phi_{n}\left(\lambda_{2}, \lambda_{1}\right)=P \exp \left[\mathrm{i} g \int_{\lambda_{1}}^{\lambda_{2}} d \lambda n \cdot A(\lambda n)\right]
$$

eikonal jet:

$$
\mathcal{J}\left(\frac{2(\beta \cdot n)^{2}}{n^{2}}, \epsilon\right)=\langle 0| \Phi_{\beta}(\infty, 0) \Phi_{n}(0,-\infty)|0\rangle
$$

The eikonal jet and the cusp anomaly

- \mathcal{J} doesn't depend on any kinematic scale; radiative corrections only due to renormalization.

- multiplicatively renormalizable \Longrightarrow evolution \Longrightarrow exponentiation.
- Overlapping soft and collinear singularities \Longrightarrow
- double poles
- single poles that carry $(\beta \cdot n)^{2} / n^{2}$ dependence, violating classical rescaling symmetry wrt β. This is the cusp anomaly!

$$
\mathcal{J}_{i}\left(\frac{2(\beta \cdot n)^{2}}{n^{2}}, \epsilon\right)=\exp \left\{\int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}}\left[\frac{1}{4} \delta_{\mathcal{J}_{i}}\left(\alpha_{s}\left(\lambda^{2}, \epsilon\right)\right)-\frac{1}{8} \gamma_{K}^{(i)}\left(\alpha_{s}\left(\lambda^{2}, \epsilon\right)\right) \ln \left(\frac{2(\beta \cdot n)^{2} \mu^{2}}{n^{2} \lambda^{2}}\right)\right]\right\}
$$

The double poles as well as the entire kinematic dependence of the simple poles are governed by $\gamma_{K}^{(i)}!\quad$ [EG \& Magnea (09)]

The soft function \mathcal{S}

Definition:

$\left(c_{N}\right)_{i j k l} \mathcal{S}_{N L}\left(\beta_{a} \cdot \beta_{b}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=$

$$
\begin{aligned}
& \sum^{\Sigma} \\
& \langle 0| \Phi_{-\beta_{2}}^{k, k^{\prime}}(0, \infty) \Phi_{\beta_{1}}^{i, i^{\prime}}(\infty, 0) \Phi_{\beta_{3}}^{j, j^{\prime}}(0, \infty) \Phi_{-\beta_{4}}^{l, l^{\prime}}(\infty, 0)|0\rangle\left(c_{L}\right)_{i^{\prime} j^{\prime} k^{\prime} l^{\prime}}
\end{aligned}
$$

multiplicatively renormalizable \Longrightarrow matrix evolution equation:

$$
\begin{aligned}
& \mu \frac{d}{d \mu} \mathcal{S}_{J L}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)= \\
& -\sum_{N}\left[\boldsymbol{\Gamma}_{\mathcal{S}}\right]_{J N}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \mathcal{S}_{N L}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
\end{aligned}
$$

The soft function \mathcal{S}

Evolution \Longrightarrow Exponentiation:
$\mathcal{S}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)=P \exp \left\{-\frac{1}{2} \int_{0}^{\mu^{2}} \frac{d \lambda^{2}}{\lambda^{2}} \boldsymbol{\Gamma}_{\mathcal{S}}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\lambda^{2}, \epsilon\right), \epsilon\right)\right\}$
$\Gamma_{\mathcal{S}}$ is a matrix of anomalous dimensions.

- A priori, $\boldsymbol{\Gamma}_{\mathcal{S}}$ can be very complicated: at each order in α_{s} it may contain new colour structures and kinematic dependence corresponding to sums of webs:

- In fact $\Gamma^{\mathcal{S}}$ is (much?) simpler.

The soft anomalous dimension $\Gamma_{\mathcal{S}}$ at two loops

Remarkable discovery: [Aybat Dixon Sterman (06)]
For any multi-leg amplitude:

$$
\boldsymbol{\Gamma}_{\mathcal{S}}^{(2)}=\frac{K}{2} \boldsymbol{\Gamma}_{\mathcal{S}}^{(1)}
$$

where $\boldsymbol{\Gamma}_{\mathcal{S}}=\sum_{n=1}^{\infty} \boldsymbol{\Gamma}_{\mathcal{S}}^{(n)}\left(\frac{\alpha_{s}(\mu)}{\pi}\right)^{n}$ and $K=\left(\frac{67}{18}-\zeta(2)\right) C_{A}-\frac{10}{9} T_{F} N_{f}$.
so at two loops: no new colour matrices, no new kinematic dependence...

- why?
- where is K coming from?

This is the famous coefficient of the cusp anomalous dimension $\gamma_{K}^{(i)}$ [Korchemsky Radyushkin (87), Kodaira Trentadue (82),...] :

$$
\gamma_{K}^{(i)}=2 C_{i} \frac{\alpha_{s}}{\pi}+K C_{i}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+\cdots
$$

very suggestive... does this extend to higher orders?

The soft function \mathcal{S}

$$
\begin{aligned}
& \mu \frac{d}{d \mu} \mathcal{S}_{J L}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)= \\
& -\sum_{N}\left[\boldsymbol{\Gamma}_{\mathcal{S}}\right]_{J N}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right) \mathcal{S}_{N L}\left(\beta_{i} \cdot \beta_{j}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
\end{aligned}
$$

$\Gamma_{\mathcal{S}}$ has cusp singularities, and therefore, similarly to $\gamma_{\mathcal{J}}$

- it has poles in ϵ (\mathcal{S} itself has double poles).
- it is not invariant with respect to $\beta_{i} \longrightarrow \kappa_{i} \beta_{i}$

Both these issues can be 'fixed' by dividing by appropriate eikonal jets...

The reduced soft function $\overline{\mathcal{S}}$

$\overline{\mathcal{S}}$ does not suffer from the cusp anomaly, and must therefore respect rescaling $\beta_{i} \longrightarrow \kappa_{i} \beta_{i}$:
$\Longrightarrow \overline{\mathcal{S}}$ depends only on

$$
\rho_{i j} \equiv \frac{\left(\beta_{i} \cdot \beta_{j}\right)^{2}}{\left[2\left(\beta_{i} \cdot n_{i}\right)^{2} / n_{i}^{2}\right]\left[2\left(\beta_{j} \cdot n_{j}\right)^{2} / n_{j}^{2}\right]}
$$

Factorization in terms of the reduced soft function $\overline{\mathcal{S}}$

$$
\mathcal{M}_{N}\left(p_{i} / \mu, \epsilon\right)=
$$

$$
\begin{aligned}
& =\sum_{L} \mathcal{S}_{N L}\left(\beta_{i} \cdot \beta_{j}, \epsilon\right) H_{L} \prod_{i=1}^{n} \frac{J_{i}\left(\frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}, \epsilon\right)}{\mathcal{J}_{i}\left(\frac{2\left(\beta_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2}}, \epsilon\right)} \\
& =\sum_{L} \overline{\mathcal{S}}_{N L}\left(\rho_{i j}, \epsilon\right) H_{L} \prod_{i=1}^{n} J_{i}\left(\frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}, \epsilon\right)
\end{aligned}
$$

- $\overline{\mathcal{S}}$ has only single poles due to large-angle soft gluons.
- $\overline{\mathcal{S}}$ much like \mathcal{M} cannot depend on the normalization of the velocities!

The equations for $\Gamma^{\bar{S}}$

Factorization + rescaling invariance imply:
$\Gamma^{\overline{\mathcal{S}}}$ for any multi-leg amplitude, in any colour basis, obeys:

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \left(\rho_{i j}\right)} \boldsymbol{\Gamma}^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \gamma_{K}^{(i)}\left(\alpha_{s}\right)
$$

[Gardi Magnea (09)]

This is true to all orders, as well as at strong coupling.

- We have related the soft anomalous dimension of a general multi-leg amplitude to the cusp anomalous dimension.
- Intriguing relation between kinematics and colour.

Solving for $\Gamma^{\overline{\mathcal{S}}}$

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \left(\rho_{i j}\right)} \Gamma^{\bar{S}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \gamma_{K}^{(i)}\left(\alpha_{s}\right),
$$

Does this set of differential equations have a unique solution?

- For two or three legs - yes! Then $\Gamma^{\bar{s}}$ can be written in terms of γ_{K}, with explicitly determined kinematic dependence.
- For four or more legs - no: functions of conformal cross ratios

$$
\rho_{i j k l} \equiv \frac{\left(\beta_{i} \cdot \beta_{j}\right)\left(\beta_{k} \cdot \beta_{l}\right)}{\left(\beta_{i} \cdot \beta_{k}\right)\left(\beta_{j} \cdot \beta_{l}\right)}=\left(\frac{\rho_{i j} \rho_{k l}}{\rho_{i k} \rho_{j l}}\right)^{1 / 2}
$$

satisfy the homogeneous equation.
Yet, it has a simple all-order solution (minimal solution)

The sum-over-dipoles formula

$\gamma_{K}^{(i)}$ admits quadratic Casimir scaling $\left(C_{i} \equiv \mathrm{~T}_{i} \cdot \mathrm{~T}_{i}\right)$ (at least to 3 loops):
$\gamma_{K}^{(i)}=2 C_{i} \frac{\alpha_{s}}{\pi}+K C_{i}\left(\frac{\alpha_{s}}{\pi}\right)^{2}+K^{(2)} C_{i}\left(\frac{\alpha_{s}}{\pi}\right)^{3}+\cdots=C_{i} \widehat{\gamma}_{K}\left(\alpha_{s}\right)+\underbrace{\widetilde{\gamma}_{K}^{(i)}\left(\alpha_{s}\right)}_{\text {Higher Casimirs }}$

The equations: $\quad \sum_{j \neq i} \frac{\partial}{\partial \ln \left(\rho_{i j}\right)} \Gamma_{\text {Q.c. }}^{\overline{\mathcal{Q}}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \mathrm{~T}_{i} \cdot \mathrm{~T}_{i} \widehat{\gamma}_{K}\left(\alpha_{s}\right)$,
are solved by the sum-over-dipoles formula [Gardi Magnea (09)]:
$\Gamma_{\text {Q.C. }}^{\bar{S}}\left(\rho_{i j}, \alpha_{s}\right)=-\frac{1}{8} \widehat{\gamma}_{K}\left(\alpha_{s}\right) \sum_{i \neq j} \ln \left(\rho_{i j}\right) \mathrm{T}_{i} \cdot \mathrm{~T}_{j}+\frac{1}{2} \widehat{\delta}_{\overline{\mathcal{S}}}\left(\alpha_{s}\right) \sum_{i=1}^{n} \mathrm{~T}_{i} \cdot \mathrm{~T}_{i}$,

- Generalises the two loop result to all orders (minimal solution!)
- Kinematics and colour are directly correlated.

The same formula was simultaneously proposed by Becher and Neubert.

Conclusions

- Detailed understanding of infrared singularities in QCD amplitudes is needed for cross section calculations and for resummation.
- Recent progress:
- Remarkable simplicity at two loops - now better understood.
- A completely general constraint was derived based on factorization and rescaling symmetry. It relates soft singularities in any amplitude, and any loop order, to the cusp anomalous dimension.
- An all-loop sum-over-dipoles formula naturally emerges as a minimal solution.
- Several research avenues have opened up. The full beauty of gauge theory amplitudes is not yet revealed...

Beyond the minimal solution

Corrections to the sum-over-dipoles formula are of two kinds

- terms that are induced by higher Casimir contributions to γ_{K} - they may appear starting at four loops and must satisfy the equations

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \left(\rho_{i j}\right)} \Gamma_{\text {H.C. }}^{\bar{S}}\left(\rho_{i j}, \alpha_{s}\right)=\frac{1}{4} \widetilde{\gamma}_{K}^{(i)}\left(\alpha_{s}\right),
$$

- solutions of the homogeneous equations

$$
\sum_{j \neq i} \frac{\partial}{\partial \ln \left(\rho_{i j}\right)} \Gamma^{\overline{\mathcal{S}}}\left(\rho_{i j}, \alpha_{s}\right)=0
$$

namely, functions of conformal cross ratios. These may appear starting at three loops, four legs.
Absence of $\hat{\mathbf{H}}_{[\mathrm{f}]}^{(2)}=\sum_{j, k, l} \sum_{a, b, c} \mathrm{i} f_{a b c} \mathrm{~T}_{j}^{a} \mathrm{~T}_{k}^{b} \mathrm{~T}_{l}^{c} \ln \left(\rho_{i j k l}\right) \ln \left(\rho_{i k l j}\right) \ln \left(\rho_{i l j k}\right)$
at the two-loops $\Gamma^{\overline{\mathcal{S}}}$ supports the minimal solution!

