Can LHC falsify Leptogenesis?

- •Why focus on Leptogenesis?
- •Is it provable?
- •We should take extra gauge interactions into account
- •A discovery of W_R at LHC would kill it!

Roadmap to generating the observed matter-antimatter (baryon) excess

Generate B or L asymmetry at high scale

Electroweak phase transition occurs

Out of Equilibrium

Independently of pre-existing B or L a new creation of B is possible, (with B-L=0 for the new contribution)

Electroweak
Baryogenesis ??

Need many additions to SM, Very difficult to establish or to get a realiable estimate

At (or near) Equilibrium

Pre-existing B or L erased attacked by sphalerons / topological solutions but B-L is conserved

For SU(5) baryo, B-L=0, so B and L totally erased. \rightarrow no effect!

IF B-L ≠0, the proportions of B and L are simply changed; In particular, if only L was generated, it can be changed into B

→ Leptogenesis

Leptogenesis

- Basic idea :generate L at higher temperature
- Use the electroweak phase transition near equilibrium to convert $L \rightarrow -B$
 - •Advantage: insensitive to the details of the sphaleron-based mechanism, provided the transition stays close to equilibrium until completion
- Use heavy Majorana neutrinos,
 - •... because their inclusion has recently become very popular

How leptogenesis works....

Assume that we have some population of heavy N particles... (either initial thermal population, or re-created after inflation); due to their heavy mass and relatively small coupling, N become easily relic particles.

Constraints:

Heavy neutrinos must decay out of equilibrium

$$\tau(X) >> H^{-1}$$

 $H = \dot{a}/a$ is the Hubble constant,

$$\tau^{-1} = \Gamma \cong g^2 M$$

$$H = \sqrt{g^*} \frac{T^2}{10^{19} GeV}$$

 g^{*} is the number of degrees of freedom at the time

at decay : $T \approx M$,

Need enough CP violation;

for large splitting between neutrino masses, get

$$\varepsilon_{i}^{\phi} = -\frac{3}{16\pi} \frac{1}{\left[\lambda_{\nu} \lambda_{\nu}^{\dagger}\right]_{ii}} \sum_{i \neq i} \operatorname{Im}\left(\left[\lambda_{\nu} \lambda_{\nu}^{\dagger}\right]_{ij}^{2}\right) \frac{M_{i}}{M_{i}}.$$

Some rough estimations...

...What are the suitable values of λ and M? Assume there is only one generic value of λ (in reality, a matrix)

$$\epsilon < \lambda^4/\lambda^2 \approx \lambda^2 > 10^{-8}$$

$$m_{\nu} = m^2/M \approx \lambda^2/M \approx .01 eV$$

rough estimate of M scale (in GeV) needed...

similar to τ lepton \longrightarrow

At the difference of baryogenesis, the Yukawa matrix λ leaves a lot of freedom

λ	light neutrino .01 eV M ~	decay out of equil. M>	enough CP viol
.00001	10^7	10^8	need tuning
.0001	10^9	10^10	
.001	10^11	10^12	
.01	10^13	10^14	
.1	10^15	10^16	
1	10^17	10^18	large
1	10^17	10^18	large

Could much lower values be reached?

Possible tuning: resonant leptogenesis

If the 2 neutrinos are nearly degenerate, Pole amplification: CP interference becomes

of order 1 instead of λ^2

This far, the introduction of (heavy) right-handed neutrinos is quite arbitrary: for light neutrino masses, it amounts to introducing a large M instead of a very small Yukawa.

It only makes sense if the new, heavy neutrinos are involved in some unification scheme.

This could be SO(10), E(6), or other groups, (even badly broken)

 W_R and Z' bosons linked to e_R and N exist;

Contributions to N mass also contribute to W_R , and these should not be neglected.

$$SU(5) \subset SO(10)$$

and the fermions come in nice representations

$$16 = \overline{5} \oplus 10 \oplus 1$$

where "1" is precisely N_R

with the gauge inclusion

In rough terms ...

Dilution factor X ?

$$a_w = \frac{M_{W_R}^2}{M_1^2}$$

- $M_{W_R} < M_1$ \Rightarrow 2-body decay
 - $\Rightarrow X \text{ Large} \sim 10^4 10^5$
 - ⇒ too much dilution

 \blacksquare $M_{W_R} > M_1 \Rightarrow$ 3-body decay

$$\Rightarrow X = \frac{3g^4v^2}{2^7\pi^2} \frac{1}{\tilde{m}_1 M_1 a_w^2}$$

$$\Rightarrow a_w \sim 10 \Rightarrow X \sim 10$$

In fact, the presence of WR will prove beneficial in some cases (re-heating after inflation)

TESTING LEPTOGENESIS

Type I Leptogenesis Testability:

- 1. If N_{iR} are hierarchical Then successful Leptogenesis requires $m(N_R) > 10^8 \text{ GeV}$
- X

2. If N_{iR} are degenerate Then Leptogenesis possible at low scales, but $m(v_{\alpha})$ require suppressed Yukawa couplings

- X
- 3. ► Casas-Ibarra parameterization of Yukawa [NPB 618(2001)171]

$$\lambda = \sqrt{m_N} R \sqrt{m_\nu} U^\dagger$$

CP violation at low energies governed by U CP violation at high energies governed by $\lambda \lambda^{\dagger} \neq f(U)$!

- X
- ⇒ ∄ direct link between CP violation at high & low energies [Branco et al. 2001, Pascoli et al. 2006, Davidson et al. 2007, ...]
- 4. ??

If not testable, could leptogenesis at least be falsified?

CAN LHC DISPROVE LEPTOGENESIS ?

EFFECTS OF A LOW SCALE WR

Decays	Diagrams	CP Violation	Efficiency
Yukawa	N_R	$ \frac{\Gamma_{N \to LH} - \overline{\Gamma}_{N \to \overline{L}H^*}}{\Gamma_{\text{tot}}^{(l)}} = \frac{\Gamma_{N \to LH} - \overline{\Gamma}_{N \to \overline{L}H^*}}{\Gamma_{\text{tot}}^{(l)}} $ "Each N decay could gives $\triangle L=1$ "	$\eta \leq 1$
Gauge	N_R V_R	$arepsilon_{CP} = rac{\Gamma - \overline{\Gamma}}{\Gamma_{ ext{tot}}^{(l)} + \Gamma_{ ext{tot}}^{(W_R)}} ext{ Diluti}$ $= rac{\Gamma - \overline{\Gamma}}{\Gamma_{ ext{tot}}^{(l)}} rac{\Gamma_{ ext{tot}}^{(l)}}{\Gamma_{ ext{tot}}^{(l)} + \Gamma_{ ext{tot}}^{(W_R)}}$	$\eta \leq rac{\Gamma_{ ext{tot}}^{(l)}}{\Gamma_{ ext{tot}}^{(l)} + \Gamma_{ ext{tot}}^{(W_R)}}$

Strong Thermalization

- ⇒ Easier to produce neutrinos @ Reheating
- ⇒ Harder decoupling @ Low T° (Washout)

 Due to the relatively high abundance of targets X

CAN LHC DISPROVE LEPTOGENESIS ?

CAN LHC DISPROVE LEPTOGENESIS?

BASED ON JHEP 0901 (2009) 051

J.M.FRÈRE, T.HAMBYE & G.VERTONGEN (UNIVERSITÉ LIBRE DE BRUXELLES)

$\log_{10}\left[\gamma_i/(n_{N_1}^{\mathrm{eq}}\mathrm{H})\right]$ INTERACTION RATES -10^{-10} $\log_{10} \left[m_N / T \right]$ NOW (b) $\log_{10} \left[\gamma_i / (n_l^{\rm eq} \mathrm{H}) \right]$

 $\log_{10} \left[m_N/\mathrm{T} \right]$

NOW

EXAMPLE OF GAUGE EFFECTS

 $m(N) = 500 \text{ GeV} \quad m(W_R) = 3 \text{ TeV} \quad m1 = 10^{-3} \text{ eV}$

Case	Content	η	YB
(a)	Standard Leptogenesis	0,5	6.10-4

ASYMMETRY EVOLUTION

CAN LHC DISPROVE LEPTOGENESIS ?

$\log_{10}\left[\gamma_i/(n_{N_1}^{\mathrm{eq}}\mathrm{H})\right]$ INTERACTION RATES YHS -10- $\log_{10} \left[m_N / T \right]$ NOW,

EXAMPLE OF GAUGE EFFECTS

 $m(N) = 500 \text{ GeV} \quad m(W_R) = 3 \text{ TeV} \quad m1 = 10^{-3} \text{ eV}$

Case	Content	η	YΒ
(a)	Standard Leptogenesis	0,5	6.10-4
(b)	(a)+W _R decays in Y _N	3.10-8	4.10-11
(c)	(b)+W _R scatterings in Y _N	2.10-10	2.10-13
(d)	(c)+W _R decays in Y _L	2.10-18	2.10-21
(e)	(d)+W _R scatterings in Y _L	2.10-18	2.10-21

ASYMMETRY EVOLUTION

CAN LHC DISPROVE LEPTOGENESIS ?

EFFICIENCY RESULTS

 $M(W_R) = 3 \text{ TeV}$

17~10-13

IN ANY CASE:

 $\eta < \eta_{MIN} = 7.10^{-8}$

Type I Leptogenesis
Disproved if W_R
Discovered @ LHC

BOUNDS ON M(WR) & M(NR)

For $\varepsilon_{\text{CP}} = 1$

FOR $\mathcal{E}_{CP} = \mathcal{E}_{DI}$

Prospects at LHC..

This analysis assumes N lighter than W_R; should be generalized (one less mass constraint) or extended to quark sector (correlations in top decay)

CMS Physics
TDR2
(similar plots for Atlas)

$$u_R \overline{d_R} \rightarrow W_R \rightarrow N l^+ \rightarrow l^+ l^+ \overline{u_R} \underline{d_R}$$

$$\rightarrow l^+ l^- u_R \overline{d_R}$$

Figure 15.7: CMS discovery potential of the W_R boson and right-handed Majorana neutrinos of the Left-Right Symmetric model for the integrated luminosity $L_t = 30 \text{ fb}^{-1}$ (outer contour) and for $L_t = 1 \text{ fb}^{-1}$ (inner contour)

Leptogenesis is by far the most attractive way to generate the current baryon asymmetry, It is extraordinarily sturdy and resilient, and almost hopeless to confirm

BUT

finding a W_R at a collider near you would kill at least the « type 1 » leptogenesis (= through asymmetrical N decay)

probably the only realistic way to EXCLUDE simple leptogenesis!

Backup slides

Right-handed W Can have both enhancing And damping effects

Allowed contours in $M_1 - \tilde{m_1}$ plane,

solid line = thermal Majorana initial population

dashed line = Majorana population rebuilt after reheating

2 effects:

- more dilution leading to heavier MR,
- suppression in re-heating scheme lifted.

N Cosme JHEP 0408:027,2004.

hep-ph/0403209

Baryon density

$$a_W = \frac{M_{W_R}^2}{M_1^2}$$

Spotting a W_R without using the N

Pick up a paper:

W_R identification at hadron colliders

Thks to Fabio Maltoni for the Madgraph processing

J.-M. Frère a,b,1 and W.W. Repko b

- ^a Physique Théorique, CP225, Université Libre de Bruxelles, B-1050 Brussels, Belgium ²
- b Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Received 5 November 1990 1990!

We study the process pp $(p\bar{p}) \rightarrow W_H \rightarrow bt \rightarrow bbW_L$, where W_H is a hypothetical heavy gauge boson. The differential cross section $d\sigma/dE_W$ is sensitive to the chiral structure of the W_H coupling. In particular, the heavy W_R expected from $SU(2)_L \times SU(2)_R \times U(1)$ models is clearly distinguishable from an additional W'_L .

and a Ph.D. student*

*thanks to R. Frederix

1. Validation

Fig. 1. The W energy distribution from t quark decay is shown for t production by the exchange of a heavy W_L (LL) and by the exchange of a heavy W_R (RL). The heavy W mass was taken to be 800 GeV.

2. Pheno⇒Exp study

events/bin

A few usefull references... among many: initial work:
85-86 Kuzmin, Rubakov, Shaposhnivov L--B transition Fukugita, Yanagida
96 Covi, Roulet, Vissani around 2000: revival by Buchmüller, Plümacher, ... large number of papers...

detailed study and review: Giudice, Notari, Raidal, Riotto, Strumia hep/ph0310123

critical discussion on limits on masses and couplings Hambye, Lin, Notari, Papucci, Strumia hep/ph0312203

..many papers on alternate mechanisms...

also: influence of lepton flavours, N2 and N3: Abada, Davidson, Josse-Michaux, Losada, Riotto hep/ph O601083 Nardi, Nir, Roulet, Racker hep/ph O601084

Very strong constraints claimed...

Figure 4: Inverted hierarchy case. Curves, in the $(\widetilde{m}_1\text{-}M_1)$ -plane, of constant $\eta_{B0}^{\max}=10^{-10}$ (thin lines) and $\eta_{B0}^{\max}=3.6\times10^{-10}$ (thick lines) for the indicated values of \overline{m} . The filled regions for $\eta_{B0}^{\max}\geq3.6\times10^{-10}$ are the *allowed regions* from CMB. There is no allowed region for $\overline{m}=0.20\,\mathrm{eV}$.

on this side, too large λ leads to excessive washout

for instance, this side of the constraint assumes zero initial N after reheating, and requires large λ to re-generate them this is very model-depdt!

Electroweak Baryogenesis??

• NOT favoured in Standard Model:

- •1st order phase transition (requires light scalar boson) excluded by LEP
- •CP violation insufficient in SM: (see next slide)
- Possible in some extensions, like SUSY
 - •e.g. add extra scalars (including singlets and trilinear couplings to force a strong 1st order phase transition
 - •Extra CP violation needed
 - •Even in the best case, evaluation of the efficiency of the conversion mechanism difficult, due to extended solutions.

