

Measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ cross section using initial state radiation at BESIII

April 20, 2015 | Christoph Florian Redmer

Radio MonteCarLOW Workshop, Frascati 2015

IOHANNES GUTENBERG

Motivation

Our goal:

Measurement of the ${\rm e^+e^-} \to \pi^+\pi^- {\rm cross}$ section at the BESIII experiment

with a precision

in the order of 1%

BESIII Data Sets

OHANNES GUTENBERG UNIVERSITÄT MAIN

JGU

Integrated luminosities BESIII

- BESIII Detector
- BEPCII Collider
 - 2.0 ≤ √s [GeV] ≤ 4.6
- World's largest data sets on
 - Charmonium
 - Charm

....

Charmonium-like states

Initial State Radiation

OHANNES GUTENBERG

- Photon emitted in initial state
 - Available CMS energy reduced

Initial State Radiation

JGU

HANNES GUTENBERG

Tagging the ISR Photon

JGU

HANNES GUTENBERG

tagged: photon hits EMC

untagged: photon leaves the detector

Tagged Analysis

• Acceptance for $\pi^+\pi^-$ down to threshold

Untagged Analysis

- Higher cross section
- Acceptance only from $m_{\pi\pi} > 1 \text{GeV}$

Radio MontecarLow WG Meeting, Frascati 2015

ISR Analysis

JGU

HANNES GUTENBERG

JGU

HANNES GUTENBERG

ISR Analysis

Muon suppression:

- Artificial Neural Network
- Trained with MC events
- Efficiency matrix (p,Θ) for data-MC
- Track-based data-MC corrections
- Cross checked with different TMVA methods

TMVA overtraining check for classifier: CFMIpANN

ISR Analysis

Muon suppression:

JGU

INNES GUTENBERG

- Artificial Neural Network
- Trained with MC events
- Efficiency matrix (p,Θ) for data-MC
- Track-based data-MC corrections
- Cross checked with different TMVA methods

- Efficiency Corrected for data-MC Differences
- Divided by global efficiency

C.F. Redmer - pi+pi- using ISR at BESIII

0.9

m_{ππγ} [GeV]

Test of ANN

Compare ANN result for $\mu^+\mu^-\gamma$ with QED prediction

Revert selection

- $\pi + \pi \gamma$ background very small
- data-MC efficiency corrections
- PHOKHARA accuracy < 0.5%
- Iuminosity accuracy 1.0%

Excellent agreement: Δ (Data/QED) = (0.49 ± 0.30)% Statistical only

JGU

Radio MontecarLow WG Meeting, Frascati 2015

Normalization

To integrated Luminosity:

$$\sigma_{bare}(e^+e^- \to \pi^+\pi^-) = \frac{N_{\pi\pi\gamma}/\epsilon_{exp}}{L_{int} \cdot H_{rad} \cdot \delta_{vac} \cdot (1 + \delta_{FSR})}$$

JGU

HANNES GUTENBERG

Normalization

To integrated Luminosity:

$$\sigma_{bare}(e^+e^- \to \pi^+\pi^-) = \frac{N_{\pi\pi\gamma}/\epsilon_{exp}}{L_{int} \cdot H_{rad} \cdot \delta_{vac} \cdot (1 + \delta_{FSR})}$$

To R – Ratio:

JGU

ANNES GUTENBERG

- \blacksquare $L_{int},$ $H_{rad},$ and δ_{vac} cancel
- Limited by statistics

Relative Difference of Normalization Methods:

 $(0.35 \pm 1.68)\%$

Summary: Systematic Uncertainties

JOHANNES GUTENBERG UNIVERSITÄT MAINT

JGU

photon	
pion track	
pion AN	
pion e-P	
an	I NEEMMANI
muon b	
non-muor	

Luminosity is the limiting Factor!

Redo luminosity measurement

Andreas' talk

source	uncertainty (%)
photon efficiency correction	0.2
pion tracking efficiency correction	0.3
pion ANN efficiency correction	0.2
pion e-PID efficiency correction	0.2
ANN	negl.
angular acceptance	0.1
muon background subtraction	0.06
non-muon background subtraction	0.03
unfolding	0.2
FSR correction δ_{FSR}	0.2
vacuum polarization correction δ_{vac}	0.2
radiator function	0.5
Luminosity \mathcal{L}	1.0
sum	1.3

- Improve luminosity measurement by approx. factor two
- Reduce systematics of $\sigma_{bare}(e^+e^- \rightarrow \pi^+\pi^-(\gamma_{FSR}))$ to approx. 1.0%

April 20, 2015

Radio MontecarLow WG Meeting, Frascati 2015

Form Factor

Fit with Gounaris – Sakurai parametrization

- Free Parameters: $m_{\rho}, \Gamma_{\rho}, m_{\omega}, \Gamma_{\omega}, \phi_{\omega}, |c_{\omega}|$
- Other parameters fixed
- χ² / n.d.f. = 33.2 / 51

JGU

ANNES GUTENBERG

Fit Parameters

Comparison: Cross Section

IOHANNES GUTENBERG

Comparison: Form Factor

IOHANNES GUTENBERG

Comparison to BaBar

JGU

OHANNES GUTENBERG UNIVERSITÄT MAIN

Comparison to KLOE

JGU

JOHANNES GUTENBERG UNIVERSITÄT MAIN

Comparison to CMD and SND

Result for (g-2) $_{\mu}$

JGU

Experiment	a _μ ^{2π,LO} (600 – 900 MeV) [10 ⁻¹⁰]
BaBar	$376.7 \pm 2.0_{stat} \pm 1.9_{sys}$
KLOE 08	$368.9 \pm 0.4_{stat} \pm 2.3_{sys,exp} \pm 2.2_{sys,theo}$
KLOE 10	$366.1 \pm 0.9_{stat} \pm 2.3_{sys,exp} \pm 2.2_{sys,theo}$
KLOE 12	$366.7 \pm 1.2_{\text{stat}} \pm 2.4_{\text{sys,exp}} \pm 0.8_{\text{sys,theo}}$
BESIII (preliminary)	$374.4 \pm 2.6_{stat} \pm 4.9_{sys}$

April 20, 2015

C.F. Redmer - pi+pi- using ISR at BESIII

Radio MontecarLow WG Meeting, Frascati 2015

HANNES GUTENBERG

Summary

- **BESIII** measurement confirms Δa_{μ}^{had}
- Systematic uncertainty dominating
 - Current precision: 1.3 %
- Outlook
 - Reduce contribution of luminosity measurement
 - Factor three more statistics available at BESIII
 - Investigate full mass range
 - Tagged and untagged measurements