Dark photon searches with e⁺ and e⁻ beams at LNF

Venelin Kozhuharov SU "St. Kl. Ohridski"* and LNF-INFN

20 April 2015 PADME Kickoff meeting LNF-INFN

* partially supported by the SU science fund: proposal 1142

Motivation: New Physics

- Standard Model is complete: 2012 LHC Higgs boson
- Unknowns:
 - Matter-antimatter asymmetry
 - Dark matter
 - Dark Energy
- Still some places of discrepancies between theory and experiment
- The Standard Model is a low energy approximation of a more fundamental theory.

But which theory?

 Despite the highest energy reach LHC did not provide any evidence for new degrees of freedom Where to look? How to proceed?

Energy frontierVSIntensity frontier

Direct search experiment

3

-0.2

20.04.2015

3.2

3.4

3.6

arXiv:1402.4119 Possible interpretation: arXiv:1404.2220

Energy (keV Venelin Kozhuharov, PADME Kickoff meeting

3.8

And yet another hint?

 Recent work on the analysis of Inner Pair Creation in ⁸Be with the reaction ⁷Li(p,e+e-)⁸Be

Seems that a new boson in the 16-17 MeV could explain such an anomaly

About 3 σ discrepancy between theory and experiment (3.6 σ , if taking into account only $e^+e^- \rightarrow$ hadrons)

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F(m_V/m_{\mu}), \qquad (17)$$

where $F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2 + x^2z] dz$. For values of $\varepsilon \sim 1-2 \cdot 10^{-3}$ and $m_V \sim 10-100$ MeV, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon g-2 discrepancy. Searches for the dark

• Why dark photon

• Why in e+/e- interactions

• Why LNF

Dark photons

- The present studies still do not exclude a large and still interesting part of the DP parameter space
- See the talks of B. Batell & M. Battaglieri
- If one can look for unexplored process, one SHOULD do it
 - Many examples in the history, including the dark energy from the study of SN
- Possible explanation of existing puzzles
 - e⁺ excess in cosmic rays
 - $(g_{\mu} 2)$
 - DM scattering on nuclei

N.B. multiple notations A' \equiv U \equiv Z' \equiv Z_d \equiv ... $m_{A'}$ [0]

20.04.2015

Universal coupling

• E.g. kinetic mixing

Leptophilic dark photon

- Solution preferred by e+ excess in the cosmic rays
 - Or could be part of the explanation (new AMS results last week)

Venelin Kozhuharov, PADME Kickoff meeting

Light dark matter

- A' $\rightarrow \chi \chi$ if χ is light enough and remains unobserved

Theoretical scenarios (B. Batell's talk)

The effective interaction that can be studied is

Production mechanisms

- A search using only electrons can cover many many different dark photon decay models
 - General U'(1) and kinetic mixing with B (A', Z')
 - Universal coupling proportional to the $\boldsymbol{q}_{_{em}}$
 - Just single additional parameter ϵ
 - Leptophilic dark photon (no interactions with quarks
 - Low mass dark matter (i.e. $A' \rightarrow invisible$)

- Available facilities
- Beam dump experiments
- Dark photon searches with positron beam
- Dark matter scattering
- Resonance searches

Present status

Status: ongoing, planned, proposals

 e^+ Maximal beam energy [MeV]550Beam rate [particles/burst] $6.2 * 10^8$ Number of bursts per second50Max. averaged current during a burst [mA]85Typical emittance (mm mrad)1.5Beam spot size (σ in mm)2.

- Variable beam energy
 - from ~250 MeV to E_{MAX}
- Variable beam intensity
- Possibility for single particle beam
- Both positron and electron beams
- Small beam energy spread
- Available immediately
- This is up to now, many possible upgrades seem to be possible

And the complete DA <u> PANE beauty</u>

DP annihilation production

- Most probably the best way to search for invisible DP decays due to fixed kinematics of the initial state
- A conceptual layout of the experiment is quite advanced
- Calorimeter, active target, vacuum chamber, magnet and charged particle detector
- Can perform inclusive searches, not dependent on the decay mode

20.04.2015

DP bremsstrahlung production

• Thin target

- Searching for peaks in the M_{e+e-} distribution
- Could have sensitivity to unexplored regions for low (<100MeV) DP masses

DP bremsstrahlung production

- 5 10 cm of tungsten target, not a complete dump (photons leak out)
- Beam veto after the target
- Both thin and thick bremsstrahlung production searches depend on a spectrometer for e+e- momentum reconstruction

Direct search for dark matter

- When the mediator is the dark photon the experiment is sensitive to the DP parameters – mass and coupling
- Directly explores the invisible decays of the dark photon
 - Sensitive to light dark matter
 - Insensitive to visible decays
- LNF beam structure has advantages with respect to the original BDX proposal that help to reduce the background significantly
 - with the price of lower energy

Planned/ongoing upgrates

- New BTF control room
 - And a new BTF hall
- Increase of the duty cycle
 - Length of the spill increased up to 160 ns and possibly to > 200 ns
- Intensity

• Energy upgrade \rightarrow possible electron beam of ~1000 to 1200 MeV

Search for Particles with Extended Lifetime **SPEL**

Upstream signal detectors

Downstream signal detectors

- BTF beam structure allows to use out-of-spill time to conduct searches for long lived particles
 - Such a particle could be either charged (stopped in the detector) or slow neutral particles
- The dump is the active media / detector itself (active dump)
- Radiation hardness requirement limits the possible choices of design/material \rightarrow quartz
- High beam intensity \rightarrow background estimation is quite tricky

Exotics: DP through dark higgs

BaBar Phys. Rev. Lett. 108, 211801 (2012)

And even more exotic

- We were always considering that the dark photon should couple to leptons
 - Positron excess, g_u-2, etc...
- What if it does not?
- We were speculating that it may couple only to leptons (leptophilic DP)
- Can we have DP coupled (weekly) only to quarks for example?
 - Production channel: meson decays
 - Decay channels depending on M_{U} : $\pi^{0}\pi^{0}$, $\pi^{+}\pi^{-}$, $\gamma\gamma\gamma$, $e^{+}e^{-}$ (loop), $\pi^{0}\gamma$
- There are no experimental results for pure leptophobic U(1) gauge interaction
- The best way to search for such U-boson could be exactly meson decays into hadrons
- May be KLOE (and DA Φ NE) could be able to shed some light on the existence/exclusions of di-meson resonances

Conclusions

- Present LNF infrastructure pushes for a thorough study of the possibility to conduct a diverse search for dark matter/mediators
- Preliminary studies indicate that such a programme could address fundamental physics questions and is competitive with the ongoing initiatives in other labs
- The plans for the upgrade of the LINAC and the infrastructure further strengthen such a proposal
- Already groups are being formed within INFN and abroad

Questions

• Why dark photon

It seems that DP is an important ingredient in the solution to many open puzzles including DM interactions and magnetic

Why in e+/e- interactions

Provide access to the most general scenarios of DP interactions

• Why LNF

.... why not... There are not that many fundamental particle physics cases where a medium size lab could play a significant or leading role

CAN IT BE DONE...?

Better: how it can be done?