Searching visible decays of dark photons with thin target

Venelin Kozhuharov SU "St. Kl. Ohridski"* and LNF-INFN

20 April 2015 PADME Kickoff meeting LNF-INFN

* partially supported by the SU science fund: proposal 1142

- What do we want to adress
- Conceptual experimental setup
- Beam
- Possible outcome
- Difficulties (or steps to go)
- Conclusions

Plots of interest

- There exists even a small region preferred by the g-2
- A lot of unexplored region to be studied

Visible decays in annihilation

- PADME approach to the analysis is inclusive
 - Selection optimized for both visible and invisible decays of the U boson

- Advantage:
 - The searches are performed in parallel
 - 1 year with 60% efficiency (data taking)
 - 50 bursts/s, 10⁴ positrons/burst
- Disadvantage:
 - Few positrons on target (~10¹³) limiting the sensitivity

<u>U → ee decay searches</u>

- Profit from the bremsstrahlung production
 - Higher mass regions within reach
 - Higher cross section
- Use electron beam instead of positron
 - Higher intensity
 - Better knowledge of the beam geometry
- Searching for peaks in the M_{e+e-} distribution
 - Have to measure the momentum (and the origin) of the tracks to reconstruct the decay vertex and the DP mass
 - Depends a lot on the quality of the spectrometer

<u>Characteristics</u>

- Events kinematics
 - A' takes nearly all the beam energy E_0 (sharp peak at x≈1)
 - Electron takes a small energy $\approx m_{A'}$
 - A' emission almost collinear to the beam: $\theta_{A'} = (m_{A'}/E_0)^{3/2}$
 - Electron going at "wide" angle: $\theta_e = (m_A / E_o)^{1/2}$
 - A' decay products open by $\theta \approx m_{A'}/E$
- Background tripod events

Represent the unbeatable background

<u>U → ee decay searches: HPS</u>

PADME searching for visibles

- PADME case: ability to perform alternative (visible) study with almost the same setup
 - May be apart from the spectrometer

A' in bremsstrahlung

- Bremsstrahlung searches allow access to higher masses and opens new possible search channels
 - μμ, πions, πγ ...
- However not easy to reconstruct the event due to unknown full kinematics

• Acceptance definition:

- Both $e^+ e^-$ within a cone of $tg(\theta) < 0.3$, $P_{trk} > 50$ MeV

A'

 Could be well justified since the magnetic field deflects all such particles in the tracker

Positron vs electron angle

Acceptance as function of MU

And also to muons...

Ebeam = 840 MeV

- Acceptance to muons is lower because at higher masses the DP gets smaller boost
- But there is still region of interest that can be studied even without modification on the setup
- However a dedicated detector experimental setup might be increasing

Expectations

- Toy MC games: consider target thickness, acceptance (again toy), production cross-section (Madgraph)
 - Do not consider background … or we can do a background free experiment?

800 MeV beam, 500um target, 10¹² EOT

Visible searches

Upgraded BTF – Ebeam = 1200 MeV

- The visible decays searches might cover quite an interesting part of the parameter space, but the access to it might be difficult due to background
 - Perform a low intensity beam experiment with full single event reconstruction

Conclusions

- The basic idea is quite clear detect DP decays with dileptons
- However many open questions still
 - What is the effect of the position resolution
 - What momentum resolution is needed
 - What is the optimal spectrometer design? Technology fibers, GEM, TPC?
 - Should the spectrometer be in vacuum?
- Background estimation has not been done
 - The resolution itself is not the only factor to the achievable sensitivity
- Nominal mode of operation
 - Single event mode: beam intensity allowing low multiplicity in the spectrometer
 - High beam intensity: if the 3e background is negligible