

PADME kickoff meeting

20-21 April 2015 Laboratori Nazionali di Frascati

Dark photon: an experimental overview

M.Battaglieri INFN-GE, Italy

Accelerators-based DM search

Forces Matter	EM	Weak	Strong	New force?
Electron	√	1	_	_
Neutrino		1	_	_
Quarks	√	1	1	_
Dark				
Matter?		_	—	✓

Neutral doors (portals) to include DM into the SM

- ★ The new force should be weak
- ★ Different combination of DM and mediator masses are possible:
 - heavy WIMPs / heavy mediators
 - heavy WIMPs /light mediators
 - light WIMPs / light mediators
 - light WIMPs / heavy mediators

Accelerators-based DM search

covers an unexplored mass region extending the reach outside the classical DM hunting territory

• High intensity • Low energy

Many theoretical suggestions and experimental attempts to extend the search region to lower mass:

MiniBoone@FNAL, SPS@CERN, BDX@JLab, PADME@LNF

Unique features of acceleratorbased (L)DM search

2

<u>e () lab12</u>

* Tagging wrt cosmic anomalies (clear way of distinguish DM from other effects)
* Unprecedented sensitivity in the keep-out zone for direct DM search
* High intensity electron beam available to play a significant role in LDM search

Where to look for?

e Cab12

A' searches: visible decays

Assumptions: M_{A'}>I MeV and no light dark fermions

- γ'/A' decay back to SM particles
- Prompt decay
- BF (A' \rightarrow hadrons/A' \rightarrow leptons) ~ M²(A')
- Below I.2 GeV leptonic decays dominate

Fixed target: e N \rightarrow N $\gamma' \rightarrow$ N Lepton Lepton+ \rightarrow JLAB, MAINZ

Annihilation: $e+e- \rightarrow \gamma' \gamma \rightarrow \mu \mu \gamma$ \rightarrow BABAR, BELLE, KLOE

Fixed target: $p \ N \rightarrow N \ \gamma' \rightarrow p$ Lepton Lepton+ \rightarrow FERMILAB, SERPUKHOV Meson decays: $\pi^{0}, \eta, \eta', \omega, \rightarrow \gamma' \gamma (M)$ \rightarrow Lepton Lepton + $\gamma (M)$ \rightarrow KLOE, BES3, NA48 PHENIX, ALICE

Particle physics search of A'

Fixed target: $e \ N \rightarrow N \gamma' \rightarrow N \ Lepton^- \ Lepton^+$ $\rightarrow JLAB, MAINZ$ Fixed target: $p \ N \rightarrow N \gamma' \rightarrow p \ Lepton^- \ Lepton^+$ $\rightarrow FERMILAB, SERPUKHOV$ Annihilation: $e+e- \rightarrow \gamma' \gamma \rightarrow \mu\mu \gamma$ $\rightarrow BABAR, BELLE, KLOE$ Meson decays: π^0 , η , η' , $\omega'_{,} \rightarrow \gamma' \gamma \rightarrow Lepton^- \ Lepton^+ \gamma$ $\rightarrow KLOE, BES3, NA48, HC$

Particle physics search of A'

Fixed target: $e \ N \rightarrow N \gamma' \rightarrow N \ Lepton^- \ Lepton^+$ $\rightarrow JLAB, MAINZ$ Fixed target: $p \ N \rightarrow N \gamma' \rightarrow p \ Lepton^- \ Lepton^+$ $\rightarrow FERMILAB, SERPUKHOV$ Annihilation: $e+e- \rightarrow \gamma' \gamma \rightarrow \mu\mu \gamma$ $\rightarrow BABAR, BELLE, KLOE$ Meson decays: $\pi^0, \eta, \eta', \omega, \rightarrow \gamma' \gamma \rightarrow Lepton^- \ Lepton^+ \gamma$ $\rightarrow KLOE, BES3, NA48, HC$

No positive signal (so far) but limits in parameter space coupling vs mass

Dark photon: an experimental overview

A.Atare et al. arXiv:1409.0851

- Events with e+e- detected
- I.4M e+e- pairs (p+p and p+Au)
- Mass resolution: 2 MeV 6 MeV

8

Meson decays at Hadron Colliders Present & Future Results

A' production: fixed target vs. collider

Fixed Target

e+e- colliders

Process

Luminosity

Cross-Section

 $*I/M_{A'}$.vs. I/E_{beam} *Coherent scattering from Nucleus (~Z²)

9

<u>e () lab12</u>

Dark photon: an experimental overview

Ist generation fixed target exp: beam dump

* e- beam incident on thick target
* A' is produce in a process similar to ordinary Bremsstrahlung
* A' carries most of the beam energy
* A' emitted forward at small angle
* A' decays before the detector

Current generation fixed target exp: thin target JLab and Mainz

JLab * DARK LIGHT (FEL) * APEX (Hall-A) * HPS (Hall-B)

- Unconventional use of the CEBAF
- PAC approval (max rating conditioned to technical feasibility)
- Positive run-tests
- Experiments begin: 2015-16

Mainz

- Magnetic spectrometers (AI)
- Pilot run in 2012
- Full analysis published in 2014

12

• Future plans

JLab experiments APEX (A-Prime EXperiment)

• Dark photon search in fixed target experiment in Hall-A at Jefferson Lab

- Looking for a small, narrow bump on top of a smooth histogram of QED processes
- Excellent mass resolution required (~ 0.85 1.1MeV)

13

<u>e () lab12</u>

A' search at MAINZ Full data analysis

AI spectrometers @ MAMI

- I=100uA
- Ta target
- Spectrometer A (red): p_{e-} 338 MeV/c J_{e-} =22.8°
- Spectrometer B (blue): p_{e^+} 470 MeV/c J_{e^+} =15.2°

BaBar

10

H. Merkel et al., Phys. Rev. Lett. 112 (2014) 015032

e 🔊 ab12

Heavy photon signatures in HPS

I) Bump Hunting (BH)

Narrow e+e-resonance over a QED background \Rightarrow good mass resolution: $\sigma_{A'mass} \sim I MeV$

2) Secondary decay vertex (vertexing)

Detached vertex from few mm to tens cm
 good spacial resolution: σ_{vertex}~Imm

15

BH + Vertexing = enhanced experimental reach

Bump Hunt

Decay lenght

$$I_{\gamma'} \sim \frac{E_{\gamma'}}{\alpha \chi^2 m_{\gamma'}^2} \sim 10 \text{cm} \frac{E_{\gamma'}}{1 \text{GeV}} \left(\frac{10^{-4}}{\chi}\right)^2 \left(\frac{10 \text{MeV}}{m_{\gamma'}}\right)^2 \sim \mathcal{O}(\text{mm} - \text{km})$$

e@lab12

Dark photon: an experimental overview

The HPS Experiment

Requirements:

- forward angles coverage
- good spacial resolution: σ_{vertex}~Imm (vertexing)
- good mass resolution:
 σ_{A'mass}~I MeV (bump hunting)

Experimental set-up

- B field to bend e+/e- pairs
- Si TRCK for vertexing
- EM cal for triggering

<u>e 8 lab12</u>

Dark forces and dark matter (Light WIMPs - light mediators)

M.Battaglieri - INFN GE

17

<u>e (8) lab12</u>

Visible vs Invisible: complementarity (g-2)µ

Strong Constraints on Sub-GeV Dark Matter from SLAC Beam Dump E137 PhysRevLett.113.171802 Brian Batell, Rouven Essig, Ze'ev Surujon

- Reinterpretation of existing data are ruling out $(g-2)_{\mu}$ favoured region
- Exclusion limits are model dependent: if invisible decay is included limits do not hold!

19

20

Fixed target DM production

Two steps process

I) An electron irradiates an A' and the A' promptly decays to a χ (DM) pair

II) The χ (in-)elastically scatters on a e⁻/nucleon in the detector producing a visible recoil (GeV/MeV)

• At low energy detector acceptance can be an issue

PhysRevD.88.114015 E.Izaguirre, G.Krnjaic, Gordan, P.Schuster, N.Toro

21

<u>e () lab12</u>

BDX@JLab reach

- Iton detector (~2.5 m x 0.4x0.4 m2)
- 10²² EOT (100 uA for 6 months, full parasitic)
- realistic estimates of cosmogenic and beam-related background At least, two orders of magnitudes better than any previous experiments

BDX runs at other facilities

<u>ab12</u>

Putting LDM search into context

Report of the Particle Physics Project Prioritization Panel (P5) (May '14)

Premises

Building for Discovery

Strategic Plan for U.S. Particle Physics in the Global Contex

Report of the Particle Physics Project Prioritization Panel (P5)

... The dark matter may be composed of ultra-light (less than a GeV), very weakly interacting particles. Searches for such states can be carried out with high-intensity, low-energy beams available at Jefferson Lab or with neutrino beams aimed at large underground detectors.

Recommendations

Dark Matter

The experimental challenge of discovery and characterization of dark matter interactions with ordinary matter requires a multi-generational suite of progressively more sensitive and ambitious direct detection experiments. This is a highly competitive, rapidly evolving field with excellent potential for discovery. The second-generation direct detection experiments are ready to be designed and built, and should include the search for axions, and the search for low-mass (<10 GeV) and high-mass WIMPs. Several experiments are needed using multiple target materials to search the available spin-independent and spin-dependent parameter space. This suite of experiments should have substantial cross-section reach, as well as the ability to confirm or refute current anomalous results. Investment at a level substantially larger than that called for in the 2012 joint agency announcement of opportunity will be required for a program of this breadth.

Recommendation 19: Proceed immediately with a broad secondgeneration (G2) dark matter direct detection program with capabilities described in the text. Invest in this program at a level significantly above that called for in the 2012 joint agency announcement of opportunity.

Conclusions

*Existence of Dark Matter is a compelling reason to investigate new forces and matter over a broad range of masses

*Strong physics motivation for the possible existence of MeV-GeV dark photon
*Visible A' decay searches are excluding a significant part of parameters space
*Invisible A' decay represents a straightforward extension of the minimal model
*Light Dark Matter (coupled to A' invisible decay) could explain null results resetting experimental limits
*Accelerator-based (Light)DM search provides unique feature of distinguish DM signal from any other cosmic anomalies or effects

*Extensive experimental plans at high intensity e-facility: JLab, LNF, Cornell, Mainz *Discovery or decisive tests will possible in the next ~5-8 years!

