
Descrizione dell’architettura
dei componenti standard di

Openstack
Marica Antonacci - INFN Bari

!
Scuola di Cloud Computing !

Bari, 27-30 Aprile 2015

Outline

• Openstack architecture

• Openstack: multiple solutions for storage,
deployment tools, hypervisors,…

• Installation roadmap

Openstack Architecture

Conceptual architecture

Logical Architecture

A typical service placement

PRISMA testbed architecture

Rabbit cluster/AMQP

Galera Cluster replication

HAProxy, keepalived

90.147.75.72	

ha1.prisma.it	

90.147.75.73	

ha2.prisma.it	

MySQL queries
90.147.75.71	

ha.prisma.it

MySQL MySQLMySQL

AMQP AMQP AMQP

!
!
!
!
!

Pacemaker/Corosync
Active/Passive

OpenStack	

Controller	

API servers
OpenStack	

Network
Controller

OpenStack	

Network
Controller

192.168.230.16

90.147.75.96

192.168.230.17

OpenStack	

Controller	

API servers

OpenStack Public APIs

compute
nodecompute

nodecompute
nodecompute

nodecompute
nodecompute

nodecompute
nodecompute

nodecompute
node

GlusterFS

Swiftcompute
nodecompute

nodecompute
nodecompute

nodeCeph

compute
nodecompute

node

encrypted

vm01

cinder-scheduler

cinder-api

cinder-volume

vm02-03-04

swift-proxy

vm05

swift-account

mongoDB

ceilometer-agent-central

OPENSTACK CONTROLLER + NETWORK NODE

COMPUTE-NODE

heat-api

Tutorial Testbed Architecture

HEAT+CEILOMETER NODE

Ceph

Keystone

Horizon

glance-api

glance-registry

neutron-server

neutron-l3-agent

neutron-dhcp-agent

neutron-metadata-agent

nova-novncproxy

nova-conductor

nova-certnova-api

nova-scheduler

nova-consoleatuth

openvswitch-switch

neutron-plugin-openvswitch-agent

NETWORKING COMPUTE

BLOCK STORAGE OBJECT !
STORAGE

DASHBOARD

IDENTITY

IMAGE

nova-compute

neutron-plugin-openvswitch-agent

swift-container

swift-object

COMPUTE

OBJECT !
STORAGE

NETWORKING

BLOCK STORAGE DISTRIBUTED FS

ORCHESTRATION

TELEMETRY

heat-engine

heat-api-cfn

ceilometer-agent-notification

ceilometer-api

ceilometer-collector

ceilometer-alarm-notifier

ceilometer-alarm-evaluation

MySql RabbitMQ

TELEMETRY

ceilometer-agent-compute

https://github.com/infn-bari-school/OpenStack-Icehouse-Installation

Manual Installation
Roadmap

Pre-requirements:!

• Step 1: Network interfaces configuration

• Step 2: Install Network Time Protocol (NTP)

• Step 3: Install the MySQL Python library

• Step 4: Install Openstack Packages on all
nodes

• Step 5: Modify the /etc/hosts file

• Step 6: Distributed Filesystem Installation

Basic services installation:!

๏ Controller and Network node installation:

• Step 1: MySQL installation/configuration

• Step 2: Install the message broker service

• Step 3: Install Identity service

• Step 4: Install Image service

• Step 5: Install Compute service

• Step 6: Install Networking service (Neutron)

• Step 7: Install the dashboard (Horizon)

๏ Compute node installation:

• Step 1: Install Compute components

• Step 2: Install Networking components

Basic Services:

Database

Message Broker

Basic services: Database &
Messaging Server

• OpenStack components use an SQL database and an AMQP-compatible
system to share the current status of the cloud and to communicate to each
other.

• Multiple SQL databases and AMQP systems are supported. The most
common used are MySQL and RabbitMq

• Since the architecture is highly distributed, a request done on an API service
(for instance, to start a virtual instance), will trigger a series of tasks, possibly
executed by different services on different machines. Usually the status of the
request is saved on the database, and whenever some additional task is
needed by a different service, the AMQP system is used to request it.

• MySQL and RabbitMQ are therefore very important and very basic services,
used by all the OpenStack components. If something is not working here, or
not working properly, the whole cloud could be unresponsive or broken. —>
Highly recommended: High-Availability implementation

Identity Service

The Identity Service:
keystone

Keystone stores information about different,
independent services:
• users, passwords and tenants
• authorization tokens
• service catalog
• policy

Keystone installation
1. Install the required packages

2. Create a database and a user “keystone”

3. Edit the configuration file /etc/keystone/keystone.conf

4. Create the database tables running the command:

keystone-manage db_sync

5. Restart the service

6. Verify the process is running
root@vm01:~# netstat -pln | grep `pgrep keystone-all`
tcp 0 0 0.0.0.0:35357 0.0.0.0:* LISTEN 1746/python
tcp 0 0 0.0.0.0:5000 0.0.0.0:* LISTEN 1746/python

The chicken and egg
problem

• In order to create users, projects or roles in keystone you need
to access it using an administrative user (which is not
automatically created at the beginning), or you can also use the
"admin token", a shared secret that is stored in the keystone
configuration file and can be used to create the initial
administrator password.

• Keystone listens on two different ports, one (5000) is for public
access, while the other (35357) is for administrative access.
You will usually access the public one but when using the
admin token you can only use the administrative one.

• In our case, since we don't have an admin user yet we need to
use the admin token

Credentials
• Admin Token & Service Endpoint variables:
export OS_SERVICE_TOKEN=`grep admin_token /etc/keystone/keystone.conf | cut -d= -f2`
export OS_SERVICE_ENDPOINT=http://controller:35357/v2.0

export OS_USERNAME=admin
export OS_PASSWORD=xxxx
export OS_TENANT_NAME=admin
export OS_AUTH_URL=http://controller:5000/v2.0

• User credentials & auth_url variables:

Service catalog
• Keystone is not only used to store information about users,

passwords and projects, but also to store a catalog of the available
services the OpenStack cloud is offering.

๏ publicurl is the URL of the client API, and it's used by command
line clients and external applications.

๏ internalurl is similar to the publicurl, but it's meant to be used
by other OpenStack services, that might not have access to the
public address of the API, but might be able to access directly
the internal interface of the API node.

๏ adminurl is used to expose the administrative API. For instance,
in keystone, creation and deletion of a user is considered an
administrative action and therefore will use this URL.

Policy.json
• The Policy service provides a rule-based

authorization engine and the associated rule
management interface.

• Rules are stored in /etc/keystone/policy.json
{
 "admin_required": [["role:admin"], ["is_admin:1"]],
 "service_role": [["role:service"]],
 "service_or_admin": [["rule:admin_required"], ["rule:service_role"]],
 "owner" : [["user_id:%(user_id)s"]],
 "admin_or_owner": [["rule:admin_required"], ["rule:owner"]],
 "default": [["rule:admin_required"]],
!
 "identity:get_service": [["rule:admin_required"]],
 "identity:list_services": [["rule:admin_required"]],
 "identity:create_service": [["rule:admin_required"]],
 "identity:update_service": [["rule:admin_required"]],
 "identity:delete_service": [["rule:admin_required"]],

Cloud Admin

Domain Admin Domain Admin

Domain A Domain B

Users

Groups Groups

Users

ProjectsProjects

Keystone v3 API: domains

• Domain aware policy allows for delegation of administration tasks
(policy.v3cloudsample.json)

keystone API version:
compatibility issues in Icehouse

• V2 and V3 keystone API endpoints can coexist, but…

• some openstack components do not fully support v3 API (neutron,
horizon)

• Load-balancer (CERN solution*)

• calls two different backend machines

• ensures the services migration from one API version to the next one with
no downtime

* http://openstack-in-production.blogspot.it/

http://openstack-in-production.blogspot.it/

Federated Identity
• keystone has generic federated capabilities, which

allows external users to be recognized
• Users are not persistent in keystone, but are

created on the fly from external user information
provided by trusted identity provider

• Use cases:
• existing internal IdP, Single-Sign-On
• Inaccessible LDAP identity source
• Non-LDAP identity source

Federated Identity:
Keystone & SAML

• keystone in Apache HTTPD
• leverages mod_shib
• OS-FEDERATION extension
• mapping: convert assertion to a user group

Image Service

The Image Service: Glance

• Main components:

• glance-api: accepts Image API calls for image
discovery, retrieval and storage

• glance-registry: stores, processes, and retrieves
metadata for images

• storage backend (filesystem, rbd, swift, s3, cinder, etc.)

• The primary objective of
Glance is to publish a catalog
of virtual machine images.

Glance installation
1. Install the required packages

2. Create a database and a user “glance”

3. Edit the configuration files glance-api.conf and glance-registry.con in /etc/
glance/

4. Create the database tables running the command:

glance-manage db_sync

5. Restart the service

6. Create a keystone user named “glance” in the “service” tenant with admin
role

7. Add the image service in the keystone catalog and define its endpoint

8. Verify the installation

Image creation

• with option --location Glance simply tracks where that data resides. For example, if the
image data is stored in swift, you could specify

‘swift://account:key@example.com/container/obj'.
• --property option allows to associate “core” properties and user-defined metadata to

the image. Example of core properties:
• architecture, kernel_id, ramdisk_id, os_distro, os_version, hw_disk_bus,

hw_vif_model, etc.
• Image Property Protection: access to image meta properties may be configured

using a Property Protections Configuration file.
• Image membership: authorize a tenant to access a private image

glance help image-create
usage: glance image-create [--id <IMAGE_ID>] [--name <NAME>] [--store <STORE>]
 [--disk-format <DISK_FORMAT>]
 [--container-format <CONTAINER_FORMAT>]
 [--owner <TENANT_ID>] [--size <SIZE>]
 [--min-disk <DISK_GB>] [--min-ram <DISK_RAM>]
 [--location <IMAGE_URL>] [--file <FILE>]
 [--checksum <CHECKSUM>] [--copy-from <IMAGE_URL>]
 [--is-public {True,False}]
 [--is-protected {True,False}]
 [--property <key=value>] [--human-readable]
 [--progress]

swift://account:key@example.com/container/obj'

Image creation &
contextualization

• The simplest way to create a virtual machine image is to use the virt-
manager GUI, which is installable as the virt-manager package on both
Fedora-based and Debian-based systems. This GUI has an embedded
VNC client in it that will let you view and interact with the guest's
graphical console.

• Install cloud-init (Linux) or Cloudbase (Windows) to fetch metadata
(and user-data) from the metadata server or configuration drive

- root-fs resize

- ssh-key injection

• use virt-sysprep tools to clean your image before uploading onto Glance
(e.g. remove files like persistent-net.rules and persistent-net-generator)

• Tool for automated image creation: Oz, VMBuilder, imagefactory

Image synchronization
• VMcatcher/VMcaster toolset

• VMcaster is a simple tool for publishing, managing and
updating virtual ma- chines image lists which follows the
HEPix image list specifications. All the image lists and
metadata created by VMcaster are signed and trusted with
a X.509 certificate. This provides a mechanism by which a
virtual image can be checked for validity by any
subscriber.

• VMcatcher utility allows image consumers to subscribe to
VM image list generated by VMcaster. Using this utility
users can select and download trusted images.

Compute Service

Nova architecture

The compute service: Nova
• The Compute service is a cloud computing fabric controller, which is the main

part of a IaaS system.

• Main components:

• nova-api: accepts and responds to end user compute API calls

• nova-scheduler: determines on which compute server host it should run.

• nova-conductor: mediates interactions between nova-compute and the
database

• nova-novncproxy, nova-consoleauth allow end users to access their
virtual instances through a proxy

• nova-compute manages virtualization (hypervisor drivers for KVM, Xen,
VMware, Hyper-V, Docker, etc.)

VM placement: nova
scheduler

• Compute uses the nova-scheduler service to
determine how to dispatch compute requests.

• All compute nodes periodically publish their status,
resources available and hardware capabilities to
nova-scheduler through the queue. Nova-
scheduler then collects this data and uses it to
make decisions when a request comes in.

• By default, the compute scheduler is configured as
a filter scheduler

Filter Scheduler

• Default Filters: RetryFilter, AvailabilityZoneFilter, CapacityFilter,
CapabilitiesFilter

• Useful filters: AggregateInstanceExtraSpecsFilter, AggregateCoreFilter,
RamFilter, ImagePropertiesFilter

Segregating your cloud
• Availability zones!

❖ Logical separation within your nova deployment for
physical isolation or redundancy.

• Host aggregates!

❖ To schedule a group of hosts with common features.

• A common use of host aggregates is to provide
information for use with the nova-scheduler. For example,
you might use a host aggregate to group a set of hosts
that share specific flavors or images.

Nova installation
1. Install the required packages

2. Create a database and a user “nova”

3. Edit the configuration files /etc/nova/nova.conf

4. Create the database tables running the command:

nova-manage db sync

5. Create a keystone user named “nova” in the “service” tenant with admin
role

6. Add the compute service in the keystone catalog and define its endpoint

7. Restart the service

8. Verify the installation

Live migration
• To enable live-migration:

• share the instances folder (/var/lib/nova/instances)
among the compute nodes

OR

• use RBD shared storage backend

• Requirements:

• enable ssh login passwordless for nova user (check /
var/lib/nova/.ssh folder)

Networking Service

The Networking Service:
Neutron

• Neutron is a pluggable, scalable and API-driven system
for managing networks and IP addresses in your cloud.

• The Neutron project is considered to be one of the most
exciting projects – with great innovation around network
virtualization and software-defined networking (SDN).

• The Networking service also provides an API to
configure and manage a variety of network services
ranging from L3 forwarding and NAT to load balancing,
edge firewalls, and IPsec VPN.

Neutron components
• neutron-server: accepts and routes API requests to the appropriate OpenStack

Networking plug-in for action.

• plug-ins and agents: plug and unplug ports, create networks or subnets, and
provide IP addressing. OpenStack Networking ships with plug-ins and agents for
Cisco virtual and physical switches, NEC OpenFlow products, Open vSwitch, Linux
bridging, and the VMware NSX product.

• The common agents are L3 (layer 3), DHCP (dynamic host IP addressing), and a
plug-in agent.

• The Modular Layer 2 (ML2) plugin is a framework allowing OpenStack Networking to
simultaneously utilize the variety of layer 2 networking technologies found in complex
real-world data centers. It currently works with the existing Open vSwitch, Linux
bridge, and Hyper-V L2 agents as what ML2 define as ‘MechanismDrivers’, and is
intended to replace and deprecate the monolithic plugins associated with those.

• It currently includes drivers for the local, flat, VLAN, GRE and VXLAN network
types

Neutron installation
1. Install the required packages: neutron-server, neutron-plugin-ml2

2. Create a database and a user “neutron”

3. Edit the configuration files /etc/neutron/neutron.conf

4. Configure the ML2 plugin (/etc/neutron/plugins/ml2/ml2_conf.ini)

5. Create the database tables running the command:

neutron-manage db sync

6. Create a keystone user named “neutron” in the “service” tenant with admin role

7. Add the networking service in the keystone catalog and define its endpoint

8. Restart the service

9. Verify the installation

Some neutron options in
nova.conf

• These parameters are critical for the interaction
between nova and neutron

network_api_class = nova.network.neutronv2.api.API
neutron_url = http://network:9696
neutron_auth_strategy = keystone
neutron_admin_tenant_name = service
neutron_admin_username = neutron
neutron_admin_password = xxxxx
neutron_admin_auth_url = http://auth-node:35357/v2.0
linuxnet_interface_driver = nova.network.linux_net.LinuxOVSInterfaceDriver
firewall_driver = nova.virt.firewall.NoopFirewallDriver
security_group_api = neutron

Interaction to boot VM

Scenarios
1. Single Flat Network

2. Multiple Flat Networks

3. Mixed Flat and Private Networks

4. Provider Router

5. Per-Tenant Router

6. Multiple External Networks

7. Routed Networks without NAT

Per tenant-routers with
private networks

Single Flat Network

Mixed flat & private network

Created VMs can have NICs on any of the shared or private networks
that the tenant owns. This enables the creation of multi-tier topologies
that use VMs with multiple NICs. It also enables a VM to act as a
gateway so that it can provide services such as routing, NAT, and load
balancing.

Neutron extension:
allowed-address-pairs

• iptables rules are programmed by Neutron on
the compute node that hosts the instance that
permits traffic from the instance matching the
IP and MAC address of the associated
neutron port (to prevent IP and MAC spoofing)

• This is a problem if the instance is used to
route traffic between multiple networks.

• Solution:
neutron port-update <port_id> --allowed-
address-pairs type=dict list=true
ip_address=<ip_address/CIDR>

Dashboard

Openstack dashboard:
Horizon

• Horizon provides a web based user interface to
OpenStack services including Nova, Swift,
Keystone, Neutron, etc.

• The Service Catalog returned by the Identity
Service after a user has successfully authenticated
determines the dashboards and panels that will be
available within the OpenStack Dashboard.

• Horizon ships with three central dashboards,
“Project”, “Admin”, and “Settings”.

Horizon installation
• Install the required packages

• Edit the configuration file /etc/openstack-dashboard/local_settings.py

๏ Configure Your Identity Service Host

- OPENSTACK_HOST

- OPENSTACK_KEYSTONE_URL

๏ Configure Your Session Storage

- memcached (in our tutorial)

• Restart apache2 and memcached

Note: You can secure your dashboard enabling the SSL support.

Moreover, you can customize your dashboard changing the logo, the site title,
modifying the existing dashboards and panels.

PRISMA dashboard

Additional services & 
Advanced configurations

Advanced services
• Storage

‣ Block storage: cinder

‣ Object storage: swift

• Neutron Avanced configuration

‣ VPNaaS

‣ LBaaS

• Telemetry

• Zabbix

• Heat

Ceph: de-facto storage
backend for Openstack

• Storage consolidation:

• Glance, Cinder, Nova integration

• Swift (RADOS GW)

&HSK�')6���GH�IDFWR�VWRUDJH�
EDFNHQG�SHU�2SHQVWDFN

Configure RBD backend for
nova-compute

• Configure Libvirt

!

!

!

!
• Edit /etc/nova/nova.conf, add:

[libvirt]
images_type = rbd
images_rbd_pool = vms
images_rbd_ceph_conf = /etc/ceph/ceph.conf
rbd_user = cinder
rbd_secret_uuid = d38c68b3-53d3-4a4f-8f36-10d3b37ca4eb

uuidgen
d38c68b3-53d3-4a4f-8f36-10d3b37ca4eb
!
cat > secret.xml <<EOF
<secret ephemeral='no' private='no'>
 <uuid> d38c68b3-53d3-4a4f-8f36-10d3b37ca4eb</uuid>
 <usage type='ceph'>
 <name>client.cinder secret</name>
 </usage>
</secret>
EOF
sudo virsh secret-define --file secret.xml
Secret d38c68b3-53d3-4a4f-8f36-10d3b37ca4eb created
sudo virsh secret-set-value --secret d38c68b3-53d3-4a4f-8f36-10d3b37ca4eb --base64 $(cat
client.cinder.key) && rm client.cinder.key secret.xml

Cinder: rbd driver
[ceph]
volume_driver = cinder.volume.drivers.rbd.RBDDriver
rbd_pool = volumes
glance_api_version = 2
rbd_user = cinder
rbd_secret_uuid = 925560f4-ae0d-40a6-805f-dc628d63cef8
volume_backend_name=CEPH
rbd_ceph_conf=/etc/ceph/ceph.conf
rbd_flatten_volume_from_snapshot=false
rbd_max_clone_depth=5

 <disk type='network' device='disk'>
 <driver name='qemu' type='raw' cache='none'/>
 <auth username='cinder'>
 <secret type='ceph' uuid='925560f4-ae0d-40a6-805f-dc628d63cef8'/>
 </auth>
 <source protocol='rbd' name='volumes/volume-66ae13fe-2d3d-414a-809e-3ae295697497'>
 <host name='90.147.75.247' port='6789'/>
 <host name='90.147.75.248' port='6789'/>
 <host name='90.147.75.249' port='6789'/>
 </source>
 <target dev='vdb' bus='virtio'/>
 <serial>66ae13fe-2d3d-414a-809e-3ae295697497</serial>
 <alias name='virtio-disk1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
 </disk>

cinder.conf

VM definition file
(virsh dumpxml

<domain>)

